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Abstract 

The motivation for this paper is to investigate the use of a promising class of 
neural network models, Psi Sigma, when applied to the task of forecasting the 
one day ahead Value at Risk (VaR) of the oil Brent and gold bullion series 
using Open-High-Low-Close data. In order to benchmark our results we also 
consider VaR forecasts from two different neural network designs, the 
Multilayer Perceptron (MLP) and the Recurrent Neural Network (RNN), a 
genetic programming algorithm (GP), an Extreme Value Theory model (EVT) 
along with some traditional techniques such as an ARMA-GJR (1,1) model 
and the Riskmetrics volatility. The forecasting performance of all models for 
computing the VaR of the Brent oil and the gold bullion is examined over the 
period September 2001 to August 2010 using the last year and half of data for 
out-of-sample testing. The evaluation of our models is done by using a series 
of backtesting algorithms such as the Christoffersen tests, the violation ratio 
and our proposed loss function that considers not only the number of 
violations but also their magnitude.  

Our results show that the Psi Sigma outperforms all other models in 
forecasting the VaR of gold and oil at both the 5% and 1% confidence levels, 
providing an accurate number of independent violations with small magnitude.  
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1. INTRODUCTION 

Neural networks and genetic programming algorithms are emergent 
technologies with an increasing number of real-world applications including 
finance (Lisboa and Vellido (2000) and Chen (2002)). However their 
numerous limitations and contradictory empirical evidence around their 
forecasting power are often create scepticism about their use among 
practitioners. This scepticism is further fuelled by the fact that the selection of 
each algorithm inputs is based more on trial and error and the practitioner’s 
market knowledge rather than on some formal statistical procedure.  

The motivation for this paper is to investigate the VaR forecasting 
performance of a promising class of artificial intelligence model, the Psi Sigma 
(PSI) Neural Network, which tries to overcome some of these limitations. This 
is achieved by benchmarking their results with those of two different neural 
networks (NNs) designs, the Multilayer Perceptron (MLP) and the Recurrent 
Neural Network (RNN) and also  a genetic programming algorithm (GP), an 
Extreme Value Theory model (EVT) , a traditional ARMA-GJR (1,1) model 
and  Riskmetrics volatility. We consider two different confidence levels, 5% 
and 1% and we analyse both tails of the return distribution in order to provide 
VaR forecasts for short positions as well as long positions.  
 
The forecasting performance of the one day ahead VaR for gold and oil is 
evaluated by using traditional measures such as the Christoffersen (1998) test 
and  the violation ratio. We also use a newly introduced loss function that 
incorporates not only the number of violations but also their magnitude. This 
differs from previous approaches (see Lopez (1998), Blanco and Ihle (1999) 
and Sarma et al. (2003)) as it is not biased on the number of violations. 
Instead it considers equally the number of violations and their average 
magnitude. The Basel Committee on Banking Supervision (1996) indicates 
that the magnitudes as well as the number of exceptions are a matter of 
regulatory concern. 
 
In our VaR estimations we use the daily Open-High-Low-Close prices of gold 
bullion and oil Brent in order to obtain more accurate estimation of the daily 
realised volatility and Value at Risk than could be achieved using only close to 
close prices.  
 
We find that the Psi Sigma model outperforms all other models in forecasting 
the VaR of gold and oil at both the 5% and 1% confidence levels. The RNNs 
and GPs also provide satisfactory forecasts in the majority of cases. 
Unfortunately the VaR forecasts derived from the EVT model were accurate 
only for oil whilst the forecasts derived from MLPs, ARMA-GJR (1,1) and 
Riskmetrics were disappointing.  
 
Our results confirm that the proposed VaR models and backtesting function 
add value to traditional risk management toolboxes and provide more 
accurate VaR estimations and evaluation. 
 
The paper is organised as follows. In section 2, we present the literature 
relevant to Psi Sigma and the applications of Neural Networks to Value-at-
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Risk. Section 3 describes the dataset used for this research and its 
characteristics. An overview of the VaR framework, the models used in this 
research, the backtesting algorithms and our empirical results is given in 
section 4 while section 5 provides some concluding remarks. 

 

2. LITERATURE REVIEW 

In our study we apply the Psi Sigma Neural Network, which has been 
developed recently, with the purpose of overcoming a number of the 
documented limitations of more classic neural and genetic programming 
architectures. Although the unique architecture and characteristics of Psi 
Sigma seem promising in pattern recognition, there is little empirical evidence 
regarding their financial forecasting power. 

