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Abstract 

 

The SARS-CoV-2 Spike protein needs to be in an open-state conformation to interact with ACE2 as 

part of the viral entry mechanism. We utilise coarse-grained normal-mode analyses to model the 

dynamics of Spike and calculate transition probabilities between states for 17081 Spike variants. Our 

results correctly model an increase in open-state occupancy for the more infectious D614G via an 

increase in flexibility of the closed-state and decrease of flexibility of the open-state. We predict the same 

effect for several mutations on Glycine residues (404, 416, 504, 252) as well as residues K417, D467 and 

N501, including the N501Y mutation, explaining the higher infectivity of the B.1.1.7 and 501.V2 strains. 

This is, to our knowledge, the first use of normal-mode analysis to model conformational state transitions 

and the effect of mutations thereon. The specific mutations of Spike identified here may guide future 

studies to increase our understanding of SARS-CoV-2 infection mechanisms and guide public health in 

their surveillance efforts.  
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1. Introduction 

The coronavirus pandemic has emerged as a major and urgent issue affecting individuals, families 

and societies as a whole. Among all outbreaks of aerosol transmissible diseases in the 21st century, the 

COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) virus [1,2], has the highest infection and death cumulative numbers - 83 million infections and over 

1.8 million deaths, according to the World Health Organization (WHO) epidemiological report of 

January 5, 2021 [3]. Recent WHO reports also show significant weekly increases in the number of 

infections and deaths as countries start to face upcoming waves of the disease. In 2003 the SARS 

coronavirus (SARS-CoV) pandemic caused 8,098 infections and 774 deaths before it was brought under 

control [4,5]. In 2012, the Middle East respiratory syndrome-related coronavirus (MERS-CoV) outbreak 

caused 2499 infections and 858 deaths, presenting the highest fatality rate [6]. SARS-CoV-2, SARS-

CoV and MERS-CoV, as coronaviruses in general, present considerable mutation rates, which may 

contribute to future outbreaks. For instance, SARS-CoV-2 is estimated to have a mutation rate close to 

the ones presented by MERS-CoV [7] and by SARS-CoV [8], as well as other RNA viruses, showing a 

median of 1.12 × 10−3 mutations per site per year [9]. The high mutation rate may in part be responsible 

for the zoonotic nature of these viruses and points to a clear risk of still-undetected additional members 

of the coronavirideae family of viruses making the jump from their traditional hosts to humans in the 

future. 

The SARS-CoV-2 Spike protein (Uniprot ID P0DTC2) is responsible for anchoring the virus to the 

host cell. The entry receptor for SARS-CoV-2 and other lineages of human coronaviruses is the human 

cell-surface protein angiotensin converting enzyme 2 (ACE2) (Uniprot ID Q9BYF1) [10]. Therefore, 

studying the Spike protein family is essential to understand the evolution of coronaviruses. 

SARS-CoV-2 Spike is a homo-trimeric glycoprotein, with each chain built by subunits S1 and S2, 

delimited by a furin cleavage site at residues 682-685. The S1 subunit comprises the N-terminal Domain 

(NTD), located in the peripheric part of the extramembrane extreme, and the Receptor Binding Domain 

(RBD), the most flexible site, located in the central part of this same extreme. The S2 subunit consists of 

the fusion peptide (FP), heptad repeat 1 (HR1), heptad repeat 2 (HR2), the transmembrane domain (TM), 

and the cytoplasmic tail (CT) (Figure 1). The interaction between Spike and ACE2 relies on Spike to be 

in its open conformation, in which the Receptor Binding Domain (RBD) is extended [11]. The study of 

the binding properties between Spike and ACE2, although important, cannot explain all the nuances of 

the infection mechanism. An example of this limitation is the comparison between SARS-CoV and 

SARS-CoV-2, which have different rates of infection even though they share similar Spike-ACE2 
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affinities [12]. These facts lead us to consider the contribution of the dynamics of the Spike protein to 

the infection process. 

 

 

 

Figure 1. Domains of the Spike protein. N-Terminal Domain (NTD), Receptor Binding Domain (RBD), Subunit 1/Subunit 2 

junction (S1/S2), Fusion Peptide (FP), Heptad Repeat 1 (HR1), Heptad Repeat 2 (HR2), Transmembrane Domain (TM), and 

the Cytoplasmic Tail (CT). Crystallography structure in the conformational state of all 3 RBD domains closed (PDB 6VXX) 

and of 1 RBD open (PDB 6VYB), binding to ACE2 (PDB 6M17). 

Computational structural biology methods have grown in both accuracy and usability over the years 

and are increasingly accepted as part of an integrated approach to tackle problems in molecular biology. 

Such integration permits to speed up research, decrease needs in infrastructure, reagents, and human 

resources and allows us to evaluate increasingly larger data sets. Computational approaches are being 

extensively used in the study of SARS-CoV-2 and its mechanisms of infection [13-15]. Among these, 

we highlight the study of dynamic properties of the Spike protein as well as in antibody recognition and 

the search for therapeutic interventions [16-18]. 

Several aspects of the dynamics of the Spike protein are being currently studied, with a range of 

particular goals: to evaluate the docking of small molecules to the RBD domain [19], to search for 

alternative target binding-sites for vaccine development [20], to understand residue-residue interactions 
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and their effects on conformational plasticity [21] and to investigate the flexibility of different domains 

in particular conformational states [22]. 

