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In human societies, people’s willingness to compete and strive for better social status, as well as being

envious of those perceived in some way superior, lead to social structures that are intrinsically hierarchi-

cal. Here we propose an agent-based, network model to mimic the ranking behaviour of individuals and

its possible repercussions in human society. The main ingredient of the model is the assumption that the

relevant feature of social interactions is each individual’s keenness to maximise his or her status relative

to others. The social networks produced by the model are homophilous and assortative, as frequently

observed in human communities, and most of the network properties seem quite independent of its size.

However, we see that for a small number of agents the resulting network consists of disjoint weakly con-

nected communities, while being highly assortative and homophilic. On the other hand, larger networks

turn out to be more cohesive with larger communities but less homophilic. We find that the reason for

these changes is that larger network size allows agents to use new strategies for maximizing their social

status, allowing for more diverse links between them.

Keywords: community formation, opinion formation, social hierarchy

1. Introduction

One of the most pervasive tendencies of humans is putting things in ranking order. In human soci-

eties these tendencies are reflected in their social interactions and networks being hierarchical in many

respects. Hierarchies and ranks emerge due to individuals’ subjective perceptions that some other indi-

viduals are in some respect better. Then a relevant research question is whether or not the formation and

c© The author 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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structure of hierarchies in human societies can be understood by making the assumption that the domi-

nant driving force of people in social interactions is to enhance their own “value” or “status” relative to

others. We call this assumption “better than-hypothesis” (BTH) and note that it is closely related to the

thinking of the school of individual psychology founded by Adler in the early 1900s [1], which, while

starting with the assumption that human individuals universally strive for “superiority” over others,

emphasizes inferiority avoidance as a motive for many human actions.

Further studies of this kind of individuals’ status-seeking behaviour, especially concerning consumer

behaviour and economics, include the canonical references by Veblen [2], Duesenberry [3] and Packard

[4] (See also Refs. [5–8]). In addition there is a closely related sociological model called Social Dom-

inance Theory [9], which proposes that the construction and preservation of social hierarchies is one

of the main motivations of humans in their social interactions and networks. However, the most rel-

evant observational facts concerning BTH come from the field of experimental economics, especially

from the results of experiments on the so-called “ultimatum game” [10], where the human players have

been shown to reject too unequal distributions of money. The concept of inequity aversion, that is the

observed social phenomenon of humans preferring equal treatment in their societies, is often invoked

to explain these observations. Recently some models featuring inequity aversion have been proposed in

Refs. [11, 12].

All of these models, although from different fields of study, have something to do with the relative

standings between different human individuals and groups, and so they could all be considered to emerge

from or be based on a single principle such as BTH. It is this generality which makes BTH an intriguing

and interesting object of study. There are even some studies on economic data, such as [13], that suggest

a link between relative social standings and human well-being, and considerations of social status have

measurable effects on brain functions, as shown in e.g. [14, 15]. These studies imply that BTH could

well be something fundamental to human nature. Other empirical support for the BTH and its relation

to social hierarchies is provided by previous work on signed social networks [16]. In this study, the

authors identify positive and negative edges with directed relationships of status, and find evidence for

the existence of an approximate global ordering in the status of individuals in online communities. This

could be seen as a concrete example of hierarchies emerging from the concept of status, which is a

central idea of BTH.

The competition for a better hierarchical position among humans can be intense and sometimes

even violent. However, humans have other characteristics including egalitarianism as well as striving

for fairness. These traits could be interpreted in the context of BTH by remarking that people need to

live in societies and make diverse social bonds, which in turn would contribute to their social status. This

means that the members of society when they make decisions, need to take the feelings of others into

account. Hence the behavioral patterns of individuals in social networks should then be characterised

by sensitivity to the status of the other individuals in the network. This sensitivity manifests itself as

inequity aversion and treating others fairly. To find out what in this context are the plausible and relevant

mechanisms of human sociality driving societal level community formation we will focus on improving

the BTH-based approach by using the frame of agent-based models and studying the emergence of

social norms in such social systems, following the tradition presented in Refs. [17–22].

In this study, we use an agent-based network model alongside BTH to simulate social interactions

dependent on societal values and rank, to get insight to their global effects on the structure of society. We

find that in a model society with a given constant ranking system, the social network forms a connectivity

hierarchy on top of the ranking system under BTH, such that agents’ degrees tend to increase the further

away their rank is from the average. The structure of the paper is as follows: In Section 2 we motivate

the basics of BTH using the simple and well-researched ultimatum game as an example, and in Section
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3 we show how the findings from this can be utilised as a part of agent-based models. In Section 4 we

present the numerical results of the simulations from the model, and in Section 5 we analyse them. The

two final Sections discuss the possible interpretations of the results and present the conclusions.

2. Better than-hypothesis and ultimatum game

In this section we describe the theoretical basis for our model. We start by analysing the ultimatum game

first proposed in [10], as it allows us to derive a basic form for the social gain function in our model.

The ultimatum game is a game with two players, where one player has the task to make a proposal to

the other player about how a given sum of money should be divided between them. The second player

then gets to choose if the proposal is acceptable or not; if it is, the money is divided as proposed. If not,

neither player gets anything. Experiments show that humans playing this game normally do not accept

deals that are perceived to be unfair, i.e. in situations in which the proposer gets too large a share of the

money (see, e.g. Refs. [23–28]). This is a classic problem in the mainstream economics, where humans

are assumed to be rational and, therefore, accept something rather than nothing.