Psi Sigma networks were first introduced by Shin and Ghosh (1991) as a 
neural architecture capable of capturing higher order correlations within the 
data while avoiding some of the Neural Networks (NNs) limitations such as 
the combinatorial increase in weight numbers. Shin and Ghosh (1991) and 
Ghosh and Shin (1992) demonstrate these benefits and present empirical 
evidence on their forecasting superiority in function approximation when 
compared with a MLP network and a Higher Order Neural Network (HONN). 
Ghazali et al. (2006) compare them with a HONN and a MLP network on the 
task of forecasting and trading the IBM common stock closing price and the 
US 10-year government bond series. Psi Sigma outperformed both 
benchmarks in terms of statistical accuracy and annualized return. In a similar 
paper, Hussain et al. (2006) present satisfactory results of the Psi Sigma 
forecasting power on the EUR/USD, the EUR/GBP and the EUR/JPY 
exchange rates having as benchmarks a HONN model. On the other hand, 
Dunis et al. (2010) who also study the EUR/USD series with Psi Sigma having 
as benchmarks MLP, RNN and HONN architectures failed to outperform their 
benchmarks in a simple trading application. 

In the field of Risk Management, Locarek-Junge and Prinzler (1998) 
estimated the VaR of a US dollar portfolio using a Mixture Density Network 
while Bartlmae and Rauscher (2000) using a Neural Network Volatility Mixture 
model forecasted successfully the one day ahead VaR of the German Stock 
index. Neely and Weller (2002) argued in favour of the use of genetic 
programming as an alternative to GARCH and RiskMetrics while Sadorsky 
(2005) highlighted the difficulties of constructing accurate parametric VaR  
forecasting models. Dunis and Chen (2005) demonstrated that Neural 
Networks Regression models are superior in forecasting the VaR of the 
EUR/USD exchange rate compared to GARCH and Stochastic Variance 
models. Furthermore, Liu (2005) by combining historical simulation and a 
GARCH (1,1) model with Neural Networks achieved accurate VaR estimates 
for the S&P 500 and the DJI indexes and the Ford and IBM stocks. Similarly, 
Ozun and Cifter (2007) combine various GARCH, historical simulation and 
Extreme Value Theory models with Neural Networks to provide accurate 
estimates of the VaR of the Istanbul Stock Exchange while Huang and Tseng 
(2009) used kernel estimators to propose an alternative approach of VaR 
estimation. On the other hand, Dunis et. al. (2010) used Neural Networks to 
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forecast the Value-at-Risk of commodities with good results. One of their 
findings was that the addition of the RiskMetrics volatility of the series under 
study as input to their Neural Networks, improved substantially the forecasting 
ability of their models. Similarly, Chen and Hsieh (2010) who forecasted the 
Value-at-Risk of the Chinese and Hong Kong stock market achieved more 
accurate forecasts with a simple Neural Network architecture than with a 
historical simulation and a Monte Carlo approach. 
 
Note that in all of these prior studies closing data was used to model the daily 
volatility and the VaR of the series under study.  
 
3. THE BRENT OIL AND THE GOLD BULLION SERIES 

We aim is to forecast the one day ahead VaR of  Brent oil and gold bullion 
based on their opening-high-low-closing prices with PSI having as 
benchmarks several other linear and non linear models. This will allow us to 
test the pattern recognition capabilities of models and their utility in a Financial 
Risk Management environment. The series under study were obtained from a 
historical dataset provided by the Reuters X3000 platform. 
 
For the purpose of our research we estimate the daily realised volatility using 
the Yang and Zhang (2000) extension to the Garman and Klass historical 
volatility estimator: 
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Where Ãi is the volatility of day i, Oi is the opening price of day i, Li is the 
lowest price of day i, Hi is the highest price of day i and Ci is the closing price 
of day i. The above estimator which allows for an opening jump and assumes 
Brownian motion with zero drift is maximally 14 times more efficient than the 
close-to-close estimator (Yang and Zhang (2000)). Based on the 
characteristics of our data series1 this volatility estimate is preferred to other 
OHLC measures such as the Garman and Klass (1980), Parkinson (1980), 
Rogers and Satchell (1991) and Rogers et. al. (1994).  
 
In Appendix A.1 we present the inputs of our Neural Networks models and the 
methodology behind this choice. 
 
We examine our series over the period 1 September 2001 to 31 August 2010. 
The data period is partitioned as follows (see Table 1), where we leave 
approximately 17% of our data set for out of sample evaluation.    

