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MODELLING COMPRESSIBLE MULTIPHASE FLOWS

Frédéric Coquel1, Thierry Gallouët2, Philippe Helluy3, Jean-Marc

Hérard4, Olivier Hurisse5 and Nicolas Seguin6

Abstract. We give in this paper a short review of some recent achievements within
the framework of multiphase flow modeling. We focus first on a class of compressible
two-phase flow models, detailing closure laws and their main properties. Next we briefly
summarize some attempts to model two-phase flows in a porous region, and also a class
of compressible three-phase flow models. Some of the main difficulties arising in the
numerical simulation of solutions of these complex and highly non-linear systems of PDEs
are then discussed, and we eventually show some numerical results when tackling two-
phase flows with mass transfer.

Résumé. Quelques résultats concernant la modélisation des écoulements mul-

tiphasiques Nous présentons dans cet article quelques résultats récents concernant la
modélisation et la simulation numérique des écoulements multiphasiques. Nous nous con-
centrons tout d’abord sur une classe de modèles diphasiques compressibles, en détaillant
les lois de fermeture et les principales propriétés du sytème. Nous résumons ensuite
brièvement les propositions de modélisation d’écoulements diphasiques en milieu poreux et
d’écoulements triphasiques. Quelques difficultés apparaissant dans la simulation numérique
de ces modèles sont présentées, et des résultats récents comportant un transfert de masse
entre phases sont finalement décrits.

1. Introduction

Following the initial quest of Ishii [29], the correct modelling of two-phase flows is still a widely
debated topic, especially when focusing on the two-fluid approach, which aims at distinguishing
mean properties of both phases (see for instance [3,4,7,13,15–18,20,30,32,36,37]). When restrict-
ing to the statistical averaging formalism, standard tools may be used in order to derive meaningful
models, in order to tackle unsteady and inhomogeneous two-phase flow predictions. The present
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paper focuses on these models, and provides some closure laws that comply with an entropy inequal-
ity. The latter one is of course useful in order to control smooth and also -possibly- discontinuous
solutions. One objective here is to provide a framework that might handle liquid-vapour mixtures,
when the vapour phase is dilute (this corresponds to what might happen in the primary coolant
circuit of nuclear power plants away from standard conditions), or when the mean flow contains
a much larger amount of vapour (this may occur in the upper part of steam generators, or more
likely in some severe accident configurations following the boiling crisis). Another issue is whether
this framework may handle even more complex situations such as those arising when tackling three-
phase flows or flows in a porous medium.

Two-fluids models require the computation of eight unknowns (statistical void fractions, mean
densities, mean velocities and mean pressures). Partial differential equations may be derived for
statistical void fractions, and partial mass, momentum and total energy within each phase; however,
equations of state which provide the mean internal energy within each phase must be prescribed,
and some closure laws are thus necessary. Actually, it is usually assumed that the averaged EOS
are functions of first-order moments only (mean pressure and mean density), though this is rigor-
ously valid for some specific instantaneous EOS only (such as perfect gas EOS for instance). This
assumption will be kept in the present work. Even more, closure laws must be given in order to
account for interfacial transfer terms. We refer the reader to the work of Kapila, Glimm and other
co-workers for that difficult topic (see [4, 5, 19, 20, 31, 32]), and we only detail our methodology
herein. Of course, depending on the choice of closure laws for interfacial quantities, properties of
the closed set of partial differential equations may vary considerably.

Hence, the present paper aims at providing a quick review of some achievements in the framework
of multiphase flow modelling. Among all constraints that should be satisfied in order to predict
numerically unsteady flows containing shock patterns, the following three immediately arise:

(1) Systems are expected to be hyperbolic for all physically admissible states;
(2) Smooth solutions should comply with a relevant entropy inequality;
(3) Unique jump conditions should be available in order to caracterize shock solutions.

We try to describe the basic methodology that has been considered for two-phase flow modelling of
unsteady flows involving discontinuities, but we also focus in the following section on some possible
extensions to the framework of flows in a porous medium and three-phase flow predictions. A short
synthesis of the numerical schemes that have been developped will complete this first part. Next
we will turn to some practical and recent computations, with special focus on difficulties arising
when the mass transfer is accounted for.