We implement BTH in the ultimatum game by interpreting the money used in a deal as a way of

comparing the status between the one who accepts the proposal (called from now on the accepter) and

its proposer. We denote the change of “status” of the accepter as ∆a, which takes into account it’s own

monetary gain, and the gain in relation to the proposer. Therefore, the simplest expression for ∆a is,

∆a =Ra(t1)−Ra(t0)+ [Ra(t1)−Rp(t1)]

− [Ra(t0)−Rp(t0)],
(2.1)

where Ra(t) and Rp(t) stand for the monetary reserves (in the context of the game) of the accepter

and proposer, respectively, at time t, with t0 being the time before the deal and t1 the time after the

deal. In terms of economic theory, ∆a is called the accepter’s change of utility, which is ordinarily

assumed to consist of the term Ra(t1)−Ra(t0) or the absolute payoff of the accepter. The additional

terms [Ra(t1)−Rp(t1)]− [Ra(t0)−Rp(t0)] that stem from BTH measure the change in relative standings

of the accepter and proposer. The actual BTH utility function for the accepter in the ultimatum game

takes the form

UBT H
a = Ra +[Ra −Rp]. (2.2)

According to Eq. (2.1), the accepter will refuse the deal for ∆a < 0, and will accept it for ∆a > 0,

with ∆a = 0 being the borderline case. Should the deal be rejected, Ra(t1) = Ra(t0) and Rp(t1) = Rp(t0),
and, consequently, ∆a = 0. If we denote by Rmax the total amount of money to be shared and by Rshare

the actual amount of money that the proposer has reserved for the accepter, then in the case where the

transaction does take place we have Ra(t1) = Ra(t0)+Rshare and Rp(t1) = Rp(t0)+ (Rmax −Rshare). If

we further assume that Ra(t0) = Rp(t0) (i.e. the players start on equal footing, which may very well

be the case in the context of the game at least), it follows from Eq.(2.1) that the smallest offer that the

accepter expects from the proposer is one third of the maximum Rmax, i.e. the condition

Rshare >
Rmax

3
(2.3)

must hold for the proposal to be acceptable.

Previous literature shows that the minimum offers that people are usually willing to accept are

around 30% of a given quantity [25], in close agreement with the calculation above. Moreover, we
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note that if the term Ra(t1)−Ra(t0) in Eq. (2.1) is neglected, then the accepter will never settle for less

than half of the total amount.

Next we use Eq. (2.1) to illustrate how the BTH-based approach can be implemented in the context

of agent based social simulations. The trick is to generalise this equation to the cases of many players,

and with multiple and different kinds of items being exchanged. If there are N players (denoted by

i = 1, . . . ,N), the change of status ∆i of the individual i may be written as follows

∆i = Ri(t1)−Ri(t0)

+∑
j 6=i

[Ri(t1)−R j(t1)]

−∑
j 6=i

[Ri(t0)−R j(t0)]. (2.4)

In the case that players have several ways to measure their status, we may introduce normalisation

factors to compare the relative value of the exchanged items, and write the change of status as,

∆i = ∑
α

1

N α
i

{

Rα
i (t1)−Rα

i (t0)

+∑
j 6=i

[

Rα
i (t1)−Rα

j (t1)
]

−∑
j 6=i

[

Rα
i (t0)−Rα

j (t0)
]

}

(2.5)

where the index α runs over the various items determining the status, and N α
i is the normalisation

factor of each item, which may vary from one player to another. The utility function associated with Eq.

(2.5) then reads

UBT H
i = ∑

α

1

N α
i

{

Rα
i +∑

j 6=i

[

Rα
i −Rα

j

]

}

. (2.6)

3. BTH in an agent-based network model

In this section we present an agent-based model of a ranked social system of N agents, in which the

agents exchange their views of the ranking system itself. To each agent i we assign a parameter ai to

describe the rank of the agent, and a state variable xi to denote the opinion of the agent i of the social

value attached to parameter a. Social value is then a relative quantity in the minds of the agents, and

they value each other in either ascending or descending order according to the ranking parameter a,

while xi determines which order a given agent i prefers and how strongly. Generally speaking, the sign

of xi represents the chosen order, − for descending and + for ascending order, while its magnitude

represents the strength of conviction: with |xi|= 0 the agent can be said to support equality of all the

agents irrespective of the ranking parameter; with |xi|= 1 the agent thinks that a should directly define

the hierarchy of the society; and for the cases |xi|< 1 or |xi|> 1 the agent downplays or emphasises the

significance of a, respectively. Here, we adopt the maximum value for |xi| to be 1000.

To put the relation of the social value and the opinion parameter into more precise terms, we adopt

the following expression for the term we call “ranking pressure”:

Pj =
1

max(a)−min(a) ∑
k

(a j −ak), (3.1)
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where the summation is over the whole network. Now, we define the social value of the agent i in the

eyes of agent j as x jPi, and assume that the agents take into account the views of their neighbours in

addition to their own when evaluating their total social value Vi. Thus, we write

Vi = xiPi + ∑
k∈m1(i)

xkPi, (3.2)

where m1(i) denotes agents that are one step away from agent i. The first term on the right could

be considered as the agent’s “self esteem” and the second the “social value” given to it by its first

neighbours. It should be noted at this point that in defining Vi in terms of Pi we have assumed that ai does

not confer direct advantages or disadvantages for the agents. Therefore, the most natural interpretation

for ai is that it represents the ownership of pure status symbols or Veblen goods, i.e. goods that are only,

or mostly, desirable due to their status-enhancing properties, such as luxury items. If ai would give some

advantages or disadvantages for the agents, Eq. (3.2) would have to be revised accordingly. The agents

in our simulations attempt to gain as much social value as possible, both in absolute and relative terms,

and do this either by changing their opinion variables or adjusting their relations to other agents. The

system we use here is purely reactive, with agents reacting to the changes in their social environment in

accordance with BTH. The social gain function could then be written as

∆i(t1, t0) = Vi(t1)−Vi(t0)+∑
k

(Vi(t1)−Vk(t1))

−∑
k

(Vi(t0)−Vk(t0)), (3.3)

where t0 and t1 are the two consecutive time steps. The sign of this function determines the direction of

the changes in xi.