Insert Table 1 
 

                                                 
1 Both series exhibit opening jumps and have very low average return in the in-sample sub-
period (0.03% and 0.06% for oil and gold respectively). See Yang and Zhang (2000), Chan 
and Lien (2003) and Floros (2009) for further justification in our use of equation [1].   
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In order to train our neural networks we further divided our dataset as 
illustrated in table 2: 

  
Insert Table 2 

 

4. THE VALUE AT RISK FORECASTING MODELS AND 
BACKTESTING 

Under a probabilistic framework, at the time t, we are interested in the risk of a 
financial position for the next h periods. If we define ” V(h) to be the asset 
value change from time t to t+h, then this quantity is measured in monetary 
terms and is a random variable at time t. If we denote the conditional density 
function (CDF) of ” V(h) by )(xFh  then we define the VaR of a long position 
over the time horizon h with probability p as: 

)(])(Pr[ VaRFVaRhVp h=≤∆=                          [2] 
For a long position, the loss occurs when 0)( <∆ hV and so the VaR defined in 
[2] is assumed to have a negative value. On the other hand, for the short 
position the loss occurs when 0)( >∆ hV  and the VaR has a positive value. 
As an investor can take both long positions, where the left hand side of the tail 
is of interest from a risk perspective, and short positions, where the right hand 
side of the tail is of interest, we consider both tails of the distribution. 
Moreover, the asymmetries between the tails of the return distributions of our 
assets enables us to draw additional conclusions when large discrepancies 
are observed in our results for long and short positions. 
 
Equation [2] can be also interpreted in such a way to represent the probability 
that the holder would encounter a loss greater than or equal to VaR. It follows 
then that in order to model VaR we are required to model the tail behavior of 
the CDF, )(xFh . In practice the CDF is unknown and most VaR forecasting 
models therefore require an a priori definition of the CDF. In this paper, except 
for the EVT model, we assume that the unknown CDF is either the normal 
distribution or the Student t-distribution with 6 degrees of freedom2. Note 
further that we are unable to estimate the CDF of the series with the 
frequency of data at our disposal, i.e. open, close, high and low.   
 
 
 
4.1 Statistical Techniques 
 
4.1.1 RiskMetrics Volatility 
 

                                                 
2 Although we acknowledge that our series do not follow the normal or the t-distribution, we 
make this assumption based on the basis of the existing literature (see amongst others Lee 
and Saltoglu (2001), Dunis et al. (2005) and Rau-Bredow (2004) for the normal distribution 
and Jorion (1997) and Ho et. al.  (2000) for the Student t-distribution with 6 degrees of 
freedom). 
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The RiskMetrics volatility model is treated as a benchmark model owing to its 
popularity in risk measurement. RiskMetrics is one of the simplest tools for 
measuring financial market risk under the VaR framework. Derived from the 
GARCH(1,1) model, but with fixed coefficients, RiskMetrics volatility is 
calculated using the standard formula:  

22
1

2 )1( ttt RbbRMVOL −+= −σ  [3] where 2
tσ is the asset variance at time t, 2

tR  is 
the asset squared return at time t and b=0.94 for daily data. In this paper we 
use RiskMetrics volatility to forecast 1-day ahead volatility for the out-of-
sample period. The RiskMetrics volatility is calculated from equation [3] and 
then we use equation [4] below to calculate the 1-step ahead volatility 

forecast: 1+

∧

tσ = tRMVOL  [4]. The computed VaR is then: qt
q
t cVaR 11 +

∧

+ = σ  [5] 

where q
tVaR 1+  is the VaR forecast for period t+1 at the q% confidence level, 

1+

∧

tσ  is the forecasted volatility for period t+1 and qc is the critical value of the 

normal distribution at the  q% confidence level. 
 
4.1.2 ARMA-GJR(1,1) 
 
As an additional benchmark we also forecast the VaR of our assets with an 
ARMA-GJR(1,1) model. One of the primary restrictions of traditional GARCH 
models is their symmetric response to positive and negative shocks. 
However, it has been argued that a negative shock to financial time series is 
likely to cause volatility to rise by more than a positive shock of the same 
magnitude (Bekaert and Wu (2000) and Brooks (2002)). A popular 
asymmetric formulation of GARCH which has an additional term to account 
for possible asymmetries is the Glosten, Jagannathan and Runkle (hereafter 
GJR, 1993) model. 
 
In mathematical terms an ARMA(p,q)-GJR(1,1) can be expressed as: 

t
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where βx and αx are the ARMA parameters, 2
tσ   and tε  are the conditional 

variance and the error respectively at time t, z and 𝝌  are constants, Rt is the 
return of day t and  11 =−tI  if 01 <−tε or 0 otherwise. 
 