Normal Mode Analysis (NMA) methods are being employed in the study of different conformational 

states [23] and of different coronavirus variants [24]. These methods, however, are limited with respect 

to their ability to study the effects of mutations on dynamics due to the fact that such methods are either 

extremely taxing on computational resources (e.g., molecular dynamics) or agnostic to the nature of 

amino acids (e.g., traditional coarse-grained NMA methods). In the past, our group developed a coarse-

grained NMA method called ENCoM (for Elastic Network Contact Model) that is more accurate than 

alternative coarse-grained NMA methods due to the explicit consideration of the chemical nature of 

amino acids and their interactions and consequently their effect on dynamics [25]. ENCoM performs 

better than other NMA methods on traditional applications and is the only coarse-grained NMA method 

capable of predicting the effect of mutations on protein stability and function as a result of dynamic 

properties [26-28]. 

In this study, we use the ENCoM method to study the dynamics of the Spike protein, considering 

different conformational states and several sequence variants observed during the current pandemic, as 

well as through large-scale analysis of in silico mutations. Experimental analysis of the effect of the 

SARS-CoV-2 Spike mutation D614G and the comparison between SARS-CoV and SARS-CoV-2 Spike 

proteins show unique dynamic characteristics that correlate with epidemiological and experimental data 

on infection. The present work shows that we can replicate such results computationally, suggesting that 

rigidity or flexibility of different Spike conformational states affects infectivity. We present a high 

throughput analysis of simulated single amino acid mutations on dynamic properties to seek potential 

hotspots and individual Spike variants that may be more infectious and therefore may guide public health 

decisions if such variants were to appear in the population. We also introduce a Markov model of 

occupancy of molecular states with transition probabilities derived from our analysis of dynamics that 

recapitulates experimental data on conformational state occupancies. This is the first application of an 

NMA method that derives transition probabilities from normal modes and employs them in a dynamic 

system to predict the occupancy of different conformational states. We model the occupancy of several 

variants and highlight those that may be useful in studying future epidemiological trends that can be 

responsible for new outbreaks. 

2. Methods 

2.1 Spike protein models 
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We performed our analyses using the crystallographic models of the SARS-CoV-2 Spike protein in 

the open (PDB ID 6VYB) and closed (PDB ID 6VXX) states. The open (prefusion) state was designed 

with an abrogated Furin S1/S2 cleavage site and two consecutive proline mutations that improve 

expression [29]. Despite the mutations, the engineered structures correctly represent the conformational 

states of Spike, as confirmed by independently solved structures [23,30]. The PDB structures used for 

the SARS-CoV comparison were 5X58 and 5X5B for closed state and one RBD open state, respectively 

[31]. 

We removed heteroatoms, water molecules, and hydrogen atoms from the PDB structures. Missing 

residues were reconstructed using template-based loop reconstruction and refinement with Modeller [32]. 

Single amino acid mutants were generated using FoldX4 [33]. ΔΔSvib and occupancy calculations were 

performed with reconstructed closed and one-RBD-open structures using as template 6VXX and 6VYB. 

These engineered structures contain the GSAS sequence in the Furin cleavage site as well as two prolines 

in positions 986 and 987. In order to minimize potential artefacts in the calculations due to modelling 

errors, we chose to model all mutations and subsequent calculations using the above engineered 

structures and sequences unless otherwise noted. That is to say, when we refer to the wild type SARS-

CoV-2 Spike protein in our calculations, it is the Spike protein with the above alterations in the Furin 

recognition site as well as the pair of prolines. This choice in our methodology is made as stated to 

decrease the possibility of modelling artefacts as the alternative would have required modelling 6 

additional mutations to ‘de-engineer’ the structures of the open and closed states. 

For the parameter fitting used in the calculation of occupancies, we utilized the following 

experimentally determined structures for which occupancy data exists as follows (acronyms described in 

results): S-GSAS/WT: 7KDG,7KDH; S-GSAS/D614G: 7KDI,7KDJ [30]; S-R/x2: 6ZOX; S-R/PP/x1: 

6ZOY,6ZOZ; S-R: 6ZP0; S-R/PP: 6ZP1,6ZP2 [34]. 

2.2 Dynamic analyses 

We analysed dynamic properties of the Spike protein with ENCoM [25]. ENCoM employs a 

potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes 

it possible to consider the effect of the specific nature of amino-acids on dynamics. NMA explores protein 

vibrations around an equilibrium conformation by calculating the eigenvectors and eigenvalues 

associated with different normal modes [35-37]. Representing each protein residue as a single point, for 

a given conformation of a protein with N amino acids, we obtain 3N - 6 nontrivial eigenvectors. Each 

eigenvector represents a linear, harmonic motion of the entire protein in which each amino acid moves 
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along a unique 3-dimensional Euclidean vector. The associated eigenvalues rank the eigenvectors in 

terms of energetic accessibility, lower values corresponding to global, more easily accessible motions. 

NMA calculations allow us to computationally estimate b-factors associated with the protein 

structure, as shown in Equation 1 for the ith residue, which in turn are related to local flexibility. Higher 

predicted b-factors denote more flexible positions. Individually calculated b-factors are combined in a 

vector for a protein sequence or part thereof and called Dynamic Signature. 

B! =	∑
"!,#,$
% #	"!,#,&

% #	"!,#,'
%

%!
&'
()*   (1) 

The eigenvectors and associated eigenvalues can also be used to obtain a variable called vibrational 

entropy that can be used to compare the relative stability of two states. For example, by measuring the 

difference of vibrational entropy (ΔSvib) between a mutant and a wild type (WT), one can calculate how 

much a mutation affects the overall flexibility and stability of the mutant relative to the WT. The ΔSvib 

value predicted by ENCoM is positive when the mutation makes the protein more flexible and negative 

when the mutation makes the protein more rigid. The differences between the ΔSvib values for closed and 

open states were calculated for each mutant (ΔΔSvib = ΔSvib (open) – ΔSvib (closed)) in order to evaluate 

individual mutations according to a single score. Vibrational Entropy calculations are dependent on the 

thermodynamic b factor, that for pseudo-physical models such as ENCoM serves as a scaling factor. This 

term was optimized to fit experimental Gibbs free energy differences [38] and established as b = 1. The 

vibrational contribution of the entropic components of the free energy is calculated as described in Eq. 2 

[39] in units of J.K-1, where N is the total number of amino acids in the protein, vi is the vibrational 

frequency and KB is the Boltzmann constant. Equation 3 shows the association between eigenvalues and 

vibrational frequency. 