The decision making method employed by the agents is thus a simple hill climbing algorithm: At

a given time step t, first an agent observes the quantity ∆i(t − 1, t − 2), and then changes its variable

xi(t −1), which leads to a recurrence relation of the form

xi(t) =

{

xi(t −1)+dx, if Gi > 0,

xi(t −1)−dx, otherwise
(3.4)

where Gi = sign[(∆i(t − 1, t − 2)× (xi(t − 2)− xi(t − 1))] and dx is a small increment. In the spirit of

simulated annealing techniques, the magnitude of the change is larger at the beginning of the dynamics

and falls linearly with time to a minimum value, the maximum and minimum values being dx = 0.11

and dx = 0.01, respectively, and the time period to reach the minimum is 1000 time steps.

In general, the links between the agents in the social network may change in time for which purpose

we use the following rewiring scheme of Ref. [29]. The social network of the agents is initially random,

but will change periodically, i.e. at every g time steps of the dynamical Eq. (3.4). Given the definition

of the total social value of an agent in Eq. (3.2), the gain function Eq.(3.3) can be used to calculate the

loss or gain in total social status when forming or breaking new social bonds. In this study, we take

any positive gain as sufficient to justify the rearrangement of social relations between the agents. When

agent i considers cutting an existing bond with agent j, the gain function has the form

∆ c
i, j =Vj −Vi − (ki +2)x jPi, (3.5)
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where ki is the current number of neighbours of agent i. Similarly, when agent i considers forming a

new bond with agent j, the social gain function reads

∆
f

i, j =Vi −Vj +(ki +2)x jPi − xiPj. (3.6)

Since any positive change indicated by the functions above leads to rewiring, it is the sign of these

functions that determines whether or not links between agents are broken or created. For instance, if

∆ c
i, j > 0, the link between agents i and j will be cut, and preserved if ∆ c

i, j < 0. In the same vein, a link

between agents i and j will be created if ∆
f

i, j > 0, and not created otherwise. It should be noted that when

forming links the opinions of both agents are taken into account: The relation formation only succeeds

if ∆
f

i, j and ∆
f
j,i are both positive. The agents will form all the relationships they can in a rewiring cycle.

4. Numerical results

The numerical simulations of the model of social systems described in the previous sections are per-

formed as follows. First, the initial state of the system is set at random with the agents given a relatively

small initial opinion xi between −1 and 1, a ranking parameter ai between 0 and a maximum value of

100.0, and initial connections to other agents with initial average degree 5. The opinion and ranking

parameters are chosen using a random number generator, which returns a flat distribution. The dynam-

ics are then run for 200000 time steps, which is, according to our test runs, sufficient for the general

structure of the network to settle. However, the dynamics of the opinion variables do not have a set

stopping point, so they may experience fluctuations even when such fluctuations do not have an effect

on the network structure anymore.

To obtain reliable statistics, the same simulations are repeated 100 times with random initial val-

ues, and averages are calculated from these repeated tests for the quantities under study. The rewiring

timescale g is fixed to 100 in our simulations, since this value lies in the range where communities are

formed in the opinion formation model of Ref. [29]. The main parameter whose effect is studied here

is the number of simulated agents, N.

The main objective of this research is to study the structure of the social networks created under

BTH assumption in the case of a rigid ranking system, which we perform using the model explained in

Section 3. The most interesting properties of the system are then associated with assortativity, or the

tendency of agents with high degrees connecting to other highly connected agents, and homophily, or

the inclination of similar agents forming connections between each other. In the context of this study,

homophily refers to agents with similar ranking parameters forming connections with each other.

The averaged numerical results extracted from the simulations consist then of the standard network

properties, i.e. average degree 〈k〉 the average shortest path 〈L〉, the average clustering coefficient 〈C〉,
the mean number of second neighbours 〈n(2)〉, susceptibility 〈s〉 and average assortativity coefficient

〈ra〉, and an average homophily coefficient 〈rh〉. Susceptibility here refers to average cluster size, which

is calculated as the second moment of the number of s sized clusters, ns:

〈s〉=
∑s nss

2

∑s nss
. (4.1)

As customary in percolation theory, the largest connected component of the network is not counted in

calculating s. For the assortativity coefficient we use the definition given in [30], and the homophily
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FIG. 1. (a) Graphs showing examples of the network structure for three different sizes, N, where the colour represents the value of

the agent’s normalized ranking pressure, Pi/Pmax. Observe communities of tightly bound agents of the same colour. The circular

vertices represent agents whose opinion variable xi and ranking pressure Pi have the same sign, while the triangular vertices

represent agents having opposite signs. (b) Network properties, such as average degree 〈k〉, the shortest path 〈L〉, the average

clustering coefficient 〈C〉, the mean number of second neighbours 〈n(2)〉, susceptibility 〈s〉, assortativity coefficient 〈ra〉, and

homophily coefficient 〈rh〉 as averages over 100 realizations for the model as a function of the population size, ranging from 50

to 500.

coefficient is defined using Pearson’s product moment coefficient, which measures the goodness of a

linear fit to a given data. For a sample it can be defined as

rh =
∑M

i (vi − v)(wi −w)
√

∑M
i (vi − v)2

√

∑M
i (wi −w)2

, (4.2)

where v and w are vectors containing the value parameters of agents linked by link i, v and w are the

mean values of these vectors, respectively, and M is the total number of links. More specifically, if

agents α and β are connected by link i, then vi = aα and wi = aβ . The links are indexed as follows: the

links involving the first agent are given the first indices, then follow the links involving the second agent

but not the first, and so on, without repeating links that have already been indexed. It should be noted,

however, that rh only measures linear correlation between the ranking parameters of linked agents, it
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does not indicate how steep these trends are. To check whether the system is truly homophilic, then, one

needs to make a linear fit to the data: the closer the obtained linear coefficients are to 1, the greater the

homophily.

