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Abstract

We introduce a deep neural network for

automated sarcasm detection. Recent

work has emphasized the need for mod-

els to capitalize on contextual features, be-

yond lexical and syntactic cues present in

utterances. For example, different speak-

ers will tend to employ sarcasm regard-

ing different subjects and, thus, sarcasm

detection models ought to encode such

speaker information. Current methods

have achieved this by way of laborious

feature engineering. By contrast, we pro-

pose to automatically learn and then ex-

ploit user embeddings, to be used in con-

cert with lexical signals to recognize sar-

casm. Our approach does not require elab-

orate feature engineering (and concomi-

tant data scraping); fitting user embed-

dings requires only the text from their

previous posts. The experimental results

show that the our model outperforms a

state-of-the-art approach leveraging an ex-

tensive set of carefully crafted features.

1 Introduction

Existing social media analysis systems are ham-

pered by their inability to accurately detect and in-

terpret figurative language. This is particularly rel-

evant in domains like the social sciences and poli-

tics, in which the use of figurative communication

devices such as verbal irony (roughly, sarcasm) is

common. Sarcasm is often used by individuals to

express opinions on complex matters and regard-

ing specific targets (Carvalho et al., 2009).

Early computational models for verbal irony

and sarcasm detection tended to rely on shallow

methods exploiting conditional token count reg-

ularities. But lexical clues alone are insufficient

Figure 1: An illustrative tweet.

to discern ironic intent. Appreciating the con-

text of utterances is critical for this; even for hu-

mans (Wallace et al., 2014). Indeed, the exact

same sentence can be interpreted as literal or sar-

castic, depending on the speaker. Consider the

sarcastic tweet in Figure 1 (ignoring for the mo-

ment the attached #sarcasm hashtag). Without

knowing the author’s political leanings, it would

be difficult to conclude with certainty whether the

remark was intended sarcastically or in earnest.

Recent work in sarcasm detection on social me-

dia has tried to incorporate contextual information

by exploiting the preceding messages of a user, to

e.g., detect contrasts in sentiments expressed to-

wards named entities (Khattri et al., 2015), infer

behavioural traits (Rajadesingan et al., 2015) and

capture the relationship between authors and the

audience (Bamman and Smith, 2015). However,

all of these approaches require the design and im-

plementation of complex features that explicitly

encode the content and (relevant) context of mes-

sages to be classified. This feature engineering

is labor intensive, and depends on external tools

and resources. Therefore, deploying such systems

in practice is expensive, time-consuming and un-

wieldy.

We propose a novel approach to sarcasm detec-

tion on social media that does not require exten-

sive manual feature engineering. Instead, we de-

velop a neural model that learns to represent and

exploit embeddings of both content and context.

For the former, we induce vector lexical repre-
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sentations via a convolutional layer; for the latter,

our model learns user embeddings. Inference con-

cerning whether an utterance (tweet) was intended

ironically (or not) is then modelled as a joint func-

tion of lexical representations and corresponding

author embeddings.

The main contributions of this paper are as fol-

lows. (i) We propose a novel convolutional neu-

ral network based model that explicitly learns and

exploits user embeddings in conjunction with fea-

tures derived from utterances. (ii) We show that

this model outperforms the strong baseline re-

cently proposed by Bamman and Smith (2015) by

more than 2% in absolute accuracy, while obviat-

ing the need to manually engineer features. (iii)

We show that the learned user embeddings can

capture relevant user attributes.

2 Related Work

Verbal irony is a rhetorical device in which speak-

ers say something other than, and often opposite

to, what they actually mean.1 Sarcasm may be

viewed as a special case of irony, where the posi-

tive literal meaning is perceived as an indirect in-

sult (Dews et al., 1995).

Most of the previously proposed computational

models to detect irony and sarcasm have used fea-

tures similar to those used in sentiment analy-

sis. Carvalho et al. (2009) analyzed comments

posted by users on a Portuguese online newspa-

per and found that oral and gestural cues indicate

irony. These included: emoticons, onomatopoeic

expressions for laughter, heavy punctuation, quo-

tation marks and positive interjections. Others

have used text classifiers with features based on

word and character n-grams, sentiment lexicons,

surface patterns and textual markers (Davidov et

al., 2010; González-Ibánez et al., 2011; Reyes et

al., 2013; Lukin and Walker, 2013). Elsewhere,

Barbieri and Saggion (2014) derived new word-

frequency based features to detect irony, e.g., com-

binations of frequent and rare words, ambiguous

words, ‘spoken style’ words combined with ‘writ-

ten style’ words and intensity of adjectives. Riloff

et al. (2013) demonstrated that one may exploit

the apparent expression of contrasting sentiment

in the same utterance as a marker of verbal irony.