𝑆+!, = 𝐾- 	∑ ' .+!
/()!01

− ln	[1 −	𝑒0.+!]/&'
()*  (2) 

𝜆( =	𝑣(2    (3) 

The Najmanovich Research Group Toolkit for Elastic Networks (NRGTEN) [38], with the latest 

implementation of ENCoM, also includes a function to evaluate state occupancies by calculating 

transition probabilities between different states. A probability Pj of moving along each eigenvector j can 

be obtained using a Boltzmann distribution given its associated eigenvalue  and a scaling factor γ. λ
j
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𝑃3 =	 /*+,/.

∑ /*+#/./0
#12

  (4) 

Let's consider two conformations A and B of the same protein and the vector EA®B, which represents 

the conformational change going from conformation A to conformation B. The overlap between each 

normal mode Mj computed from conformation A and the EA®B vector is a value between 0 and 1 

describing how well that normal mode recapitulates the conformational change required to go from one 

state to the other [40]. 

𝑂4𝑬5→- , 𝑀38 = 	
7𝑬3→5	∙𝑴,7

‖𝑬3→5‖<𝑴,<
  (5) 

We can then calculate the transition probability of going from conformation A to conformation B as 

the weighted sum of the Boltzmann probability Pj of each normal mode Mj times the overlap between 

that normal mode and the conformational change EA®B. 

𝑃5→- =	∑ 𝑃3 	× 	𝑂4𝑬5→- ,𝑴38&'
3)*   (6) 

The reverse probability PB®A can be computed in the same fashion, giving an indication of which 

conformation is favored between the two. 

A simple way of computing the occupancies of these conformations from the transition probabilities 

is to use a Markov model. Each conformation is represented by a state, and the transition probabilities 

between states are computed as described above. We add a constant k to all states as the probability of 

staying in that state. Since all states must have outgoing transition probabilities that sum to 1, we 

normalize these values after the addition of k. For a two-state Markov chain representing the open and 

closed states of the Spike protein, we obtain the diagram shown in Figure 2. All transition probabilities 

are computed using ENCoM and Eq. 6. The parameters k and γ need to be optimized for the system being 

studied as they are not directly coupled to physical quantities because of the pseudo-physical, coarse-

grained nature of the ENCoM model. Once the parameters are set, there is a unique equilibrium solution 

that gives the occupancies of the two states. This approach could be easily generalized to a Markov model 

with more than two states, where the transition between any two states is computed exactly as described 

above if that transition is deemed possible. 

 

Figure 2. Two-state Markov chain of spike protein conformations 
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3. Results and Discussion 

3.1. Dynamic Signature of different Spike variants 

3.1.1. G614 and D614 dynamic comparison 

An important event in the progression of the COVID-19 pandemic was the appearance of the D614G 

variant in mid-February 2020 in Europe. The fast spread of this variant raised the possibility that this 

mutation conferred advantages relative to other forms of the virus in circulation at the time [41,42]. 

Studies revealed that the mutation has indeed greater infectivity, triggering higher viral loads [43,44]. 

Several hypotheses have emerged to explain the mechanisms behind this higher infectivity primarily 

focused on possible effects on the Furin cleavage site [30,45,46], but recently also considering possible 

important dynamic differences [44,47,48]. 

In order to test if Dynamic Signatures reveal differences between Spike variants, we analysed the 

13741 sequences of the protein available on May 08 in the COVID-19 Viral Genome Analysis Pipeline, 

enabled by data from GISAID [49,50]. The mutant Spike proteins harboring mutations (Table S1) were 

modelled in the open and closed states. Dynamic Signatures were calculated for each mutant in both 

states and clustered (Figure 3). Mutations in positions that had no occupancy in the original templates 

used for the open and closed states (positions 5, 8, and 1263) were ignored. 

 

 

 

Figure 3. Dynamic Signature clustering for the closed (A) and open (B) state structures for WT and 22 mutants from 

GISAID (Table S1). 
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Analysis of the effect of mutations on the Dynamic Signature show that the D614G mutation 

produces similar dynamic patterns largely independent of the other mutations accumulated, and dynamic 

patterns that are distinct from that of the wild type and other mutants on both the open and closed states. 

The dynamic characteristics of D614G are very specific and cannot be obtained with random mutations 

(Figure S1, Table S2). Performing the clustering using segments of the Dynamic Signature representing 

lengths of 100 amino acids identifies a section of the Spike protein from around position 250 to around 

position 750, responsible for the unique characteristics that the mutation D614G confers to the dynamics 

of the Spike protein (data not shown). This section of Spike includes part of the N-Terminal Domain 

(NTD) and all of the RBD domain. 

When checking the difference between the Dynamic Signatures of the wild type D614 and the mutant 

G614 we observe that for the closed conformation, the pattern tends towards negative values, indicating 

that this mutation makes the closed state more flexible, especially around the position of the mutation. 

On the other hand, for the open B chain conformation the pattern is positive for the open RBD, the same 

chain NTD and the adjacent chain NTD, indicating that this mutation makes these areas of the open 

conformation more rigid (Figure 4). 