2. Two-phase flow modelling

Throughout the paper, αk(x, t) will denote the statistical void fraction of phase k = l, v, and
will comply with the constraint αl(x, t) + αv(x, t) = 1. Variables ρk, Uk, Pk respectively denote the
mean density, the mean velocity, the mean pressure within phase k, and we define partial masses
mk = αkρk. The total energy Ek within phase k = l, v is defined by: Ek = ρkek(Pk, ρk)+ρk(U

2

k )/2,
where ek(Pk, ρk) stands for the internal energy. The state variable W will be noted :

W t = (αl, αv,ml,mv,mlUl,mvUv, αlEl, αvEv)
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Thus, when neglecting the contribution of viscous effects and turbulence, the form of the governing
equations of mean quantities in the two-fluid model is:

∂t (αk) + Vint(W )∂x (αk) = φk(W )
∂t (αkρk) + ∂x (αkρkUk) = Γk(W )
∂t (αkρkUk) + ∂x

(

αkρkU
2

k

)

+ ∂x (αkPk)−Πint(W )∂x (αk) = Dk(W ) + Γk(W )U int
∂t (αkEk) + ∂x (αkUk(Ek + Pk)) + Pint(W )∂t (αk) = ψk(W ) + U intDk(W ) + Γk(W )Hint

(1)

Contributions Γk(W ), Dk(W ) and ψk(W ) take interfacial mass transfer, drag effects and inter-
facial heat transfer into account. Besides, the term φk(W ) arising in the governing equation of the
statistical void fraction αk is due to the statistical averaging [25] of the topological equation [13].
Obviously, we must enforce the following:

∑

k=l,v

Γk(W ) = 0 ;
∑

k=l,v

ψk(W ) = 0 ;
∑

k=l,v

Dk(W ) = 0 ;
∑

k=l,v

φk(W ) = 0 . (2)

Interfacial terms

U int = (Ul + Uv)/2 , Hint = UlUv/2 (3)

enable to account for mass and momentum transfer terms in the governing equations of mean
velocities and mean total energies. Our main objective here is to determine some admissible form of
all unknown quantities Γl(W ), φl(W ), ψl(W ), Dl(W ) and Πint(W ), Pint(W ), assuming some given
convex combination for Vint(W ) in terms of Ul, Uv:

Vint(W ) = ξ(W )Ul + (1− ξ(W ))Uv . (4)

where ξ(W ) lies in [0, 1]. Physically relevant functions ξ(W ) have been proposed in [7, 16], and
these will be recalled at the end of this section. We also denote ck the speed of acoustic waves
within the pure k−phase, setting:

ρkc
2

k = (∂Pk
(ek(Pk, ρk))

−1

(

Pk
ρk

− ρk∂ρk (ek(Pk, ρk)

)

2.1. Entropy inequality

We introduce the specific entropy Sk(Pk, ρk) in each phase, which complies with:

c2k∂Pk
(Sk) + ∂ρk (Sk) = 0 (5)

and temperatures: 1/Tk = ∂Pk
(Sk) /∂Pk

(ek). We also set: µk = ek + Pk/ρk − TkSk, which is
the Gibbs potential, classically associated with the description of phase transition. We may first
assume that the following constraint holds:

Πint(W )− Pint(W ) = 0 (6)

and also that Πint(W ) is a convex combination of both pressures, that is:

Πint(W ) = χ(W )Pl + (1− χ(W ))Pv (7)
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Proposition 1:

We define:

χ(W ) = (1− ξ(W ))/Tl[(1− ξ(W ))/Tl + ξ(W )/Tv]
−1 (8)

If W denotes a smooth solution of (1), the governing equation of the entropy of the two-fluid model

η(W ) =
∑

k=l,vmkSk may be written as follows:

∂t (η(W )) + ∂x





∑

k=l,v

mkUkSk



 = Γl(W )(µv(W )/Tv − µl(W )/Tl)

+ Dl(W )(Uv − Ul)(1/(2Tv) + 1/(2Tl))

+ ψl(W )(Tv − Tl)/(TvTl)

+ φl(W )(Pl − Pv)(1/(2Tv) + 1/(2Tl))

The proof requires rather long calculations and is thus omitted. Obviously, when ξ(W ) = 0 (or
ξ(W ) = 1), one retrieves the standard Baer-Nunziato model, where the interface velocity Vint(W )
corresponds to the mean velocity of the vanishing phase (see [3, 4, 32] and [17] also). This entropy
budget has a straightforward counterpart in the three-dimensional framework.