The computer VaR using the ARMA-GJR(1,1) model is then: 

111 +

∧

+

∧

+ −= tqt
q
t cRVaR σ  [8] where q

tVaR 1+  is the VaR forecast for t+1 period at the 

q% confidence level, 1+

∧

tR  and 1+

∧

tσ  are obtained from equations [6] and [7] 
respectively while qc is the critical value of the normal or the Student t-

distribution at the  q% confidence level. 
 
4.1.3 Extreme Value Theory Model 
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Extreme Value Theory (EVT) is a powerful and yet fairly robust framework to 
study the tail behaviour of a distribution. Even though the theory has primarily 
been applied to climatology and hydrology, recently there has been an 
increasing number of extreme value studies in the VaR and Risk Management 
literature (see for example Bali (2003), Gencay and Selcuk (2004), Gilli and 
Kellezi (2006), Samuel (2008) and Dunis et. al. (2010)).  
  
There are two main approaches in estimating VaR with EVT, namely the 
“method of block over maxima” and the method of “peaks over threshold” 
(POT). In our research, based on the empirical evidence provided by Gilli and 
Kellezi (2006) who compared the two methods, we will estimate VaR with the 
POT approach. Moreover, in our estimation we followed the unconditional 
approach. In real world environments, the unconditional approach is preferred 
as it can provide stable estimates through time while avoiding the time 
consuming computations required by the conditional approach (Gilli and 
Kellezi (2006)).   
  
The POT method is based on a theorem stated by Picklands (1975) and 
Balkema and de Haan (1974). According to it, for a large class of underlying 
distribution functions F the conditional excess distribution )(yFu , for a 
threshold u large enough, is well approximated by the Generalised Pareto 
Distribution (GPD). In our application we choose our threshold following the 
methodology employed by Bali (2003) who suggests choosing as a threshold 
the distance of 2 standard deviations from the in-sample mean.  Then given 
the excesses over the threshold, we estimate the parameters of the GPD 
using the method of moments3. In the end, we compute the VaR using the 

formula: 
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the q% confidence level, u is is the threshold,
∧

φ  and 
∧

ξ  are the moments 
estimates of the shape and scaling parameters of the GPD respectively, n is 
the sample size and Nu is the number of observations above u. Further 
details about the POT method and our VaR estimation can be found in Gilli 
and Kellezi (2006) and Samuel (2008). 
 
4.2 Neural Networks  
 
The most popular neural network architecture is the Multi-Layer Perceptron 
(MLP). A standard MLP neural network has at least three layers. The first 
layer is called the input layer (the number of its nodes corresponds to the 
number of explanatory variables). The last layer is called the output layer (the 
number of its nodes corresponds to the number of response variables). An 
intermediary layer of nodes, the hidden layer, separates the input from the 
output layer. Its number of nodes defines the amount of complexity the model 

                                                 
3 Moments estimators for the GPD were derived by Hosking and Wallis (1987). According to 
the empirical evidence provided by Sing and Guo (1995) the method of moments seems more 
accurate than the maximum likelihood approach for estimating the parameters of a GPD 
distribution.  
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is capable of fitting. In addition, the input and hidden layer contain an extra 
node, called the bias node. This node has a fixed value of one and has the 
same function as the intercept in traditional regression models. Normally, 
each node of one layer has connections to all the other nodes of the next 
layer.  
 
The network processes information as follows: the input nodes contain the 
value of the explanatory variables. Since each node connection represents a 
weight factor, the information reaches a single hidden layer node as the 
weighted sum of its inputs. Each node of the hidden layer passes the 
information through a nonlinear activation function and passes it on to the 
output layer if the calculated value is above a threshold.  
 
The training of the network (which is the adjustment of its weights in the way 
that the network maps the input value of the training data to the corresponding 
output value) starts with randomly chosen weights and proceeds by applying 
a learning algorithm called backpropagation of errors4 (Shapiro (2000)). The 
learning algorithm simply tries to find those weights which optimise an error 
function (normally the sum of all squared differences between target and 
actual values). Since networks with sufficient hidden nodes are able to learn 
the training data (as well as their outliers and their noise) by heart, it is crucial 
to stop the training procedure at the right time to prevent overfitting (this is 
called ‘early stopping’). This can be achieved by dividing the dataset into 3 
subsets respectively called the training and test sets used for simulating the 
data currently available to fit and tune the model and the validation set used 
for simulating future values. The network parameters are then estimated by 
fitting the training data using the above mentioned iterative procedure 
(backpropagation of errors). The iteration length is optimised by maximising 
the forecasting accuracy for the test dataset. Finally, the predictive value of 
the model is evaluated applying it to the validation dataset (out-of-sample 
dataset).  
 