 

 

Figure 4. Effects of the D614G mutation on the Dynamic Signature of the closed (purple) and open B chain RBD (blue) 
structures, measured by the difference between the calculated b-factors of D614 and G614. Chains are represented in different 

colours and the position of the mutation is marked in yellow, using the same colours as for different regions of the structure 

as represented in the colours of the structures. The coordinate axis counts residues linearly through the three Spike subunits. 
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This result led us to hypothesize that a more flexible closed state would favor the opening of Spike 

and that a more rigid open state would disfavor its closing, thus shifting the conformational equilibrium 

towards the open state and favouring interaction with ACE2, leading to increased cell entry. Mutating 

position 614 to every other amino acid, we observe a correlation in the closed state between residue size 

and flexibility. Namely, smaller amino acids tend to make the closed state more flexible. However, we 

do not observe the opposite effect on the open state. Mutation of D614 to Glutamine, which is similar to 

Aspartate, barely shows any effect. Nevertheless, we can see that other amino acids have a similar effect 

as Glycine, such as Proline and Threonine (Figure S2). 

3.1.2. Comparison of the Dynamic Signatures of Spike from SARS-CoV and SARS-CoV-2 

It has been previously observed that RBD flexibility in SARS-CoV influences binding to ACE2 and 

facilitates fusion with host cells [51]. Thus, considering the lesser infectivity of SARS-CoV relative to 

SARS-CoV-2 and our aforementioned results for the D614G mutation, we expected the SARS-CoV 

Spike to be more rigid in the closed state and more flexible in the open state relative to Spike from SARS-

CoV-2. This is indeed the case (Figure 5). The dynamic signature values of SARS-CoV are smaller than 

those of SARS-CoV-2 in several areas throughout the closed structure, indicating that when in the closed 

state, the SARS-CoV Spike protein is more rigid. For the open state we can see that SARS-CoV open 

RBD and adjacent NTD are significantly more flexible than for SARS-CoV-2 Spike. 
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Figure 5. Comparison between SARS-CoV-2 and SARS-CoV. Dynamic Signature difference of the closed (purple) and 

open B chain RBD (blue) between aligned residues of the Spike protein from SARS-CoV-2 and SARS-CoV, with SARS-

CoV chains represented in the top bar and equivalent colors in the structures and SARS-CoV-2 chains represented in the bar 

just below. The coordinate axis counts residues linearly through the three Spike subunits. 

3.2.  Vibrational entropy  

It is possible to combine the trend of a Dynamic Signature into a single value to represent the overall 

flexibility of any given mutation and compare it to the WT. This can be achieved with ΔSvib, calculated 

with Eq. 2 for each state (see materials and methods). For any given state, positive ΔSvib values represent 

mutants that relative to the wild type make the protein more rigid, whereas negative values of ΔSvib 

describe mutations that cause the protein to be more flexible in the given state relative to the wild type. 

In the case of the mutation D614G, we obtain ΔSvib (open) = 5.26x10-2 J.K-1 and ΔSvib (closed) = -9.27x10-2 

J.K-1 with a ΔΔSvib (calculated as ΔSvib (open) – ΔSvib (closed)) of 1.45x10-1 J.K-1. 

We generated in silico the 19 possible single mutations in each position from residue 14 to residue 

913 and calculated ΔSvib (open), ΔSvib (closed) and ΔΔSvib. Other positions were ignored due to uncertainties 

in modelling or the fact that they are not expected to have a pronounced effect on dynamic [23]. It should 

be noted that Spike cannot accommodate the vast majority of such single mutations, particularly in its 

core as these would lead to unstable or misfolded conformations. However, those that occur near the 

surface are more likely to represent single residue variations of the Spike protein that lead to a stable, 

correctly folded protein. Therefore, the stability of specific mutations highlighted in this work, unless 

otherwise stated (such as those already observed experimentally or within the RBD domain as stated 

below), needs to be validated experimentally. 

The heatmap in Figure 6A shows ΔSvib values associated with mutations on the closed 

conformational state (left) and open conformational state (right). Lighter colors represent high ΔSvib 

values, meaning that the specific mutant is more flexible than the WT, and darker colors represent low 

ΔSvib values, meaning that the specific mutant is more rigid than the WT. The second heatmap (Figure 

6B) shows ΔΔSvib values, or Difference Scores, highlighting positions and specific mutations with great 

contrast between their effect on the open and closed states. In this representation, blue mutants are more 

rigid in the closed state and more flexible in the open state, therefore candidates for less infectious 

mutants, and red mutants are more flexible when closed and more rigid when open, candidates for more 

infectious mutants. 
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Variant ΔΔSvib 
Predicted Occupancy 

Open state Closed State Difference (Open – Closed) 