• Since all quantities: Tv − Tl, Uv − Ul, Pv − Pl, µv/Tv − µl/Tl are independent quantities,
the following admissible closure laws arise:

Γl(W ) = KΓ(W )(µv(W )/Tv − µl(W )/Tl),
Dl(W ) = KU (W )(Uv − Ul),
ψl(W ) = KT (W )(Tv − Tl),
φl(W ) = KP (W )(Pl − Pv).

(9)

The first three closure laws were expected, and the last one is physically relevant: it simply
means that the statistical void fraction of the liquid phase increases when the statistical
pressures are such that: Pl > Pv. The -positive- scalar functions in the drag contribution
and in the heat transfer closure law may be chosen as:

KU (W ) = mlmv/(ml +mv)/τU (W ),

KT (W ) = mlmvCl−v/(ml +mv)/τT (W ),

and hence agree with the classical two-fluid litterature [29]; moreover, a relevant choice for
KP that preserves positive values of void fractions is:

KP (W ) = αlαv/(Pl + Pv)/(|Pl|+ |Pv|)/τP (W ).

Here, τU,P,T (W ) respectively denote velocity-pressure-temperature relaxation time scales.
We also set: KΓ(W ) = K ′

Γ
(W )/τΓ(W ). The literature suggests physically sounded forms

for τU (W ) and τT (W ) on the one hand; on the other hand, accurate time scales τP (W ) can
hardly be found in the available two-phase flow literature. Most of the time, it is more or
less assumed to lie within the range (τU (W ), τΓ(W )).
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• The closure law (8) is exactly the one that has been introduced in [7,16]. Slightly different
forms that account for the statistical void fraction gradient have been proposed later on
[24], but they involve another scalar coefficient function that can hardly be determined
experimentally, and are thus disregarded here. Other closure laws were proposed in [36].
Another point that is worth being emphasized is that it can be proved that the constraint
(6) actually holds.

• The specific forms of U int and Hint (see (3)) are those that guarantee that the relative
velocity Uv − Ul has no contribution in the entropy production function, when some mass
transfer occurs between phases.

• All closure laws presented above may be used for a broader class of two-fluid models [25].
The main advantage of this latter class is that it may take transition regimes into account,
which is useful for the prediction of the ebulition crisis or of water-hammer situations. The
approach detailed here may also be used in order to tackle the modelling of three-phase
flows [23]. This particular point will be discussed in the following section.

2.2. Main properties

We recall below the main properties of the homogeneous model associated with (1).

Property 1:

• The set of equations associated with the left-hand side of (1) has seven real eigenvalues
which read:

λ1 = Vint(W ) (10)

λ2 = Uv, λ3 = Uv − cv(W ), λ4 = Uv + cv(W ), (11)

λ5 = Ul, λ6 = Ul − cl(W ), λ7 = Ul + cl(W ) (12)

Associated righteigenvectors span the whole space R7, unless |Uk − Vint(W )|/ck = 1, for
k = l, v;

• Fields associated with eigenvalues λ2,5 are linearly degenerate. Other fields associated with
eigenvalues λ3,4,6,7 are genuinely nonlinear. The 1−field is linearly degenerate if:

ξ(W )(1− ξ(W )) = 0, or: ξ(W ) = ml/(ml +mv) (13)

• Smooth solutions of (1) comply with the entropy inequality:

0 ≤ ∂t (η(W )) + ∂x





∑

k=l,v

mkUkSk



 (14)

when using closure laws (9) and (8).
• Unique jump conditions hold within each isolated field for discontinuous solutions of (1)
when using closure laws (13).

This result is classical (see [7,16]). When the 1-field is linearly degenerate, unique jump conditions
can be written within each single field. Thus, we may expect that suitable schemes will provide a
unique converged approximation when the mesh is refined, whatever the convective scheme is; this
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has been confirmed by numerous non-resonant numerical experiments [11,18,22,27,34,38]. This is
indeed a remarkable property that has only raised little attention in the two-phase flow community.
We emphasize that these particular choices for ξ(W ) detailed in (13) are totally independent from
the specific choice (8); however both formulas (13) and (8) have been considered in our overall
methodology. A straightforward consequence at this stage is that the homogeneous part of system
(1) is a closed set of PDE.