The aforementioned approaches rely predomi-

nantly on features intrinsic to texts, but these will

1Like other forms of subjective expression, irony and sar-
casm are difficult to define precisely.

often be insufficient to infer figurative meaning:

context is needed. There have been some recent

attempts to exploit contextual information, e.g.

Khattri et al. (2015) extended the notion of con-

trasting sentiments beyond the textual content at

hand. In particular, they analyzed previous posts

to estimate the author’s prior sentiment towards

specific targets (i.e., entities). A tweet is then pre-

dicted to be sarcastic if it expresses a sentiment

about an entity that contradicts the author’s (esti-

mated) prior sentiment regarding the same.

Rajadesingan et al. (2015) built a system based

on theories of sarcasm expression from psychol-

ogy and behavioral sciences. To operationalize

such theories, they used several linguistic tools

and resources (e.g. lexicons, sentiment classifiers

and a PoS tagger), in addition to user profile in-

formation and previous posts, to model a range

of behavioural aspects (e.g., mood, writing style).

Wallace et al. (2015) developed an approach for

classifying posts on reddit2 as sarcastic or literal,

based in part on the interaction between the spe-

cific sub-reddit to which a post was made, the

entities mentioned, and the (apparent) sentiment

expressed. For example, if a post in the (polit-

ically) conservative sub-reddit mentions Obama,

it is more likely to have been intended ironically

than posts mentioning Obama in the progressive

sub-reddit. But this approach is limited because it

relies on the unique sub-reddit structure. Bamman

and Smith (2015) proposed an approach that relied

on an extensive, rich set of features capturing vari-

ous contextual information about authors of tweets

and the audience (in addition to lexical cues). We

review these at length in Section 5.1.

A major downside of these and related ap-

proaches, however, is the amount of manual ef-

fort required to derive these feature sets. A pri-

mary goal of this work is to explore whether neural

models can effectively learn these rich contextual-

izing features, thus obviating the need to manually

craft them. In particular, the model we propose

similarly aims to combine lexical clues with extra-

linguistic information. Unlike prior work, how-

ever, our model attempts to automatically induce

representations for the content and the author of a

message that are predictive of sarcasm.

2http://reddit.com is a social news aggregation
site comprising specific topical sub-reddits.
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3 Learning User Embeddings

Our goal is to learn representations (vectors) that

encode latent aspects of users and capture ho-

mophily, by projecting similar users into nearby

regions of the embedding space. We hypothe-

size that such representations will naturally cap-

ture some of the signals that have been described

in the literature as important indicators of sarcasm,

such as contrasts between what someone believes

and what they have ostensibly expressed (Camp-

bell and Katz, 2012) or Kreuz (1996) principle of

inferability, stating that sarcasm requires a com-

mon ground between parties to be understood.

To induce the user embeddings, we adopt an ap-

proach similar to that described in the preliminary

work of Li et al. (2015). In particular, we capture

relations between users and the content they pro-

duce by optimizing the conditional probability of

texts, given their authors (or, more precisely, given

the vector representations of their authors). This

method is akin to Le and Mikolov (2014)’s Para-

graph Vector model, which jointly estimates em-

beddings for words and paragraphs by learning to

predict the occurrence of a word w within a para-

graph p conditioned on the (learned) representa-

tion for p.

Given a sentence S = {w1, . . . , wN} where wi

denotes a word drawn from a vocabulary V , we

aim to maximize the following probability:

P (S|userj) =
∑

wi∈S

log P (wi|uj)

+
∑

wi∈S

∑

wk∈C(wi)

log P (wi|ek)
(1)

Where C(wi) denotes the set of words in a pre-

specified window around word wi, ek ∈ R
d and

uj ∈ R
d denote the embeddings of word k and

user j, respectively. This objective function en-

codes the notion that the occurrence of a word w,

depends both on the author of S and it’s neigh-

bouring words.

The conditional probabilities in Equation 1 can

be estimated with log-linear models of the form:

P (wi|x) =
exp(Wi · x + bi)

∑Y
k=1 exp(Wk · x + bk)

(2)

Where x denotes a feature vector, Wk and bk are

the weight vectors and bias for class k. In our

case, we treat words as classes to be predicted.