N501W 0.372 62.705% 37.295% 25.410% 

G504I 0.349 40.491% 59.509% -19.019% 

G416E 0.314 30.111% 69.889% -39.778% 

G416Y 0.403 28.478% 71.522% -43.045% 

R403S 0.323 26.794% 73.206% -46.412% 

D467W 0.431 26.379% 73.621% -47.243% 

G252W 0.383 26.302% 73.698% -47.396% 

G404W 0.387 26.302% 73.698% -47.396% 

G252Q 0.394 26.295% 73.705% -47.410% 

G252H 0.353 26.268% 73.732% -47.464% 

G252E 0.365 26.224% 73.776% -47.551% 

K417G 0.315 26.179% 73.821% -47.641% 

G252C 0.401 26.164% 73.836% -47.672% 

G252S 0.447 26.159% 73.841% -47.682% 

G252T 0.440 26.157% 73.843% -47.686% 

G252D 0.390 26.149% 73.851% -47.702% 

G413M -0.521 26.147% 73.853% -47.705% 

G252M 0.481 26.134% 73.866% -47.731% 

G252P 0.403 26.120% 73.880% -47.759% 

K417D 0.518 26.114% 73.886% -47.773% 

D467Y 0.399 26.106% 73.894% -47.788% 

S161F 0.395 26.056% 73.944% -47.888% 

K417P 0.502 26.035% 73.965% -47.930% 

S161Y 0.303 25.980% 74.020% -48.040% 

K417E 0.494 25.971% 74.029% -48.058% 

D467P 0.308 25.954% 74.046% -48.093% 

R34Y 0.380 25.908% 74.092% -48.184% 

I468T 0.350 25.907% 74.093% -48.186% 

R355F -0.697 25.889% 74.111% -48.222% 

S161I 0.391 25.855% 74.145% -48.290% 

G72W 0.404 25.851% 74.149% -48.298% 

T73F 0.376 25.844% 74.156% -48.313% 

Q14C 0.312 25.839% 74.161% -48.322% 

WT 0.000 25.837% 74.163% -48.327% 

 
Table 1. Putative mutations, their associated ΔΔSvib (ΔSvib (open) – ΔSvib (close), in units of J.K-1) and predicted 

occupancies for the open and closed states for the mutants with predicted open-state occupancy higher than that 
of the wild type. Predicted occupancy values are shown for the open conformation, the closed conformation, and 

the difference between the two (closed – open). The data for the remaining mutants with occupancy below that 

of the wild type but ΔΔSvib>0.3 (red) as well as those with the lowest predicted ΔΔSvib values (blue) is presented 

in Table S3.  
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In Figure 7 we map ΔΔSvib values (Figure 6B) on the structure of Spike, colored according to the 

median value for each position with the same color scheme as the heatmap. From the 17081 single 

mutations considered, we show the top 64 mutants with with ΔΔSvib>0.3 (Tables 1 and S3) as well as the 

bottom 20 in terms of ΔΔSvib values (Table S3). The mutants with predicted open state occupancy higher 

than that of the wild type are presented in Table 1. The Dynamic Signature comparison for 3 of those 

most infectious candidates (Figure 8A) and 3 of the least infectious candidates (Figure 8B) shows some 

of the patterns that could lead to a greater or lesser effect on infectivity. For instance, in Figure 8A we 

can see that high scores can come from a large flexibility of the closed state, a very large rigidity of the 

open state, or have the contribution of both. We can also observe that these effects can be different in 

each chain and can affect more the NTD, the RBD, or both. Finally, these single mutants also show how 

a point mutation can have widespread impacts across the protein. 
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Figure 6. Heatmaps representing the values of ΔSvib for the closed structure (A, left-hand section) and for the open 

structure (A, right-hand section), and the values of ΔΔSvib (B) for every possible mutant in Spike from positions 14 to 

913. Each column represents one of the 20 amino acids (repeated in the left heatmap). Notice that for each position 

(represented in a row), one particular column represents the value of the WT amino acid found at that position. Higher 

values of ΔSvib are represented in yellow and lower values in dark purple. Higher values of ΔΔSvib are represented in 

red and lower values in blue. The domain structure of Spike is represented in (C) for reference purposes. 
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Figure 7. ΔΔSvib scores represented in the structure of Spike from two angles according to the median value for each position 

and the same color scheme as in the Difference Score Heatmap (Fig 6B).  

 

Figure 8. Dynamic Signature differences for three mutations among the top ΔΔSvib scores (A) and bottom 

ΔΔSvib scores (B) for closed (purple) and open (blue) B chain RBD structures. The coordinate axis counts 

residues linearly through the three Spike subunits. 

3.3.  Conformational state occupancies 

We calculated forward and reverse transition probabilities between the open and closed states (Eq. 4, 

5 & 6) from the calculated normal modes and used the Markov model described in Materials and Methods 

to calculate the equilibrium occupancies for each state in wild type and mutant Spike proteins. It is 
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unclear if any additional conformational states other than those with either all three RBD domains in the 

closed state or only one RBD open state are biologically relevant. Specifically, Yurkovetskiy et al. [44] 

observed an occupancy for states with two or three RBD domains in the open conformation, but these 

were not observed by Gobeil et al. [30] and Xiong et al. [34] or taken into consideration in several other 

structural studies [20-24]. As such, we employ the two-state model shown in Figure 2, with one state 

representing all three RBD domains closed and the second state representing one RBD open. We 

calculated the robustness of this Markov occupancy model utilizing 60 different reconstructed structures, 

varying the positions of loops and with minor differences in the core structure, representing the closed 

state and the open state for each chain. The results are equivalent no matter what specific structural 

template is used to represent each of the two states above.  

The Markov model calculation of occupancies requires two parameters (see Materials and Methods) 

that were optimized based on experimental data for six Spike variants. These variants were: S-

GSAS/D614, an engineered Spike with the sequence GSAS in the furin cleavage site and no 614 

mutation; S-GSAS/G614, with the same furin site modifications and the D614G mutation [30]; S-R, the 

Spike protein with original furin site RRAR; S-R/x2, with added S383C, D985C mutations inducing a 

disulfide bond; S-R/PP, engineered with two prolines in positions 986 and 987; S-R/PP/x1, in which 

from the double prolines sequence the mutations G413C, V987C were performed to induce a disulfide 

bond [34]. It is worth stressing that all 6 variants used to calibrate the two parameters affecting the 

occupancy were modelled on the same open and closed state conformations. All differences in observed 

occupancies and the agreement with experimental occupancy data came about as a consequence of the 

effect of the mutations on the normal modes and derived transition probabilities and not as a result of 

structural differences between variants. We obtained a good fitting to the experimental results with k and 

g of 0.5 and 0.001, respectively (Pearson correlation = 0.89, p-value = 1.94x10-2). Predicted occupancies 

of the open and closed states for each of the six variants above, as well as the experimental data, are 

presented in Table 2.  