The average network properties of the system, with graphs illustrating the behaviour of the system,

are shown in Fig. 1 as functions of the population size, which is varied between 50 and 500. The main

observations that can be made about the graphs in Fig.1(a) are that at lower population levels they show

a tendency of breaking apart into many subcomponents of different sizes, while for larger population

sizes they tend to consist of a single large component and possibly some smaller separate clusters.

A noteworthy fact about these clusters is that they consist of agents with similar values of the ranking

pressure Pi, which means that the network exhibits homophily in this case. The largest clusters are found

at extreme values, and they become smaller when one approaches 0, which also corresponds to average

ranking parameters. Interestingly, for all N, we observe that the largest components are modular being

formed of smaller clusters of agents that are highly connected among themselves, with few connections

to other clusters.

In the high population case the picture becomes more complicated due to the emergence of clusters

that contain agents with opposing opinions as well. These new clusters tend to be less connected than the

previously described homogeneous ones, and they tend to connect to the large subgraphs, thus forming a

single giant graph. A closer look reveals that these agents generally have opinion variables and ranking

pressures with opposite signs, and are depicted as triangles in Fig. 1 and named ‘contrarians” from now

on.

A naive analysis would indicate that the agents with positive ranking pressures should always sup-

port the ascending hierarchy, and the agents with negative ranking pressures should always support the

descending hierarchy. However, the contrarian agents exhibit opposite preferences. The reason why

this behaviour is status-wise profitable can be found by looking into the connections of the contrarian

agents, details of which are shown in Figs. 2 and 3. As it turns out, most of the connections they form

are to other similar agents but with opposite “polarity” to theirs, i.e. the contrarian agent with negative

ranking pressure forms connections mostly with contrarian agents of positive ranking pressure, and vice

versa.

An important quantity in the model is the social value Vi, which is a product of the opinion and

ranking pressure, as seen in Eq. 3.2. If xi and Pi have opposite signs then the “self esteem” part of Vi

is negative, which in itself does not mean that the agent cannot develop a contrarian opinion, since the

second sum in the equation could be positive because it depends on the opinions of the neighbours j.

This allows the contrarian to be able to make connections with agents of the same or opposite ranking

pressure. Additionally, by looking at all connections among contrarians we find that they mostly have

Pi of the same sign as x j, as illustrated in the example of Fig. 2.

This situation can be status-wise beneficial to all parties involved, since the small penalty to an

agent’s self-esteem is more than compensated by the respect that the agent will gain in this case from

other agents. The fact that the agents could find this strategy using as primitive an intelligence setup as

hill climbing is astounding. Another interesting thing about the contrarians is that they appear mostly as

connections between clusters that are defined as communities of “normal” agents.

The various kinds of behaviour exhibited by the social networks have a marked effect on the network

properties also shown in Fig. 1(b). The most obvious is the gradually rising normalised maximum

cluster size (〈cmax〉/N), which is about 40% of total population size for N = 50, and over 95% for

N = 500. From the figure it seems that the maximum cluster size reaches 50% of the population size for

approximately N = 180, after which point we may assume that the contrarian behavioural patterns start
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FIG. 2. Scatterplot for ranking pressure Pi of agent i vs. the opinion variable x j of agent j, taken from 30 realisations for networks

with N = 250 agents. Observe that in most cases x j and Pi have the same sign (especially for normal-normal and contrarian-

contrarian links), while only in case of normal - contrarian links they can have opposite signs.

to become progressively more pronounced.

The susceptibility (〈s〉) at first rises pretty much linearly, which is not too surprising because of the

tendency of network to break into smaller subgraphs at low population sizes. However, once the popula-

tion size reaches about 200, the susceptibility starts to decay, most likely due to the main component of

the network becoming more prominent, with a decay pattern that is almost piecewise linear itself, apart

from fairly large fluctuations.

While fairly high throughout, the homophily (〈rh〉) and clustering coefficients (〈C〉) gradually fall

as functions of population size, almost certainly due to the proliferation of contrarians. There are no

great changes in other network properties, as in the average assortativity coefficient (〈ra〉), although

some faint systematic tendencies can be discerned, a slight rising of the average path length (〈L〉), as

well as slightly decreasing average number of clusters (〈nc〉). The rest of the properties per agent are

nearly constant, a slight rise of the average number number of second neighbours (〈n(2)〉/N), and a just

perceptible decrease of the average cluster size (〈cs〉/N) and average degree (〈k〉/N).

A way to illustrate the homophily of the system is to make a scatterplot of the ranking parameters

of linked agents. As it is seen in Fig.3, the correlation turns out to be very homophilous for the normal

agents, as the ranking parameters of linked agents of this type correspond very closely to one other.

The emergence of contrarians is clearly seen as the connections between them become more prominent

with increasing N. Indeed, calculating the percentage of contrarians of all the agents from samples of
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30 realisations yields 5.4% for N = 50, 14.8% for N = 250, 23.9% for N = 500, while for a single

realisation for a network of N = 1000 agents their proportion turned out to be 38.5%.
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FIG. 3. A scatterplot of the ranking parameters ai vs. a j of linked agents i and j for one realisation of networks of different sizes.

The colour code: dark blue for connections between normal agents with positive ranking pressure and opinion variables, light blue

for connections between normal agents with negative ranking pressure and opinion variables, dark green for connections between

contrarian agents of different ”polarity”, light green for connections between contrarian agents of same ”polarity” (these are

almost non-existent), light red for connections between normal and contrarian agents with different signs of the opinion variable,

and dark red for connections between normal and contrarian agents with same signs of the opinion variable.