3. Some extensions of the two-fluid formalism

Among all possible extensions of the two-fluid formalism that has been described above, we would
like to point out at least two different situations. The first one refers to the modelling of two-phase
flows in a porous region; this point was basically motivated by the need for ”component” codes in
the nuclear safety framework, where the notion of porosity naturally arises when tiny obstacles in
steam generators and cores are accounted for without meshing all boundaries. The second one is
an innovative approach in an attempt to model three-field flows, by adopting a wider three-phase
flow formalism. This is discussed in the following two subsections.

3.1. A two-fluid model in a porous region

When the physical domain is occupied by a fluid and rigid boundaries (including walls, solid
obstacles, grids,...), a possible and widely used approach consists in defining the local porosity as
the ratio of the volume of fluid Vf (x) over the total control volume Vtotal(x) = Vf (x)+Vs(x), where
Vs(x) stands for the volume of solid, that is:

ǫ(x) = 1− Vs(x)/Vtotal(x)

Thus, if one aims at adopting the two-fluid formalism, this leads to the problem of defining a
meaningful set of PDEs, such as:

∂t (ǫ) = 0
∂t (αk) + Vint(W )∂x (αk) = φk(W )
∂t (ǫmk) + ∂x (mkUk) = ǫΓk(W )
∂t (ǫmkUk) + ∂x

(

ǫmkU
2

k

)

+ ǫαk∂x (Pk)− ǫ(Πint(W )− Pk)∂x (αk) = ǫ(Dk(W ) + Γk(W )U int)
∂t (ǫαkEk) + ∂x (ǫαkUk(Ek + Pk)) + ǫΠint(W )∂t (αk) = ǫ(ψk(W ) + U intDk(W ) + Γk(W )Hint)

(15)
for k = l, v. The latter system enjoys similar properties such as those detailed in section 2:

Property 2:

• The homogeneous part of system (15) is hyperbolic, unless some resonance occurs if |Uk −
Vint(W )|/ck = 1 or |Uk|/ck = 1; eigenvalues are:

λ0 = 0 λ1 = Vint(W ) (16)

λ2 = Uv, λ3 = Uv − cv(W ), λ4 = Uv + cv(W ), (17)

λ5 = Ul, λ6 = Ul − cl(W ), λ7 = Ul + cl(W ) (18)
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• Smooth solutions of system (15) comply with the entropy inequality:

0 ≤ ∂t (ǫη(W )) + ∂x



ǫ
∑

k=l,v

mkUkSk



 (19)

when closure laws are defined by (8) and (9).
• Fields associated with eigenvalues λ0 = 0, λ2 = Uv, λ5 = Ul are linearly degenerate, and a
similar result holds for λ1 = Vint(W ) when the closure law Vint(W ) is chosen among (13).

These results are available in [18, 24]. For practical applications in the nuclear framework, we
emphasize that the resonance phenomenon is very unlikely to happen. Obviously, when sudden
variations of ǫ arise in the computational domain, there is a missing term in the momentum equation,
which means in practice that results obtained with (1) are more accurate than those coming from
(15), unless some singular ad hoc source terms are added. Another point which is detailed in [18] is
also worth being emphasized, which concerns the numerical approximation of solutions of system
(15) when strong variations occur in the porous distribution ǫ(x). Actually, in that case, the
computation of discontinuous solutions requires applying well-balanced schemes (with respect to
the porous steady wave λ = 0), otherwise approximations obtained with colocated Finite volume
schemes may converge towards wrong solutions, even if these schemes involve approximate Riemann
solvers. This implies that Riemann invariants of the steady wave should be perfectly preserved.

3.2. A class of compressible three-phase flow models

We focus now on a mixture of three phases, which will be indexed by k = l, v, s. We still use
classical notations for the statistical fraction αk, the mean density, velocity and pressure ρk, Uk, Pk
within each phase k, and also denote the mass fractions mk = αkρk, and the total k−energy
Ek = ρkek(Pk, ρk) + ρk(U

2

k )/2. The three positive fractions αk comply with:

Σkαk = 1

The counterpart of the two-fluid compressible model (1) is now (see [23]):

∂t (αk) + Vint(W )∂x (αk) = φtpfmk (W )
∂t (mk) + ∂x (mkUk) = 0

∂t (mkUk) + ∂x
(

mkU
2

k

)

+ ∂x (αkPk) + Σj 6=kΠk,j(W )∂x (αj) = Dtpfm
k (W )

∂t (αkEk) + ∂x (αkUk(Ek + Pk))− Σj 6=kΠk,j(W )∂t (αj) = Vi(W )Dtpfm
k (W )