Variant 
Experimental Occupancy Predicted Occupancy 

Open  Closed  difference Open  Closed  difference 

S-GSAS/D614 25.160% 74.840% -49.680% 25.781% 74.219% -48.439% 

S-GSAS/G614 43.938% 56.062% -12.123% 25.812% 74.188% -48.376% 

S-R/x2  0.000% 100.000% -100.000% 25.578% 74.422% -48.843% 

S-R/PP/x1  0.000% 100.000% -100.000% 25.532% 74.468% -48.935% 

S-R 18.646% 81.354% -62.707% 25.599% 74.401% -48.801% 

S-R/PP  77.967% 22.033% 55.935% 25.848% 74.152% -48.305% 

Table 2. Experimental and predicted occupancies for the open and closed states and their difference for multiple SARS-CoV-

2 variants. Experimental values obtained from Gobeil et al. [30] and Xiong et al. [34]. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2020.12.16.423118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.423118
http://creativecommons.org/licenses/by/4.0/


 18 

We utilized this data to calculate occupancy differences for each variant (Figure 9). The range of 

variation of our predicted occupancies is small compared to that of experimental values. We believe that 

given the limitations of our coarse-grained model as well as additional phenomena that ultimately affect 

occupancy, our predictions reflect only a fraction of the myriad of factors contributing to the occupancy. 

Nonetheless, our predictions correctly capture the pattern of relative variations of occupancy observed 

in the experimental data. To ensure that the calculated correlation is not due to chance, we simulated 

random sets of occupancies for the 6 sequence variants and calculated simulated correlations for the 110 

different combinations of k and g to determine if the observed correlations represent an actual signal in 

the data or could be randomly obtained with different values for the parameters k and g. We observed a 

marked shift with higher correlations for the data representing our predicted occupancies when compared 

to the gaussian noise data (Figure S3), suggesting that the predicted occupancies are not due to chance. 

 

Figure 9. Difference in the occupancies for the open and the closed states (open – closed) for six variants of the Spike 

protein. Experimental values are represented on the Y-axis and the predicted values in the scale on the X-axis. Predicted 

values for the parameters k = 0.5, g = 0.001. Represented linear fit of Experimental = 192.011*Predicted + 92.9013. 

Errors on the experimental measurements are not known. 
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The computational resources needed for the calculation of occupancies for all 8250 mutations with 

ΔΔSvib>0 is beyond our current capabilities. We set a threshold of ΔΔSvib>0.3 to select candidates for the 

calculation of occupancies. This threshold corresponds to 64 mutations (Table 1, in red). Using the 

parameters k and g obtained above, we calculated occupancies for these 64 mutants as well as the 20 

mutants with lowest ΔΔSvib values (Table 1, in blue). In Figure 10A we show the difference in occupancy 

between the open and closed states using a non-linear scale adapted to better show the results around the 

wild type occupancy. Whereas ΔΔSvib values for particular mutations may hint at a more flexible closed 

state and more rigid open state, this is a global measure that may not reflect the necessary pattern of 

flexibility across the structure that leads to effective transition probabilities between the open and closed 

states. Yet, for the most part, ΔΔSvib can predict the shifts in occupancy, showing a clear distinction 

between the 64 mutants predicted using ΔΔSvib as shifting occupancy towards the open state and the 20 

mutants predicted to shift the equilibrium towards the closed state (p-value=2.04x10-6). Figure 10B 

shows the location in the structure of the mutants in Table 1. We can see that the least infectious 

candidates (blue) are positioned in the interfaces between NTD and RBD domains, while the most 

infectious candidates, especially the ones validated by the occupancy prediction (dark red), are more 

concentrated in the interfaces between different RBD domains. 
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Figure 10. (A) Difference in the occupancies for the open and the closed states for the top 64 mutants with ΔΔSvib>0.3 (red) 

and the 20 mutants with lower ΔΔSvib scores (blue). Occupancy difference for the WT is represented by the dashed green line. 

Y-axis based on the transformation of a symmetric logarithmic scale. (B) Two visualizations of the 6VYB structure 

highlighting the mutations. The bottom 20 mutant positions are marked in two shades of blue, with the darker shade indicating 
positions in which at least one mutant had an (open – closed) occupancy value smaller than wild type. The top 64 mutant 

positions are marked in two shades of red, with the darker shade indicating positions in which at least one mutant had an 

(open – closed) occupancy value higher than wild type. 
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Residue G252 stands out as capable of accommodating a large number of mutations (C, D, E, H, M, 

P, Q, S, T, W) that shift the occupancy in favour of the open state. The fact that variants in this position 

do not seem to be prevalent in outbreaks to date, points to the possibility that this position may be under 

additional functional constraints that prevent the emergence of variants. A number of other Glycine 

residues also could accept mutations that we predict to increase the occupancy of the open state: G72W; 

G404W; G413M; G416E,W; and G404I. In fact, three of the top four mutations are mutations on Glycine. 