Calculating the denominator thus requires sum-

ming over all of the words in the (large) vocabu-

lary, an expensive operation. To avoid this com-

putational bottleneck, we approximate the term

P (wi|ek) with Morin and Bengio (2005) Hierar-

chical Softmax.3

To learn meaningful user embeddings, we seek

representations that are predictive of individual

word-usage patterns. In light of this motiva-

tion, we approximate P (wi|uj) via the following

hinge-loss objective which we aim to minimize:

L(wi,userj) =
∑

wl∈V,wl 6∈S

max(0, 1 − ei · uj + el · uj)

(3)

Here, each wl (and corresponding embedding, el)

is a negative example, i.e., a word not in the sen-

tence under consideration, which was authored by

user j. The intuition is that in the aggregate, such

words are less likely to be employed by user j than

words observed in sentences she has authored.

Thus minimizing this objective attempts to induce

a representation that is discriminative with respect

to word usage.

In practice, V will be very large and hence we

approximate the objective via negative sampling, a

variant of Noise Contrastive Estimation. The idea

is to approximate the objective function in a binary

classification task by learning to discriminate be-

tween observed positive examples (sampled from

the true distribution) and pseudo-negative exam-

ples (sampled from a large space of predominantly

negative instances). Intuitively, this shifts prob-

ability mass to plausible observations. See Dyer

(2014) for notes on Negative Sampling and Noise

Contrastive Estimation.

Previous work by Collobert et al. (2011)

showed that this approach works well in represen-

tation learning tasks when a sufficient amount of

training data is available . However, we have ac-

cess to only a limited amount of text for each user

(see Section 5). We hypothesize that this problem

can be alleviated by carefully selecting the nega-

tive samples that mostly contribute to ‘push’ the

vectors into the appropriate region of the embed-

ding space (i.e., closer to the words commonly em-

ployed by a given user and far from other words).

3As implemented in Gensim (Řehůřek and Sojka, 2010).
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This requires designing a strategy for selectively

sampling negative examples. One straightforward

approach would be to sample from a user-specific

unigram model, informing which words are less

likely to be utilized by that user. But estimating the

parameters of such model with scarce data would

be prone to overfitting. Instead, we sample from a

unigram distribution estimated from the posts au-

thored by all the users. The goal is to select the

most commonly used words as the negative sam-

ples, thereby forcing the representations to capture

the differences between the words a given indi-

vidual employs and the words that everyone com-

monly uses.

4 Proposed Model

We now present the details of our proposed sar-

casm detection model. Given a message S au-

thored by user u, we wish to capture both the rel-

evant aspects of the content and the relevant con-

textual information about the author. To represent

the content, we use pre-trained word embeddings

as the input to a convolutional layer that extracts

high-level features. More formally, let E ∈ R
d×|V|

be a pre-trained word embedding matrix, where

each column represents a word from the vocabu-

lary V as a d dimensional vector. By selecting the

columns of E corresponding to the words in S, we

form the sentence matrix:

S =







e1
...

em






(4)

A convolutional layer is composed of a set of

filters F ∈ R
d×h where h is the height of the

filter. Filters slide across the input, extracting h-

gram features that constitute a feature map m ∈
R
|S|−h+1, where each entry is obtained as

mi = α(F · S[i:i−h+1] + b) (5)

with i = 1, . . . i − h + 1. Here, S[i:j] de-

notes a sub-matrix of S (from row i to row j),

b ∈ R is an additive bias and α(·) denotes a

non-linear activation function, applied element-

wise. We transform the resultant feature map

into a scalar using max-pooling, i.e., we extract

the largest value in the map. We use 3 filters

(with varying heights) each of which gener-

ates M feature maps that are reduced to a vector

f
k = [max(m1) ⊕ max(m2) . . . ⊕ max(mM )],

where ⊕ denotes concatenation. We set α(·) to be

the Rectified Linear Unit activation function (Nair

and Hinton, 2010). The output of all the filters

is then combined to form the final representation

c = [f1 ⊕ f
2 ⊕ f

3]. We will denote this feature

vector of a specific sentence S by cS .