(20)

for k and j in l, v, s, when neglecting mass and energy interfacial transfer terms. Thus, closure laws

must be provided not only for φtpfmk (W ) and Dtpfm
k (W ), but also for the six unknowns Πk,l(W ),

for k 6= l. A first series of constraints may be written:

Σkφ
tpfm
k (W ) = 0;

ΣkD
tpfm
k (W ) = 0;

ΣkΣj 6=kΠk,j(W )∂χ (αl) = 0 for: χ = x, t,

(21)

since these contributions account for interfacial transfer terms, and keeping in mind the fact that:

Σk∂x (αk) = ∂x (Σkαk) = 0. (22)
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Moreover, it can be proved that the six unknowns Πk,j(W ) uniquely depend on the other closure
laws. Actually, introducing three functions βk(W ), that represent the barycentric components of
the sole velocity Vint(W ) in terms of the mean phasic velocities Uk, that is:

Vint(W ) = βl(W )Ul + βv(W )Uv + βs(W )Us

and taking then into account the fact that the mixture entropy:

ηtpfm = mlSl +mvSv +msSs

should be a mathematical entropy, we eventually get that the six functions Πk,j(W ) can be written
explictly in terms of the βk(W ), the mean phasic pressures and temperatures Pk, Tk (see [23],
appendix G):

Πk,j(W ) = πk,j(βm, Pm, Tm) with: m ∈ l, v, s. (23)

For instance, when choosing βv = 1 and βl = βs = 0, we get at once:

Πs,v = Πv,s = Πs,l = Ps ; Πl,v = Πv,l = Πl,s = Pl

which turns to be the counterpart of the Baer-Nunziato formalism for three-phase flows.

This is in perfect agreement with the two-phase flow formalism discussed before. It also means
that the methodology can be extended to a finite number of phases N (though the algebra may
become tedious when N increases). Eventually, the only remaining unknowns are the interfacial

transfer terms φtpfmk (W ) and Dtpfm
k (W ), but again, the entropy inequality:

0 ≤ ∂t





∑

k=l,v,s

mkSk



+ ∂x





∑

k=l,v,s

mkUkSk



 (24)

provides a powerful tool in order to suggest suitable entropy-consistent closure laws for drag contri-

butions between phasesDtpfm
k (W ), and for pressure relaxation terms φtpfmk (W ). We can summarize

the main properties in the following:

Property 3:

• The homogeneous part of system (20) is hyperbolic, and eigenvalues are:

λ1,2 = Vint(W ), (25)

λ3 = Uv, λ4 = Uv − cv(W ), λ5 = Uv + cv(W ), (26)

λ6 = Ul, λ7 = Ul − cl(W ), λ8 = Ul + cl(W ), (27)

λ9 = Us, λ10 = Us − cs(W ), λ11 = Us + cs(W ) (28)

Resonance may occur if |Uk − Vint(W )|/ck = 1, for k = l, v, s.
• Smooth solutions of system (20) comply with the entropy inequality:

0 ≤ ∂t (η(W )) + ∂x





∑

k=l,v,s

mkUkSk



 (29)
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when applying closure laws are defined by (23) for the Πk,j and also using admissible closure

laws for interfacial transfer terms Dtpfm
k (W ), φtpfmk (W ) .

• Fields associated with eigenvalues λ3 = Uv, λ6 = Ul, λ9 = Us are linearly degenerate.
If we note M = ms + mv + ml, and if we assume that either (βv, βl, βs) = (1, 0, 0), or:
(βv, βl, βs) = (0, 1, 0), or: (βv, βl, βs) = (0, 0, 1), or: (βv, βl, βs) = (mv/M,ml/M,ms/M),
then the field associated with λ1,2 = Vint(W ) is also linearly degenerate. In that case, unique
jump conditions hold field by field for solutions of system (20). The latter conditions are
sufficient but not necessary (the counterpart of the proposal [25] for three-phase flows might
be considered).

The reader is refered to [23] for more details.

4. Well-suited Finite Volume schemes

We come back to two-phase flow modelling in a non-porous region, and focus on simple Finite
Volume schemes that have been used for practical applications. Actually , the basic algorithm that
is used to compute approximations of the whole system relies on an entropy-consistent fractional
step method including an evolution step and a relaxation step. The evolution step computes
approximate solutions of the pure convective system, and the relaxation step takes all source terms
into account.