The target value in our networks is the one day ahead estimated realised 
volatility of our series as defined by equation [1]. After we forecast the 
volatility with our Neural Network’s and Genetic Programming models, we 
compute the VaR using equation [5]. 
 
Since the starting point for each network is a set of random weights, forecasts 
can differ between networks. In order to eliminate any variance between our 
forecasts, we used the average of a committee of 20 Neural Network’s which 
presented the best in-sample statistical performance. The characteristics of 
the NNs used in this paper are presented in Appendix A.1. 
 
4.2.1 The Multilayer Perceptron Model 
The network architecture of a ‘standard’ Multi-Layer Perceptron is presented 
in figure 15:  

                                                 
4 Backpropagation networks are the most common multilayer networks and are the most 
commonly used type in financial time series forecasting (Kaastra and Boyd (1996)). 
5 The bias nodes are not shown here for the sake of simplicity. 
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Insert Figure 1 
 

where: 
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tx  ( )1,,2,1 += Nk   are the model inputs (including the input bias node) at 

time t 
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with ty  being the target value and T the number of iterations.  
 
4.2.2 The Recurrent Network 
 
While a complete explanation of RNN models is beyond the scope of this 
paper, we present below a brief explanation of the RNN architecture. For an 
exact specification of recurrent networks, see Elman (1990). A simple 
recurrent network has an activation feedback which embodies short-term 
memory. In other words, the RNN architecture can potentially provide more 
accurate outputs because the inputs are taken from all previous values. The 
advantages of using recurrent networks over feedfoward networks (such as 
the MLPs) for modelling non-linear time series, has been well documented in 
the past (see amongst others Elman (1990) and Tenti (1996)). However as 
mentioned by Tenti (1996), “the main disadvantage of RNNs is that they 
require substantially more connections, and more memory in simulation than 
standard backpropagation networks” (p.569), thus resulting in a substantial 
increase in computational time.  

 
4.2.3 The Psi Sigma Network 

Psi Sigma (PSI) networks can be considered as a class of feedfoward fully 
connected higher order neural networks. First introduced by Shin and Ghosh 
(1991), the PSI network utilizes product cells as the output units to indirectly 
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incorporate the capabilities of higher-order networks while using a fewer 
number of weights and processing units. Their creation was motivated by the 
need to create a network combining the fast learning property of single layer 
networks with the powerful mapping capability of higher order neural networks 
whilst avoiding the combinatorial increase in the required number of weights. 
The order of the network in the context of Psi Sigma is represented by the 
number of hidden nodes. 
 
In a PSI network the weights from the hidden to the output layer are fixed to 1 
and only the weights from the input to the hidden layer are adjusted, 
something that greatly reduces the training time. Moreover, the activation 
function of the nodes in the hidden layer is the summing function while the 
activation function of the output layer is a sigmoid function. Figure 2 below 
shows a Psi Sigma with one output layer. 
 

Insert Figure 2 
 
 
 
where:  
 

][ jk
tv                          are the adjustable weights 

( ) ∑=
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ixxh               is the hidden layer  activation function                   [13]
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)(σ           is the output unit adaptive sigmoid                             [14] 

                                activation function with c the adjustable term 
 
Similar with MLPs, the error function to be minimised is: 
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with ty  being the target value and T the number of iterations.  
    
Note that by using products in the hidden layer we directly incorporate the 
capabilities of higher order networks with a smaller number of weights and 
processing units. For example, a k-th degree higher order neural network with 

•  inputs needs ∑
= +

−+k

i Ni

iN

0 )!1(!

)!1(
 weights if all products of up to k components are 

to be incorporated while a similar PSI network needs only (• +1)*k weights. 
Also note that the sigmoid function is neuron adaptive. As the network is 
trained not only the weights but also c in equation [14] is adjusted. This 
strategy provides better fitting properties and increases the approximation 
capability of a neural network by introducing an extra variable in the 
estimation, compared to classical architectures with sigmoidal neurons (see 
Vecci et al. (1998)). 
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4.2.4   The Genetic Programming Algorithm 

For the purpose of our research, the GP application is coded and 
implemented to evolve tree based structures that present models (i.e. sub-
trees) of input – output’s. In the design phase of our GP application we focus 
primarily on execution time optimization as well as limiting the ‘bloat effect’. 
The bloat effect is similar to the issue of overfitting experienced in neural 
networks however in our case we run the risk of continuously increasing and 
expanding the tree size. This algorithm is run in a ‘steady state’ in that a 
single member of the population is replaced at a time. Furthermore, our GP 
application reproduces newer models replacing the weaker ones in the 
population according to their fitness. The reasoning behind the decision to use 
a steady state algorithm is justified as they hold a greater selection strength 
and genetic drift over other algorithms such as typical generational GA. 
Additionally steady state algorithms also offer exceptional multiprocessing 
capabilities (see Ferreira (2006)). 
 