To represent the context, we assume there is a

user embedding matrix U ∈ R
d×N , where each

column represents one of N users with a d dimen-

sional vector. The parameters of this embedding

matrix can be initialized randomly or using the ap-

proach described in Section 3. Then, we simply

map the author of the message into the user em-

bedding space by selecting the corresponding col-

umn of U. Letting Uu denote the user embedding

of author u, we formulate our sarcasm detection

model as follows:

P (y = k|s, u; θ) ∝ Yk · g(cS ⊕ Uu) + bk

g(x) = α(H · x + h)
(6)

where g(·) denote the activations of a hid-

den layer, capturing the relations between

the content and context representations, and

θ = {Y,b,H,h,F1,F2,F3,E,U} are parame-

ters to be estimated during training. Here, Y ∈
R

2×z and b ∈ R
2 are the weights and bias of the

output layer; H ∈ R
z×3M+d and h ∈ R

z are the

weights and bias of the hidden layer; and F
i are

the weights of the convolutional filters. Hence-

forth, we will refer to this approach as Content

and User Embedding Convolutional Neural Net-

work (CUE-CNN). Figure 2 provides an illustra-

tive schematic depicting this model.

5 Experimental Setup

We replicated Bamman and Smith (2015) exper-

imental setup using (a subset of) the same Twit-

ter corpus. The labels were inferred from self-

declarations of sarcasm, i.e., a tweet is considered

sarcastic if it contains the hashtag #sarcasm or

#sarcastic and deemed non-sarcastic other-

wise.4 To comply with Twitter terms of service,

we were given only the tweet ids along with the

corresponding labels and had to retrieve the mes-

sages ourselves. By the time we tried to retrieve

the messages, some of them were not available.

We also did not have access to the historical user

tweets used by Bamman and Smith, hence, for

4Note that this is a form of noisy supervision, as of course
all sarcastic tweets will not be explicitly flagged as such.
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Figure 2: Illustration of the CUE-CNN model for sarcasm detection. The model learns to represent and

exploit embeddings of both content and users in social media.

each author and mentioned user, we scraped ad-

ditional tweets from their Twitter feed. Due to re-

strictions in the Twitter API, we were only able

to crawl at most 1000 historical tweets per user.5

Furthermore, we were unable to collect historical

tweets for a significant proportion of the users,

thus, we discarded messages for which no con-

textual information was available, resulting in a

corpus of 11, 541 tweets involving 12, 500 unique

users (authors and mentioned users). It should also

be noted that our historical tweets were posted af-

ter the ones in the corpus used for the experiments.

5.1 Baselines

We reimplemented Bamman and Smith (2015)’s

sarcasm detection model. This a simple, logistic-

regression based classifier that exploits rich fea-

ture sets to achieve strong performance. These

are detailed at length in the original paper, but we

briefly summarize them here:

• tweet-features, encoding attributes of the

target tweet text, including: uni- and bi-

gram bag of words (BoW) features; Brown

et al. (1992) word clusters indicators; unla-

beled dependency bigrams (both BoW and

with Brown cluster representations); part-of-

speech, spelling and abbreviation features;

inferred sentiment, at both the tweet and

word level; and ‘intensifier’ indicators.

• author-features, aimed at encoding at-

tributes of the author, including: historically

5The original study (Bamman and Smith, 2015) was done
with at most 3, 200 historical tweets.

‘salient’ terms used by the author; the in-

ferred distribution over topics6 historically

tweeted about by the user; inferred sentiment

historically expressed by the user; and author

profile information (e.g., profile BoW fea-

tures).

• audience-features, capturing properties of

the addressee of tweets, in those cases that

a tweet is directed at someone (via the @

symbol). A subset of these, duplicate the

aforementioned author features for the ad-

dressee. Additionally, author/audience inter-

action features are introduced, which capture

similarity between the author and addressee,

w.r.t. inferred topic distributions. Finally,

this set includes a feature capturing the fre-

quency of past communication between the

author and addressee.

• response-features, for tweets written in re-

sponse to another tweet. This set of fea-

tures captures information relating the two,

with BoW features of the original tweet and

pairwise cluster indicator features, which the

encode Brown clusters observed in both the

original and response tweet.

We emphasize that implementing this rich set

of features took considerable time and effort. This

motivates our approach, which aims to effectively

induce and exploit contextually-aware representa-

tions without manual feature engineering.

6The topics were extracted from Latent Dirichlet Alloca-
tion (Blei et al., 2003).
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To assess the importance of modelling contex-

tual information in sarcasm detection, we consid-

ered two groups of models as baselines: the first

only takes into account the content of a target

tweet. The second, combines lexical cues with

contextual information. The first group includes

the following models:

• UNIGRAMS: ℓ2-regularized logistic regres-

sion classifier with binary unigrams as fea-

tures.