4.1. Evolution step

This step computes approximate solutions of the hyperbolic homogeneous system:















∂t (αk) + Vint(W )∂x (αk) = 0
∂t (mk) + ∂x (mkUk) = 0
∂t (mkUk) + ∂x

(

mkU
2

k

)

+ ∂x (αkPk)−Πint(W )∂x (αk) = 0
∂t (αkEk) + ∂x (αkUk(Ek + Pk)) + Πint(W )∂t (αk) = 0

(30)

through the time interval [tn, tn + ∆t], with given initial values Wn. The Finite Volume solver
that is used in the last section can rely on a non-conservative version of the Rusanov scheme; in
that case it ensures that partial masses remain positive, and also that statistical void fractions stay
in the range [0, 1], provided that a specific CFL condition is enforced (see [18]). Actually, more
accurate schemes such as the exact Riemann solver (see [39]), VFRoe-ncv approximate Riemann
solver (see [16]), relaxation schemes (see [1,2,6,10,38]) or other schemes (see [8,12,33,35,40]) may
be applied instead of the rough Rusanov scheme.

This evolution step provides a set of approximations W̃ at the end of each time step.
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4.2. Relaxation step

Given discrete cell values of W̃ at the beginning of each time step, we compute approximations
of the coupled set of ODEs corresponding to relaxation terms, that is:















∂t (αk) = φk(W )
∂t (αkρk) = Γk(W )
∂t (αkρkUk) = Dk(W ) + Γk(W )U int
∂t (αkEk) + Πint(W )∂t (αk) = ψk(W ) + U intDk(W ) + Γk(W )Hint

(31)

Up to now, for a seek of simplicity and computational efficiency, all source terms have been
decoupled, which means that other fractional steps are included, thus solving successively four
separate steps:















∂t (αk) = δφφk(W )
∂t (αkρk) = δΓΓk(W )
∂t (αkρkUk) = δDDk(W ) + δΓΓk(W )U int
∂t (αkEk) + Πint(W )∂t (αk) = δψψk(W ) + δDU intDk(W ) + δΓΓk(W )Hint

(32)

associated with (δφ, δΓ, δD, δψ) equal to (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) respectively.

The most difficult task in the building of the Finite Volume solver is due to the mass transfer term
and to the contribution φk. In particular, difficulties arise when enforcing the conservative form
for the mixture, and meanwhile requesting void fractions in the physical range [0, 1] and positive
densities and internal energies. Details on this part of the algorithm can be found in [26–28], and
we only sketch the basic ideas below.

4.2.1. Pressure relaxation step

The pressure relaxation step computes approximations of solutions of:







∂t (αk) = φk(W )
∂t (αkρk) = ∂t (αkρkUk) = 0
∂t (αkEk) + Πint(W )∂t (αk) = 0

(33)

A ”fully implicit” discretization is applied (see [15,26,27]), which means that three main unknowns
α∗
v, P

∗
v , P

∗
l are sought, that are solutions of:























(α∗
v − α0

v) = α∗
v(1− α∗

v)(P
∗
v − P ∗

l )δt/τP /(P
0
v + P 0

l )
(αvEv)

∗ − (αvEv)
0 +Πint(W

∗)(α∗
v − α0

v) = 0
(αvEv + (1− αv)El)

∗ = (αvEv + (1− αv)El)
0

(mk)
∗ = (mk)

0 for k=l,v

(mkUk)
∗ = (mkUk)

0 for k=l,v

(34)

The problem of existence and uniqueness of the solution α∗
v, P

∗
v , P

∗
l in the physical range is examined

in the latter references [15, 26, 27]. Obviously, the kind of EOS that is used within each phase is
crucial, and the asymmetry of the BN model renders the investigation even more tricky. Another
rather simple algorithm that does not preserve the conservative form of the total energy of the
mixture was proposed earlier in [16] and is not recalled herein.