See Koza (1998) for a summary description of the implementation of the of 
the GP algorithm.  
 
Since the generation of the initial population is randomly constructed, 
forecasts can differ between GP algorithms. We overcome this issue in the 
same manner as we overcame a related issue in implementing the neural 
network models, i.e we used the average of a committee of 20 GP algorithms. 
The characteristics of the GPs used in this paper are presented in Appendix 
A.1. Similarly with our NNs models the target value in our GPs is the one day 
ahead estimated realised volatility of our series as defined by equation [1]. 
The one day ahead VaR of our series is then computed using equation [5]. 

 

4.3 Backtesting 

4.3.1 Christoffersen Tests 
 
Christoffersen (1998) introduced a three step VaR evaluation procedure. In a 
likelihood ratio (LR) testing environment, he introduced a test of correct 
unconditional coverage, a test of independence and a test for conditional 
coverage. As a first step in order to evaluate our models we follow this 
procedure.  
 
4.3.1.1 LR test of correct unconditional coverage 
 
Let us consider a dummy variable t

kd for model k which takes the value of 1 
when the return falls behind the VaR forecast estimated from model k and 0 in 
all other cases. Then the indicator sequence t

kd  should follow the binomial 

distribution with likelihood 10)1()( nn aaaL −=  where )1( == t
kdPa , 0n  is the 

number of 0 in the t
kd sequence and 1n is the number of 1. In an accurate VaR 

model with confidence level q%, q should equal ±. Consequently the 
probability of a violation is then q%. Christoffersen (1998), under the null that 
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we have a correct violation ratio, formulated all this in the standard LR test 
presented below6: 

)1(]
)1(

)1(
log[2 2
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χ
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nn oqq
LRuc  [16] where 1n  is the number of 

violations,  0n  is the number of non-violations, q is the coverage rate of the 

(but we use q as confidence level) VaR model and 
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1

nn

n

+
=π  is the 

maximum likelihood estimate of q. 
  
4.3.1.2 LR test of independence  
  
The second test is to check whether our series of dummy variables t

kd  (is 
serially independent. Christoffersen (1998) was motivated to such a test by 
noting that a constant VaR given by the unconditional distribution from a 
GARCH model will have too many exceptions during periods of high volatility 
and too few during periods of low volatility. Because volatility tends to cluster, 
failing to adequately model volatility in the VaR will result in serial correlation 
in the violation sequence.  
Under the null hypothesis that the violation sequence is serially independent 
and the alternative that it is a first order Markov process, the likelihood ratio of 
independence can be tested by: 
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4.3.1.3 LR test of conditional coverage 
 
By combining the two tests a third test for conditional coverage can be 
constructed. This time the null hypothesis is that that we have an independent 
exception process with the correct violation ratio while the alternative is that 
we have a first order Markov process with a different transition probability 
matrix. The likelihood ratio statistic of the test is the sum of the previous two 
statistics:  

)2(2χ→+= dLRindLRucLRcc   [18] 
 
 

4.3.1.4 Results 
 
The likelihood ratio statistics of the Christoffersen tests for our models are 
presented in Appendix A.2. Our results indicate that most our artificial 
intelligence models give a correct violation ratio with an independent 

                                                 
6 Kupiec (1995) and McNees (1995) apply similar tests of unconditional coverage.  
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exception process. In other words, that most our NNs and GP algorithms 
made accurate forecasts in a VaR framework. The only artificial intelligence 
models that failed to pass the Christoffersen tests were the MLPs for oil for 
long positions under the Student t-distribution assumption at the 5% 
confidence level and again for long oil positions under both the normal and 
Student t-distribution assumptions at the 1% confidence level. On the other 
hand, our statistical benchmarks, the ARMA-GJR(1,1) and the RiskMetrics 
models failed to produce accurate forecasts in most cases. Similarly, our 
more sophisticated EVT model provided unsatisfactory VaR forecasts for 
gold7.  
 