A number of other potential mutations are adjacent to Glycine residues above. Namely, R403S and 

K417D,E,G,P. Additionally, D467P,W and I468T are also positions that are adjacent to others that can 

accommodate mutations that may lead to a conformational shift favouring the open state. The mutation 

that favours the open state the most in our calculations is N501W with ΔSvib (open) = 6.02x10-1 J.K-1 and 

ΔSvib (closed) = 2.30x10-1 J.K-1 and a resulting ΔΔSvib value of 3.72x10-1 J.K-1 leading to occupancies 

compared to those of the wild type (in parenthesis) of 62.7% (25.8%) and 37.3% (74.2%) for the open 

and closed states respectively. It is important to stress, as discussed in methods, that the calculations are 

performed using structures containing a modified Furin recognition site and prolines in positions 986 and 

987. Furthermore, the contribution of vibrational entropy changes is one among potentially several 

effects whose overall importance remains to be determined. Therefore, relative changes in occupancy are 

relevant whereas the specific values are less so. 

The COG-UK consortium (https://www.cogconsortium.uk/about/) monitors the appearance and 

spread of new strains of SARS-CoV-2. COG-UK recently detected a strain containing the mutation 

N501Y that has been observed to be spreading rapidly at the time of writing. We believe that shifts in 

occupancy may be in part responsible for its emergence. According to our calculations, the N501Y 

mutant shows ΔSvib (open) = -1.60x10-2 J.K-1 and ΔSvib (closed) = 2.37x10-1 J.K-1, with ΔΔSvib = 2.53x10-1 

J.K-1. The predicted occupancies for the N501Y mutant compared to those of the wild type (in 

parenthesis) are 54.3% (25.8%) and 45.7% (74.2%) for the open and closed states, respectively. 

Therefore, the N501Y mutant shows a marked increase of the occupancy of the open state relative to 

other mutations. Additionally, this mutation was shown to also increase binding affinity to the ACE2 

receptor relative to the wild type with a Δlog10(KD,app) of 0.24 [52]. Therefore, we predict that N501Y 

has a strong potential to contribute to increased transmission. The calculations above were performed in 

the context of D614. However, the double mutant representing the N501Y mutation in the context of 

G614 also shows an increase in the occupancy of the open state to 35.06%. The recently observed A222V 

mutation on the other hand [53], does not show in our analysis any propensity of altering the occupancy 

of states with a negative ΔΔSvib of -1.64x10-2 J.K-1. Predicted occupancies for A222 and V222 are nearly 

identical either in the context of D614 (WT) or the mutant containing G614. 
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Notice that N501Y has a ΔΔSvib value of 2.53x10-1 J.K-1 that is slightly below the 3.00x10-1 J.K-1 

threshold, suggesting that there may be many other mutations with ΔΔSvib values below our set threshold 

that turn out to have augmented occupancies for the open state relative to the wild type. 

D614G shows that changes in the occupancy of conformational states can impact infectivity despite 

no changes or even weaker binding affinities [44]. A recent study [52] on binding and expression of 

Spike mutations within the RBD domain (positions 331 to 531) shows that several (but not all, see below) 

of the mutations that we predicted to have increased occupancy of the open state are associated with a 

decrease of binding affinity with ACE2. Incidentally, the data also shows that the mutations in Table 1 

within the RBD produce stable and properly folded Spike proteins. As shown for D614G, infection does 

not rely on binding affinity alone, and even a strain with higher dissociation rates from ACE2 can bring 

about fitness advantages.  

The mutation N501W is predicted to have the largest effect in augmenting the occupancy of the open 

state relative to the wild type. This mutation is associated with stronger binding to ACE2 

(Δlog10(KD,app)=0.11) [52] relative to the wild type Spike (but lower than N501Y). Furthermore, N501W 

appears to have increased expression relative to the wild type with a Δlog(MFI) of 0.1 compared to 

decrease in relative expression of -0.14 for N501Y [52]. The authors note that changes in expression 

correlate with folding stability [52]. However, even with a Δlog(MFI) of -0.14, N501Y is viable and 

spreading. Therefore, N501W might be even more stable and infective. 

We consider all mutations with increased predicted occupancy of the open state in Table 1 as good 

candidates for further experimental validation to better understand the role of binding and dynamics of 

Spike and their role in SARS-CoV-2 infectivity. Furthermore, we suggest that their appearance in 

outbreaks should be closely monitored. 

3.4.  SARS-CoV-2 Variants B.1.1.7 and 501.V2 

The mutation N501Y above appears in both the B.1.1.7 variant first observed in the UK [54] as well 

as the 501.V2 variant first observed in South Africa [55] that rapidly spreading around the globe. These 

two strains contain additional mutations in Spike. Namely B.1.1.7 contains N501Y, A570D, D614G, 

P681H, T716I, S982A, D1118H and deletions on positions 69, 70 and 144. As the number of normal 

modes is related to the number of amino acids, we are unable to model deletions while still making 

comparisons with the wild type strain given the nature of the quantities calculated (Eq. 2 and 6). 

Therefore, the deletions of three residues at positions 69,70 and 144 that are present in B.1.1.7 were not 

modelled here. 501.V2 includes the mutations L18F, D80A, D215G, R246I, K417N, E484K, N501Y, 
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D614G, A701V. The dynamic signatures for both B.1.1.7 as well as 501.V2 show a strong rigidification 

of the open state and added flexibility of the closed state (Supplementary Figures S4 and S5 respectively) 

leading to ΔΔSvib values of 5.30x10-1 J.K-1 and 6.45x10-1 J.K-1 and open state occupancies of 36.2% and 

35.8%, for B.1.1.7 and 501.V2 respectively. Both variants show an increase in occupancy of 

approximately 40% relative to the wild type (25.8%). Despite our preference of modelling the smaller 

number of mutations and therefore using the engineered structure containing the modified Furin binding 

site and proline modification, we also modelled B.1.1.7 (except the deletions) and 501.V2 using the 

original sequence of Spike. In that case we obtain 33.0% and 33.6% occupancy for B.1.1.7 and 501.V2, 

respectively. 