The rising trend is without doubt caused by the normal agents, who tend to associate with agents

of similar rank, and the decreasing trend is likewise due to the contrarians. Both trends have a similar

tendency to form square-like patterns along the diagonals, with each “square” corresponding to some of

the many visible communities of the graphs.

As explained above, it is necessary to check whether the correspondence of the rankings is truly

homophilic. In Table 1 we show the value of the homophily coefficient of normal and contrarian agents

for networks of various sizes. The data were taken from 30 different realisations in each case. Observe

that normal agents have values very near one, and contrarians are around one half. Also in the table

we show the slope of the regression of ai vs. a j. Normal agents are very close to one, indicating high

degree of homophily, and the contrarians are negative and around 0.6, indicating that they mostly form

connection with agents that have opposite signs of the ranking pressure, and are much less homophilic.

Normals Contrarians

N=50 N=250 N=500 N=50 N=250 N=500

Slope 0.955 0.968 0.963 -0.606 -0.607 -0.707

rh 0.959 0.963 0.959 -0.588 -0.636 -0.731

Table 1. Homophily measurement from 30 realisations of networks with different sizes.
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In Fig. 4 we show the degree and the final state of the opinion variable as functions of the ranking
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FIG. 4. The degree ki and the final state of the opinion variable xi/xmax as a function of the ranking parameter ai of agent i . The

colour code is as follows: light blue for normal agents with positive ranking pressure, orange for normal agents with negative

ranking pressure, dark blue for contrarian agents with positive ranking pressure, and dark red for contrarian agents with negative

ranking pressure.

parameter of the agents. One can see that the agents with relatively large or low values for the ranking

parameter seem to have more neighbours than the agents with the ranking parameters close to the aver-

age rank. The communities are also visible in this figure in the form of plateaus at progressively more

extreme values of the ranking parameter. The appearance of contrarians is also very clearly visibly in

this figure.

The lower row of panels in Fig.4 shows the correlation of agents’ ranking parameters and opinion

variables. As expected, most of the agents below the average ranking parameters have negative opinion

variables, and similarly, the agents with the above average ranking parameters have positive opinion

variables, at least for small N. There are some exceptions to this rule. The contrarian agents are seen

clearly in the figure as agents whose opinion variables have opposing signs to agents of similar ranking.

On the other hand, when they are present, there are often such normal agents that have more egalitarian

views, i.e. less extreme opinions.

There is a clear tendency for the agents to attain the most extreme values for opinion variables in

either case, although this tendency is smaller as the size of the network increases. A clear visualisation

of this phenomenon is depicted in Fig. 5, where one can see that the cumulative relative frequency of

values of x is almost vertical at the extremes for normal agents. The proportion of normal agents with

|x|> 980 is 51.6, 47.4, 39.5 and 34.3%, for N = 50, 250, 500 and 1000, respectively. The picture is very
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FIG. 5. Empirical distributions of opinions for 30 realisations on networks of sizes 50, 250, and 500 and for single realisation for

the system size of 1000 agents, where blue and orange symbols stand for normal and contrarian agents, respectively.

different for contrarians, their distribution tends to be uniform independent of the network size, except

at the extreme values where the percentage of agents with |x|> 980 is 4.8, 10.4, 11.6 and 6.4%, for N =
50, 250, 500 and 1000, respectively.

As simulations with over 500 agents are very time-consuming, we have not tried to obtain results

with large statistics for these cases. We did, however, run some singular simulations with very high agent

numbers, to see whether the patterns observed above would hold even there. Fig. 6 shows the resultant

graph, rank-rank, and rank-degree correlation scatterplots for a simulation with 1000 agents. As we can

see, the contrarians have become more numerous and have ever more extreme ranking parameters, as

could be expected from the earlier results. Another interesting feature that emerges from the analysis

of 30 realisations is that the degree distribution is bimodal for normal agents, that is, there is a large

number of agents with low or high degree and very few around the mean degree value. The range of

degrees and the median of the distribution increase with the size of the network.

For contrarians the picture is different. their degree distribution is unimodal (although not normal)

and their median is smaller. Furthermore, their degree range is about half the one for normal agents. This

is clearly seen in Fig. 7, were we plot the relative frequency as a function of the degree (k). Observe that

the proportion of isolated agents (k = 0) is larger for the contrarians although this tendency diminishes

as the networks become larger.
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FIG. 6. The rank-rank (a) and rank-degree correlations (b) for a single simulation with N = 1000 agents, along with the final

configuration of the network (c); the colour codes and symbols are the same as in Figs 1 (c), 3 (a), and 4 (b).

5. Approximative analysis of the numerical results

In order to better understand the behaviour of the model we need to perform a thorough analysis of its

mechanics. A convenient starting point for this effort is studying the tendency of the agents with extreme

ranking parameters to form large fully connected communities, while the agents of more average rank

form small fully connected communities. Just from considering the nature of the BTH one might for-

mulate the hypothesis that this may be because of agents with average rankings not forming links with

agents with extreme rankings due to it not being status-wise beneficial. If an agent sees that the other
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FIG. 7. Histogram showing the degree distribution of agents for 30 realisations on networks of sizes 50, 250, and 500 and for

single realisation for the system size of 1000 agents.

agent would gain more in having a link between them, that link will probably not be created by the

agent. By inspecting the rewiring rules Eqs.(3.5) and (3.6) this hypothesis can be verified. Without loss

of generality, we can limit our investigation to the case of two agents with positive ranking pressures and

opinion variables considering forming a link, as the case with agents with negative ranking pressures

and opinion variables follows from a similar line of reasoning. From Eq. (3.6) one finds that if agent i

considers forming a link with agent j, the ranking pressures and the opinion variables of the agents and

their neighbours must satisfy the condition

Pi

Pj

>
x j +∑k∈m1( j) xk + xi

(ki +2)x j + xi +∑k∈m1(i) xk

(5.1)

for the potential link to be acceptable to agent i. If we assume, for simplicity, that the opinion variables

of the agents and their neighbours have about the same value, then condition (5.1) simplifies to

Pi

Pj

>
1

2

k j +1

ki +3/2
, (5.2)

which in turn simplifies to
Pi

Pj

>
1

2
, (5.3)
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if we further assume that ki,k j ≫ 1 and ki ≈ k j, which is reasonable considering that most of the agents

at least have large number of neighbours and tend to belong to almost fully connected communities.