44 ESAIM: PROCEEDINGS

4.2.2. Gibbs potential relaxation step

In order to take mass transfer into account, we need to obtain approximations of solutions of the
following system:















∂t (αk) = 0
∂t (mk) = Γk(W )
∂t (mkUk) = Γk(W )U int
∂t (αkEk) + Πint(W )∂t (αk) = Γk(W )Hint

(35)

A first simple scheme can be proposed in order to cope with these, that makes sense when
the relaxation time step τΓ is not too small, and that preserves positive mass fractions (see [28]).
However, a more convenient and general one is the following implicit scheme:







































m∗
v −m0

v = δtΓv(W
∗)

(mvUv)
∗ − (mvUv)

0 = δtΓv(W
∗)U int(W

∗)
(αvEv)

∗ − (αvEv)
0 = δtΓv(W

∗)Hint(W
∗)

α∗
v = α0

v

(mv +ml)
∗ = (mv +ml)

0

(αvEv + (1− αv)El)
∗ = (αvEv + (1− αv)El)

0

(mlUl +mvUv)
∗ = (mlUl +mvUv)

0

(36)

One drawback of course is that it requires solving a highly non-linear scalar equation (with respect
to the unknown m∗

v), even when pure phasic equations of state are rough (such as perfect gas or
stiffened gas EOS).

5. A few recent computational results

We start with the verification of algorithms involved in the evolution step, and then show two
different two-dimensional simulations with and without mass transfer.

5.1. One-dimensional verification results based on Riemann problems

The purpose of this subsection is to check the validity of the scheme that is used in the evolution
step to predict convective effects. We consider the two-phase flow model (1), setting Vint = Uv and
Πint = Pl, and we set formally:

1/τΓ(W ) = 1/τP (W ) = 1/τT (W ) = 1/τU (W ) = 0

Many Riemann problems have been considered in the verification of the evolution step, focusing
either on first-order or second-order schemes. Exact solutions are computed by enforcing initial
values for the left state WL, and then computing the initial right state WR = ψ(WL), where the
transformation ψ enables to account for all waves occuring in the solution.

We consider here a classical 1D Riemann problem that contains only two waves: a shock wave
associated with the vapour phase, and a void fraction wave associated with Vint = Uv. The EOS
are assumed to be perfect gas EOS within each phase (γv = 7/5 and γl = 1.01). As it may be
checked on figure 1, which plots the L1 norm of the error with respect to the mesh size, while con-
sidering the rough first-order Rusanov scheme, the asymptotic rate of convergence is h1/2, as it can
be expected. The finer (resp. coarser) mesh contains 500000 (resp. 50) regular cells, and the CFL
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Figure 1. First-order Rusanov scheme : logarithm of the L1 norm of the error
||a − ah||/||a|| as a function of log(h) for a 1D Riemann problem associated with
step (30), for a = α, Pv, Pl, Uv, Ul, ρv, ρl.

constraint is CFL = 1/2 when computing approximate solutions of the convective system. The de-
tailed analysis in [10] clearly shows that the efficiency of the relaxation solver proposed in the latter
reference is much higher, compared with the rough Rusanov scheme, both in terms of accuracy and
CPU time for a given level of accuracy. A thorough analysis of several Riemann problems is also
available in [10,11], where authors focus on first-order and second-order schemes. The extension to
second-order was achieved using a classical minmod reconstruction based on symmetrizing variables
(αk, Pk, Uk, Sk) (see [9]) and a second-order Runge-Kutta time scheme. For second-order schemes,
we retrieve the expected asymptotic rate of convergence h2/3.

5.2. Two-dimensional results without mass transfer

We consider now the two-dimensional unsteady computation of a heated wall in which a small
cavity has been inserted. The model is again based on (1), while setting : Vint = Uv and Πint = Pl.
Relaxation time scales are now:

τP (W ) = 10−6, τU (W ) = 10−4, τT (W ) = 10−6.

and 1/τΓ(W ) = 0. We still use the first-order Rusanov scheme for practical computations. The
computational domain contains 105 regular cells, and the CFL number is again set to 1/2. Homoge-
neous Neumann-type boundary conditions have been used on the left, right and upper boundaries.
Uniform initial conditions are such that the fluid is at rest and in equilibrium at the beginning of
the computation, and a uniform normal heat flux is imposed on the lower wall boundary. Figure
2 shows the liquid pressure profiles at the end of the computation. Actually, these 2D results still
depend on the mesh refinement (though its counterpart in a 3D framework would contain more than
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30 millions cells). This confirms that current efforts in order to derive accurate Riemann solvers,
or sufficiently large time-step schemes, are indeed mandatory.

Figure 2. Heated wall: contours of the liquid pressure Pl at time T = 0.0237.