The weakness of Christoffersen tests is that they are unable to distinguish 
between different, but close, alternative models (see Sarma et al. (2003), 
Cakici and Foster (2003) and Fantazzini (2009)). Therefore, in order to further 
distinguish our models we follow another approach based on loss functions. 
 
4.3.2 Loss Functions 
 
In order to further verify the reliability of our models and to distinguish their 
VaR forecasting performance we apply two loss functions to the models that 
passed the Christoffersen tests. Here we follow Lopez (1998) who defines the 
general form of those loss functions as:  

∑
=

+=
n

i
itC

n
G

1

1
  [19] where itR +  and itVaR +  is the actual return and the 

forecasted VaR from our models for day t+i and ),( ititit VaRRfC +++ =  

if itit VaRR ++ <  while ),( ititit VaRRgC +++ =  if itit VaRR ++ ≥  such that 

),(),( itititit VaRRgVaRRf ++++ ≥ . 
 
 
4.3.2.1 Violation Ratio 
 
The violation ratio (or the hit rate) is simply a descriptive statistics that 
measures the percentage occurrence of an actual loss greater than the 
predicted maximum loss in the VaR framework. In our application this can be 

formulated for model k as: ∑
=

=
n

i

t
kk d

n
G

1

1
 [20] 

where t
kd  is a dummy variable for model k as described in Section 4.3.1.1 and 

n is the number of trading days in the out-of-sample period. In our application, 
we want our models to have a violation ratio as close as it can be to our 
confidence level. In tables 3 and 4 below, we present the violations ratios of 
the models that passed the Christoffersen tests. 
 

Insert Table 3 
 

                                                 
7 This can be attributed to the fact that only a few extreme events are present in our gold 
dataset, something that may have led to misspecifications of our GDP parameters for gold.  
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Insert Table 4 

 
From the tables above, we note that PSIs provide the closest violation ratios 
to the benchmark in almost all cases. The GPs and the RNNs provide the 
second best performance with similar close violation ratios to the confidence 
levels. On the other hand, the MLPs and the EVT models seem unable to 
produce accurate VaR violation ratios in the few cases that they pass the 
Christoffersen tests. We also note that almost in all cases, the performance of 
our models worsens when we assume that our series follow the Student t-
distribution. 
 
4.3.2.2 Proposed Loss Function 
 
A good VaR forecasting model should satisfy two conditions equally. Firstly it 
should provide an accurate number of hits (violations). Secondly, the 
magnitude of these violations should be as small as possible. Our aim is to 
introduce a loss function that incorporates these two conditions equally. 
 
Different kinds of loss functions have already been proposed by Lopez (1998), 
Blanco and Ihle (1999) and Sarma et al. (2003). However, all functions 
proposed in these papers depend crucially on the number of exceptions. The 
fewer the exceptions, the smaller are the function results. This deficiency is 
crucial as the theoretical framework of these functions suggests accepting as 
best the model that gives us the smaller number of violations. So we may 
reject a correctly specified model with an accurate number of exceptions 
because it produces a higher loss function than a more conservative model.  
Therefore a conservative model has an advantage over models that may be 
more accurately specified (see Caporin (2003)). To overcome this problem, 
we introduce a new descriptive statistic that considers the number of 
violations and their average magnitude in equal terms, avoiding thus the 
previous mentioned possible misspecifications. Equation [21] below presents 
our loss function. 
 

∑
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




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n

i
iT

V
p

n

V
S

1

2
1

                                          [21] 

Where V the number of violations of our model, p is the confidence level 
under study and 2)( ititi VaRRT ++ −= when itit VaRR ++ >  and 0=iT  

when itit VaRR ++ ≤ . A model which minimises [21] is preferred over alternative 
models. We use our loss function to further discriminate between models 
which passed the three Christoffersen tests. In table 5 below we present the 
loss function realizations of our models for gold. 
 

Insert Table 5 
 
 
We note that PSIs networks produce the lowest realizations of our loss 
function in all cases. GPs present also a satisfactory performance with second 
lowest realizations of our loss function while the RNNs present the third 
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lowest realizations. On the other hand, the performance of the MLP and the 
ARMA-GJR models are disappointing with the highest realizations of our loss 
function at both the 5% and 1% confidence levels. Furthermore, the 
RiskMetrics and EVT models failed to pass the Christorffersen tests at the 5% 
confidence level while they were too strict at the 1% confidence level with 0 
violations. Also we observe that the realizations of our loss function are higher 
under the Student t-distribution assumption.  
 
The loss function realizations of our models for oil are included in table 6 
below. 