Here the implicit assumption is that the agents i and j would belong to the same block, if they formed a

link. Written in terms of ranking parameters (5.3) becomes

ai >
1

2
(a j + 〈a〉) , (5.4)

where 〈a〉 = N−1 ∑k ak is the average of the ranking parameters. From (5.4) it directly follows that if

agent j has the maximum allowed ranking parameter, a j = amax, the link between the agents i and j will

only be formed if ai > 0.75amax, since 〈a〉 ≈ 0.5amax. Similarly, if a j = 0.75amax, the two agents will

only bond if ai > 0.625amax, and if a j = 0.625amax, only if ai > 0.5625amax, and with every iteration

the range of possible ranking parameters of agent i shrinks. This pattern is remarkably apparent in the

rank-rank correlation Figs. 3 and 6, in which the emergence of the contrarians becomes increasingly

clear as the population numbers are increased. For a j = 0.5amax we find that ai must also be 0.5amax for

a link to be formed, which explains the tendency of the agents with average ranking parameters to have

so few neighbours, as is seen in Figs.3 and 6.

To understand the emergence of the contrarians one must analyze the dynamics of the opinion vari-

ables, encapsulated in Eqs.(3.3) and (3.4). Naively thinking, one would expect agents to always choose

the orientation of their opinion parameters according to their ranking pressures. This means that agents

with positive ranking pressures would prefer positive opinion variables, and similarly agents with neg-

ative ranking pressures would prefer negative opinion variables. The first hypothesis as to how some

agents would choose to go against these logical positions is related to the competitive nature of the

model’s social interactions. It may be that some agents cannot compete in this setting and, therefore,

choose to use contrarian strategies instead.

Let us approach this question the same way as above, focusing on an agent with positive ranking

pressure and initially positive opinion variable, connected to other similar agents in the way revealed in

Section 4. Let us assume that, initially, all the agents with positive ranking pressure increase their opin-

ion variables and, conversely, that all the agents with negative ranking pressure decrease their opinion

variables in a simulation step. In this case the social gain function of agent i is

∆i(t1, t0) = dx(N +1)(ki +1)Pi −dx ∑
j∈P+

(k j +1)Pj

+dx ∑
j∈P−

(k j +1)Pj, (5.5)

where P+ is the set of agents with positive ranking pressure and P− the set of agents with negative

ranking pressure. Now,∆i(t1, t0) needs to be positive if agent i is to continue raising its opinion variable.

This yields a condition of the form

(ki +1)Pi >
1

N +1

(

∑
j∈P+

(k j +1)Pj − ∑
j∈P−

(k j +1)Pj

)

. (5.6)

If we denote the number of agents in P+ and P− with N+ and N−, respectively, we can write this formula

in terms of averages over P+ and P− as follows:

(ki +1)Pi >
1

N +1

(

N+〈(k+1)P〉+−N−〈(k+1)P〉−
)

, (5.7)
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where 〈〉+ denotes average over P+, and, likewise, 〈〉− denotes average over P−. If we assume N ≫ 1

and that the situation is symmetric, i.e.

N+〈(k+1)P〉+ ≈−N−〈(k+1)P〉−, (5.8)

which further simplifies to

(ki +1)Pi > 〈(k+1)P〉+, (5.9)

since N = N++N− and N+ ≈ N−.

Condition (5.9) basically states that revising opinion parameter upwards, which is the “natural”

direction for an agent in P+, is only status-wise beneficial for the agent if the product of the agent’s

degree (plus one) and the ranking pressure are above the average of the same product over the whole

group P+. We can see from this that the agents with low ranking pressures and the amounts of con-

nections fare badly under the condition (5.9). As observed earlier, in the simulations the agents with

average ranking parameters, who correspondingly have low ranking pressures, are also the ones with

least connections, which accordingly means that they are most likely to become contrarians, at least

with regard to (5.9).

But what about the observed phenomenon of more and more agents with higher and higher ranking

parameters (and thus ranking pressures) to become contrarians as the total numbers of simulated agents

increases?. The answer to this question can be found by substituting the numbers obtained for the sizes

of the different communities to the right hand side of inequality (5.9), along with the average ranking

parameters for these communities, as shown in Table 2.

n Mn 〈a〉n

1 0.25N 0.875amax

2 0.125N 0.6875amax

3 0.0625N 0.59375amax

4 0.03125N 0.546875amax

Table 2. The approximate number of members and the average ranking parameters of the 4 largest communities in P+.