5.3. Three-dimensional results including mass transfer

The last test case is a preliminary result involving mass transfer between phases. We use now
the relaxation scheme introduced in [38]. The implicit relaxation scheme (36) has been used in
order to obtain numerical approximations. The system that is considered is still the same, though
relaxation time scales are now the following:

τP (W ) = 10−4, τΓ(W ) = 10−4, τU (W ) = 10−4, τT (W ) = 10−4.

The computational domain Ω = [0, 7.4] corresponds to a long uniform pipe with a uniform heating
along the wall boundary in the region [0.7, 5.9], the heat flux being equal to HF = 14MW . x = 0
corresponds to the inlet boundary while x = 7.4 is the outlet boundary. A perfect gas EOS is used
for the vapour phase (with γv = 1.2462), and a stiffened gas EOS is used for the vapour phase (with
γl = 1.6347, Π∞

l = 5.207× 108).
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Initial conditions are also uniform in the pipe and have been set to the left inlet boundary
conditions, which are:

U inletv = U inletl = 1.8281 P inletv = P inletl = 55.715× 105 ρinletv = 28.053 ρinletl = 769.43

while setting αinletl = 0.995. Mean densities at the inlet are such that T inletv = T inletl . Both
velocity components V inletl,v and W inlet

l,v have been set to zero. Two different meshes have been used,
including 60 and 500 uniform cells along the axis. We have set CFL = 0.45, thus time steps are
approximately δt = 4.10−5 and δt = 5.10−6 for the coarse and the fine mesh respectively. Results
are displayed at time T = 1 on figures 3 and 4. Both velocities Ul and Uv are increasing in the
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Figure 3. Heated pipe. Pressures, velocities, normalized densities
ρk(x, T )/ρk(0, T ) and liquid fraction at time T = 1. The plain line refers to
the liquid phase, whereas the dashed line represents the vapour phase. The coarse
mesh contains 60 regular cells.

heated region, while densities are decreasing in the same interval. The competition of the relaxation
time scales results in an increase of the liquid fraction.

6. Conclusion

All multiphase flow models that have been described herein rely on the same methodology, and
associated schemes are expected to provide meaningful convergent approximations of solutions of
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Figure 4. Heated pipe. Pressures, velocities, normalized densities
ρk(x, T )/ρk(0, T ) and liquid fraction at time T = 1. The plain line refers to
the liquid phase, whereas the dashed line represents the vapour phase. The fine
mesh contains 500 regular cells.

systems of PDEs. Basically, four distinct requirements sustain the whole approach, which are
summarized below:

• The convective part of these systems is hyperbolic unless some resonance occurs in the
solution;

• Smooth solutions are in agreement with a physically meaningful entropy inequality;
• Though non-conservative first-order contributions are present in these systems, unique jump
conditions can be obtained;

• Finite Volume schemes are such that numerical approximations of Riemann problems con-
verge towards unique solutions even when shocks are present.

According to the authors, this is an important improvement that should help in the assessment of
multiphase flow models. However, it seems mandatory to point out the following drawbacks and
main challenges.

First of all, there is a lack of physical knowledge about the four relaxation time scales τU , τP , τT , τΓ.
In particular, little is known about the pressure relaxation time scale, since, up to now, most of the
experimental effort has been put on the improvement of drag prediction and mass transfer. The
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correct estimation of τP thus requires further investigation and suitable experimental setups.

A second point is that these highly non-linear systems involve many different time scales that
lie within a very wide range; a straightforward consequence is that high-order efficient and stable
enough schemes are mandatory if one expects to get unsteady approximations that are not too far
from mesh convergence. This urges the development of hybrid implicit-explicit schemes in order
to obtain accurate approximations of components associated with slow internal waves. Relaxation
schemes seem to provide a fair framework that might handle complex equations of state, and mean-
while provide accurate enough approximations.

Another difficulty corresponds to the simulation of transitional situations such as those that may
be encountered in the prediction of flows in pressurised water rectors in severe accident configura-
tions.

We would like to thank PhD students Laetitia Girault, Vincent Guillemaud, Yujie Liu, Khaled Saleh for
their contributions. Part of the work of Jean-Marc Hérard and Olivier Hurisse has been achieved within the
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Mécanique, 333, pp. 838-842, (2005).
[37] V. Ransom, D.L. Hicks, Hyperbolic two-pressure models for two-phase flow, J. Comp. Physics., 53, pp. 124-151,

(1984).
[38] K. Saleh , Analyse et simulation numérique par relaxation d’écoulements diphasiques compressibles. Contri-
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