3.5.  Polyclonal human serum antibody escape 

Recently the Bloom group utilised human serum antibodies from subjects that recovered from 

COVID-19 and tested mutations in the RBD for their capacity to escape recognition [56], i.e. mutations 

leading to weaker binding to polyclonal serum antibodies. The presented patterns of escape vary between 

subjects but a number of positions and specific mutations at those positions are relevant to the present 

study. Positions Y369, N448, F456, Y473 and F486 are noteworthy as specific mutations at these 

locations not only allow varying levels of escape in particular subjects [56] but also lead to positive 

values of ΔΔSvib above a threshold of 0.1 J.K-1 (Table S4). Among these, the mutations N448G; Y473 

mutations to A, Q and T; and lastly, F486E all show occupancy of the open state modestly higher than 

that of the wild type (Table S4). The mutations noted, by virtue of potentially increasing infectivity as 

well as displaying varying levels of escape to immune responses, may give the virus an evolutionary 

edge and therefore should be closely monitored.  

3.6.  Data Availability 

Raw data and structures used to build the images presented here are available in a Github repository 

(https://github.com/nataliateruel/data_Spike). All vibrational entropy results are available for 

visualisation and analysis through a link to the dms-view open-access tool, available on GitHub [57] 

through the same URL above. On dms-view, it is possible to visualise the effects of different mutations 

for each residue of the Spike protein and visualise these on the 3D structure of Spike. Each site has 20 

ΔΔSvib values, one of them being zero (corresponding to the amino acid found in the wild type). The 

option max will show the top ΔΔSvib score for each position. Therefore, it shows which mutation for that 

specific position represents the candidate with the highest predicted infectivity as defined here in terms 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2020.12.16.423118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.423118
http://creativecommons.org/licenses/by/4.0/


 24 

of a propensity to higher occupancy of the open state. The option min will show the lowest score for each 

position and the mutation associated with the least predicted infectious candidate. The option median 

returns the median score, presenting a general trend for any given position, and var shows the variance 

between the results for each position, highlighting sites in which mutations to different residues lead to 

a broader range of ΔΔSvib values. Furthermore, for the mutations for which occupancy was calculated, 

the data can be accessed through the same menu. As new occupancy data is calculated, it will be added 

to this resource. Readers interested on the occupancy of particular mutations not yet available are invited 

to contact the authors via email or through the GitHub repository. When selecting each specific point on 

the first panel, it is possible to access all ΔΔSvib values on the second panel and see the highlighted 

position in 3D on the structural representation.  

The Najmanovich Research Group Toolkit for Elastic Networks (NRGTEN) including the latest ENCoM 

implementation is freely available at (https://github.com/gregorpatof/nrgten_package). 

4. Conclusions 

SARS-CoV-2 mutations are still arising and spreading around the world. The A222V mutation, 

reportedly responsible for many infections, emerged in Spain during the Summer of 2020 and since then 

has spread to neighbor countries [53]; In Denmark, new strains related to SARS-CoV-2 transmission in 

mink farms were confirmed in early October by the WHO and shown to be caused by specific mutations 

not previously observed with the novelty of back-and-forth transmission between minks and humans 

[58]. A new strain containing N501Y first appeared in the UK and is now on the rise worldwide at the 

time of writing. Such occurrences point to the possibility that new mutations in SARS-CoV-2 may bring 

about more infectious strains. 

Using the methods described in this paper, it is possible to predict potential variants that might have 

an advantage over the wild type virus insofar as these are the result of changes in occupancy of states 

and with the limitations of the simplified coarse-grained model employed here. In our analyses, flexibility 

properties and conformational state occupancy probabilities contribute to the infectivity of a SARS-CoV-

2. Our results explain the behaviour of the D614G strain, the increased infectivity of SARS-CoV-2 

relative to SARS-CoV as well as offers a possible explanation for the rise of new strains such as those 

harboring the N501Y mutation. 

The results we present on SARS-CoV-2 Spike mutations have several limitations. First and foremost, 

some of the in silico mutation discussed may not be thermodynamically stable, may affect expression, 

cleavage, or binding to ACE2, and our approach does not consider that Spike is, in fact, a glycoprotein 
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and the sugar molecules may have an effect on dynamics. However, the remarkable agreement between 

our model and experimental observations shows that the simplified model of Spike and the coarse-

grained methods used here allow us to calculate dynamic properties of Spike that are relevant to 

understand infection and epidemiological behavior. It is important to keep in mind that all of the 

mutations that we discuss in Table 1 that lay within positions 331 and 531 within the RBD domain were 

already experimentally validated and are viable [52]. However, we highlight the need for experimental 

validation of our predictions particularly for those candidates that we believe would help elucidate the 

extent of the effect of the conformational dynamics of Spike on infectivity. Beyond in vitro biophysical 

studies, experimental alternatives exist such as using pseudo-type viruses or virus-like-particles that 

would not require studying gain-of-function mutations using intact viruses. Alternatively, loss-of-

function mutations can be created with intact viruses and compared to the wild type SARS-CoV-2 virus 

to validate the role of dynamics on infectivity. 

To the best of our knowledge, this is the first time that a Normal Mode Analysis method is used to 

model the effect of mutations on the occupancy of conformational states opening a new opportunity in 

computational biophysics to create dynamic models of transitions between conformational states of 

proteins based on physical properties and sensitive to sequence variations. We hope that our results help 

public health surveillance programs decide on the risk posed by new strains, contribute to inform the 

research community in understanding SARS-CoV-2 infection mechanisms and open new possibilities in 

computational biophysics to study protein dynamics. 
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