From condition (5.4) it follows that the largest community in P+ comprises those agents with ranking

parameters over 0.75amax, which means that the community will have approximately 0.25N members,

when one takes into account the fact that the ranking parameters are uniformly distributed. The second

largest community, likewise, consists of those agents with ranking parameters between 0.625amax and

0.75amax, and has about 0.125N members. The nth (n > 1) largest group will have ranking parame-

ters between amax(1−∑n+1
i=2 2−i) and amax(1−∑i+2

i=2 2−n), and have 2−(n+1)N members. While ranking

parameters naturally vary from agent to agent within the communities, the average value of the ranking

parameters of each group 〈a〉n falls approximately to the middle point of each ranking range due to the

uniform distribution of the parameters:

〈a〉n = amax

(

1− (
n+1

∑
i=2

2−i +2−(n+1))

)

. (5.10)

From Figs. 3 and 6 we see that only a maximum of four to five of these communities exist in

practice at any one time, so we limit our approximation to these groups. By assuming the groups to be
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fully connected, as they seem to be in the graphs, and approximating sums of the products of the degrees

and ranking parameters with the products of their average values we get

〈(k+1)P〉+ ≈ 2
4

∑
n=1

M2
n

(

〈a〉n −
amax

2

)

, (5.11)

where 〈〉n denotes the average ranking parameter and Mn the number of members of the nth largest

group. Substituting the values given in Table 2 we get

〈(k+1)P〉+ ≈ 0.05N2amax, (5.12)

which in turn can be inserted into (5.9):

(ki +1)Pi > 0.05N2amax. (5.13)

Finally, using the definition of Pi the condition (5.13) can be written in the form

αi >
1

2
+0.05

N

ki +1
, (5.14)

where αi = ai/amax.

From condition (5.14) we can see that the probability of agent i following the conventional wis-

dom diminishes with rising N and decreasing ki, which is what we saw happening in our simulations

judging from the results shown in the previous Section. To take an example, for the N = 500 case the

largest community of agents with positive ranking pressures comprises of about 125 agents. This means,

according to the inequality (5.14), that the agents with αi > 0.7 could definitively be expected to always

choose to have positive opinion variables.

From Fig. 3 we can tell that the real threshold is closer to αi > 0.8, which is, however, in remarkably

good agreement with the approximate value of 0.7 when one takes into the consideration the fact that

the appearance of the contrarians themselves was not taken into account in the derivation of (5.14),

and that for N = 500 they are already very prominent. If one were to derive the condition equivalent

to (5.14) with contrarian strategies taken into account, one would need to consider the effect that the

contrarians have on their neighbours’ total social value V . Thus, condition (5.14) will most likely not

hold for networks with larger N.

The last question we need to address as regards to the contrarians is the fact that they are often

embedded in the groups of normal agents. So why would it be status-wise beneficial for an agent using

normal strategy to retain, let alone form, a link with a contrarian agent?

Let us consider a situation where an agent pursues contrarian strategies in a group of normal agents.

Returning to inequality (5.1), we see that it is acceptable for a normal agent i with Pi > 0 and maximal

xi = xmax to form a link with a contrarian agent j with Pj > 0 and minimal x j =−xmax if

Pi

Pj

>−k j (5.15)

and we assume that all the neighbours of agents i and j also have the maximal opinion parameters. The

striking fact about this relation is that it is always fulfilled in this case, meaning that i would always find

formation of links with contrarians acceptable. From the point of view of agent j, however, linking to i

is only acceptable if
Pj

Pi

>
1

2

ki

k j +1/2
, (5.16)
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which leads to the very same result as before. i.e. j will not form a link with i unless Pj > Pi/2,

if i and j are to belong to the same group. Thus the contrarian agents would behave and be treated as

normal agents when forming relations, which is surprising considering that their contribution to the total

social value of other agents is negative. The latter fact is demonstrated in the simulations with some of

the most counterintuitive behaviours of the model, namely, relations between agents being first broken

and immediately reinstated. Let us use Eq. (3.5) to determine, whether the agent i from the previous

calculations would benefit from cutting the link with agent j, even when expression (5.15) says that i

would also form a link with j in the event that such a link did not exist. With the previously stated

assumptions, we arrive to the following condition

Pj

Pi

>−
1

k j −1
(5.17)

for the link to be cut. From (5.17) we see that unless k j = 0, agent i will cut its ties with the contrarians.

Since k j ≫ 1 for the largest groups, the inequality (5.17) is likely to be true most of the time, leading to

links between agents i and j being cut and immediately reformed repeatedly, since inequality (5.15) also

holds. As suggested above, we have observed this behavioural pattern in our simulations, and to some

extent it can be observed in Fig. 2, in which we see that for only the connections between contrarian

and normal agents i and j can xi and Pj have opposite signs. It should again be stressed, however, that

the calculations above do not take into account the existence of more than one contrarian. Having more

contrarians in the system allows them to form links between each other, which has a sizeable effect on

the overall structure of the network.

In summary, it could be said that while conditions (5.3) and (5.16) provide surprisingly well fit-

ting approximations as to how a given agent chooses to link with other agents, the conditions (5.14),

(5.15) and (5.17) (though pointing to the right direction) only give vague qualitative explanations for the

behaviour of contrarians and can not be expected to yield precise numerical predictions.

6. Discussion

The interpretation of the ranking parameter ai serves as a key to find possible parallels between our

model and the real world. As it describes a single property of an agent, links between agents only

correspond to exchanges of opinion on whether agents with larger ai are “better” than agents with

smaller ai, or vice versa.

Agents could be considered as being embedded in a larger social context, and in this context they

could, in principle, have other social connections. In this case, the results presented in the previous

Section are best interpreted in terms of echo chambers, which means that agents prefer a social hierarchy

in which they have better relative rank, and seek to communicate their opinion to others. Agents whose

ranking parameters are further away from the average, are more vocal in broadcasting their views and

gather supporters, since they rank highly in their chosen hierarchy and, therefore, would benefit from

their hierarchy becoming more widely accepted.

On the other hand, agents with average ranking parameters are much more reluctant to take part in

the conversation at all, since they do not rank highly in either of the hierarchies. Then, the end result

for small system sizes is that agents divide themselves according to their ranking pressure into two or

more distinct communities supporting opposing hierarchies, in which agents with similar rankings lump

together and refuse to communicate with those that disagree. It is the shutting out of the opposing point

of view that makes this system’s behaviour reminiscent of echo chambers found in reality. However,

with increasing system size the agents develop more nuanced positions on their preferred hierarchies
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due to mounting social competition, as we have seen with the emergence of contrarians.