Insert Table 6 
 
From table 6, we observe that the VaR forecasting superiority of PSIs is also 
confirmed for oil. For the majority of positions and confidence levels, PSIs 
VaR forecasts produce the lowest values of our loss function compared to 
their benchmarks. The GPs and RNNs present a similar performance with the 
second lowest realizations while our EVT model forecasts achieve the third 
lowest realizations. The MLPs, when they pass the Christoffersen tests, 
produce the fourth lowest realizations of our loss function. On the other hand, 
the results of our other statistical benchmarks are once more disappointing as 
they produce the highest values of our loss function in the few cases that they 
pass the Christoffersen tests.  
 
Again, we note that in most cases the realizations of our loss function 
increase when we assume that our series follow the Student t-distribution. 
This supports our previous remarks that for the series and the period under 
consideration, the normal distribution assumption fits better in our VaR 
forecasting exercise.  
 
It should be noted that the ranking of our models is close to the one we 
obtained using the violation ratios. However, the usage of our loss function 
enables us to distinguish between close models as we now consider not only 
the number but also the average magnitude of the violations. 
 
With regard to estimation time, the processing time required to estimate our 
VaR forecasts with PSIs was at least half of the time required to determine the 
artificial algorithms benchmarks.  
 
 5. CONCLUDING REMARKS 

In this article, we study the use of a class of neural network models, PSI, 
when applied to the task of forecasting the VaR of Brent oil and gold bullion 
using Open-High-Low-Close data. The results were benchmarked with those 
of two different neural network designs, the MLP and the RNN architectures, a 
GP algorithm, an EVT model in addition to a ARMA-GJR (1,1) model and the 
Riskmetrics volatility.  
 
Our results show that he PSI networks demonstrate a better forecasting 
performance passing the Christoffersen tests and achieving lower realizations 
on our loss function at both long and short positions. The RNNs and the GPs 
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also provide a good performance when measured by realizations on our loss 
function. On the other hand, the MLPs present the worst performance 
compared to their NNs and GP benchmarks in our backtesting procedure. 
Moreover, our EVT estimation was successful only for oil, due to the few 
extreme events in our gold dataset.  The results of the other two statistical 
models considered, the RiskMetrics and ARMA-GJR(1,1), were disappointing 
as in most cases they failed to pass the three Christoffersen tests.  
 
Our results should go some way towards convincing a growing number of 
quantitative risk managers to experiment beyond the bounds of the more 
traditional risk models. Moreover, our proposed loss function adds another 
tool to risk managers in the difficult task of evaluating a VaR model.  Two 
features more necessary than ever before in today’s volatile markets.  
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APPENDIX 
 
A.1 Neural Networks Training Procedure 

 
The set of inputs of each NN and GP model is crucial for their pattern 
recognition and forecasting capabilities. Unfortunately there is no formal 
theory to assist this selection and practitioners need to conduct a sensitivity 
analysis to a pool of potential variables to help their decision (Zhang (2009)). 
In our application, we considered as potential inputs autoregressive lags up to 
the order of 20 of the daily volatility of the series under study, the daily 
volatility of other related commodities (such as Copper and Silver), the daily 
volatility of stock indices (such as the FTSE 100 and NYMEX), the daily 
volatility of exchange rates (such as the EUR/USD and the USD/JPY) and the 
RiskMetrics Volatility of the two series under study. This set of potential inputs 
was created based on the relevant literature problems (see amongst others 
Dunis and Chen (2005), Zhang (2009) and Chen and Hsieh (2010)).  
 
The aim of our sensitivity analysis to this set of variables was to select the 
group of inputs for each asset and model that provided the most accurate one 
day ahead realised volatility forecasts in terms of RMSE, MAE and MAPE in 
the in-sample sub-period. As experimentation can be unlimited we followed 
the guidelines of Koza (1998), Dunis and Chen (2005) and Zhang (2009) in 
determining the number of potential inputs. The inputs of our artificial 
intelligence and genetic programming models for gold and oil are presented in 
table 7 below. 
 

 
  Insert Table 7 
 

 

 

A.2 Networks specifications 

In tables 8 and 9 below we present the characteristics of the networks used in 
this paper for gold. We selected the parameters that maximized the statistical 
performance of our models in the in-sample period. 

 

Insert Table 8 
 

Insert Table 9 
 
The characteristics of the networks used in this paper for oil are presented in 
the following tables. 

Insert Table 10 
 
 

Insert Table 11 
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A.2 Christoffersen Test Results 

Insert Table 12 
 

 
Insert Table 13 

 
 

Insert Table 14 
 
 
 

Insert Table 15 
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