There is, however, an alternative way to interpret the ranking parameter. It could be taken to rep-

resent an aggregate of all social properties of an agent, thereby representing its total standing in the

societal status measures. In this case connections could represent the totality of the agents’ social inter-

actions, and the opinion variables the agents’ attitude to the (current) state of society at large. With

this interpretation the rupture between different communities observed for smaller system sizes would

actually represent a real disintegration of society. This might have implications concerning early human

migrations, as they could easily have been influenced by social pressures as well as material needs. If

environmental pressures define a minimum group size necessary for the comfortable life of a tribe, and

this minimum is smaller than the limit at which the tribe is forced to adopt more advanced strategies to

enhance social stability, as exemplified by the contrarians in our simulations, the tribe may well split,

with splinter groups migrating elsewhere.

Other than economic games, BTH can also shed some light into the well known paradox of value,

also known as diamond-water paradox, which refers to the fact that diamonds are far more valued in

monetary terms than water, even though water is necessary for life and diamonds are not. From BTH

the solution to this paradox is clear: Water, being necessary for life, has to be available in sufficient

quantities to all living humans, which means that owning water or its source does not set an individual

apart from others; that is, an individual cannot really compare favourably to others on grounds of having

water. Diamonds, on the other hand, are relatively rare, and thus cannot be owned by everyone. There-

fore, an individual possessing diamonds is compared favourably to others, and so diamonds acquire a

relatively high value in comparison to water in the minds of humans, in a very similar manner with

which Veblen goods become valuable. Then BTH, in a sense, contains in itself a natural definition of

value, although further work is needed to determine how exactly this status-value relates to other forms

of value, such as value derived from usefulness or necessity.

In Section 2 we only analyse the behaviour of the accepter, since this is straightforward in compar-

ison to predicting the behaviour of the proposer. Experiments on the Ultimatum Game often find that

proposers tend to offer fair shares to accepters, which is easily explained in the context of BTH by the

desire of the proposer to have the proposal accepted: proposers only offer shares that they would accept

themselves, and in this way Eq.(2.3) also restricts the proposers’ offers, although it cannot tell the exact

amount of money offered. To be able to give a better estimate for the offers, we would need to study

the learning processes that shape the proposers’ experience on how much uneven treatment people are

usually willing to tolerate. This is, however, outside the scope of this paper.

The behaviour of dictators in the dictator game [31] is somewhat more difficult to analyse using

BTH. The dictator game is similar to the Ultimatum game; the only difference being that the other

player does not even get to make a choice, and only receives what the first player, or dictator, endows. It

has been observed [25] that in this game dictators tend to be rather generous, which is difficult but not

impossible to explain in the context of BTH, if one takes into account the effect of reputation and other

“social goods”. The nature of such influence on the behaviour of the dictator will be studied in a later

work.

There are anyway some indications that BTH could be applied to the dictator game when all social

effects are taken into account. It has been reported [32] that when the rules of the dictator game are

modified so that instead of giving money to the other players, the dictator gets to take some or all of the

money given to the other players (thus turning the game into a “taking game”), the dictator’s behaviour

changes from egalitarian to self serving, i.e. taking often the majority or even all of the available money.

From the point of view of BTH, the dictator’s observed behaviour can potentially be explained in terms

of social norms. In the ordinary dictator game the dictator may still feel bound by the usual norms of
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society, while in the “taking game” it is encouraged to go against these norms. This sets the “taker”

apart from the other player in particular, and from other members of society in general. Hence the

dictator feels “better” than the others when breaking the norms with impunity, and acts on this feeling

by taking money from other players. The fact that BTH can possibly lead to formation of norms as well

as rebellion against these norms is well worth further studies.

In this work, the average clustering coefficient has been the main measure of community formation

for our model. As seen in Section 4, this coefficient does not change much with the system size, so in

the future it might be worth analysing network models inspired by BTH with other measures commonly

used in community detection [33]. Arguably one of the simplest (if not the most reliable [34, 35]) is

modularity, i.e. the tendency for the network to be composed of clusters of nodes, with the nodes in the

same cluster having relatively speaking more connections between themselves than to nodes in other

clusters. The significance of modularity was first recognised in the seminal paper by Simon [36], in

which it was demonstrated that, among other things, large modularity may enhance the adaptation of

the system to outside pressure. Today the analysis of modularity is an active branch of network science,

and multiple measures for it have been proposed (see, e.g., [37] and references therein).

7. Conclusions

Relating to the known results of the Ultimatum game, we have formulated a hypothesis explaining the

observed behaviour of humans in terms of superiority maximization, or “better than”-hypothesis, and

presented a simple network agent-based model to implement this hypothesis. The model describes

agents with constant ranking parameters and raises the question of whether agents with larger ranks are

“better” than agents with smaller ranks, or the other way around.

We have found that the social system produced by our model features homophily, meaning that

agents form social ties with other agents with similar ranking parameters, as well as assortativity,

describing the tendency of highly/lowly connected agents to form links with other highly/lowly con-

nected agents. In addition we find community structure, both in terms of there being communities with

opposing opinions, and in terms of communities with the same opinion fracturing into smaller ones

according to their ranking parameters. Furthermore, we have observed the formation of an emergent

hierarchy, in the sense of a connectivity ordering on top of the one defined by the ranking parameters,

with the agents with extreme ranking parameter presenting higher connectivity than the agents with

average ranking parameter.

Moreover, we have found that the resulting social networks tend to be disconnected for small system

sizes, but mostly connected for larger system sizes. This fact may have some relevance for research of

early human migrations, hinting at the effects of social pressure in shaping the social network.
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