• TWEET ONLY: ℓ2-regularized logistic re-

gression classifier with binary unigrams and

tweet-features.

• NBOW: Logistic regression with neural word

embeddings as features. Given a sentence

matrix S (Eq. 4) as input, a d-dimensional

feature vector is computed by summing the

individual word embeddings.

• NLSE: The Non-linear subspace embedding

model due to Astudillo et al. (2015). The

NLSE model adapts pre-trained word embed-

dings for specific tasks by learning a pro-

jection into a small subspace. The idea is

that this subspace captures the most discrim-

inative latent aspects encoded in the word

embeddings. Given a sentence matrix S,

each word vector is first projected into the

subspace and then transformed through an

element-wise sigmoid function. The final

sentence representation is obtained by sum-

ming the (adapted) word embeddings and

passed into a softmax layer that outputs the

predictions.

• CNN: The CNN model for text classification

proposed by Kim (2014), using only features

extracted from the convolutional layer act-

ing on the lexical content. The input layer

was initialized with pre-trained word embed-

dings.

The second group of baselines consists of the

following models:

• TWEET+*: ℓ2-regularized logistic regres-

sion classifier with a combination of tweet-

features and each of the aforementioned

Bamman and Smith (2015) feature sets.

• SHALLOW CUE-CNN: A simplified version

of our neural model for sarcasm detection,

without the hidden layer. We evaluated two

variants: initializing the user embeddings

at random, and initializing the user embed-

dings with the approach described in Section

3 (SHALLOW CUE-CNN+USER2VEC). In

both cases, the (word and user) embeddings

weights were updated during training.

• CUE-CNN+*: Our proposed neural net-

work for sarcasm detection. We also eval-

uated the two aforementioned variants: ran-

domly initialized user embeddings and pre-

trained user embeddings. But here we

compared two different approaches for the

negative sampling procedure, namely, sam-

pling from a unigram distribution (CUE-

CNN+USER2VEC) and sampling uniformly

at random from the vocabulary (CUE-

CNN+USER2VEC-UNIFRAND).

5.2 Pre-Training Word and User

Embeddings

We first trained Mikolov et al. (2013)’s skip-gram

model variant to induce word embeddings using

the union of: Owoputi et al. (2013)’s dataset of

52 Million unlabeled tweets, Bamman and Smith

(2015) sarcasm dataset and 5 Million historical

tweets collected from users.

To induce user embeddings, we estimated a un-

igram distribution with maximum likelihood es-

timation. Then, for each word in a tweet, we

extracted 15 negative samples (for the first term

in Eq.1) and used the skip-gram model to pre-

compute the conditional probabilities of words oc-

curring in a window of size 5 (for the second term

in Eq.1). Finally, Equation 1 was minimized via

Stochastic Gradient Descent on 90% of the histor-

ical data, holding out the remainder for validation

and using the P (tweet text|user) as early stopping

criteria.

Note that the parameters for each user only de-

pend on their own tweets; this allowed us to per-

form these computations in parallel to speed-up

the training.

m

5.3 Model Training and Evaluation

Evaluation was performed via 10-fold cross-

validation. For each split, we fit models to 80%
of the data, tuned them on 10% and tested on the

remaining, held-out 10%. These data splits were

kept fixed in all the experiments. For the linear

classifiers, in each split, the regularization con-

stant was selected with a linear search over the
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(a) Performance of the linear classifier baselines. We include
the results reported by Bamman and Smith (2015) as a refer-
ence. Discrepancies between their reported results and those
we achieved with our re-implementation reflect the fact that
their experiments were performed using a significantly larger
training set and more historical tweets than we had access to.

(b) Performance of the proposed neural models. We compare
simple neural models that only consider the lexical content of a
message (first 3 bars) with architectures that explicitly model
the context. Bars 4 and 5 show the gains obtained by pre-
training the user embeddings. The last 2 bars compare dif-
ferent negative sampling procedures for the user embedding
pre-training.

Figure 3: Comparison of different models. The left sub-plot shows linear model performance; the right

shows the performance of neural variants. The horizontal line corresponds to the best performance

achieved via linear models with rich feature sets. Performance was measured in terms of average accu-

racy over 10-fold cross-validation; error bars depict the variance.

range C = [1e−4, 1e−3, 1e−2, 1e−1, 1, 10] using

the training set to fit the model and evaluating on

the tuning set. After selecting the best regular-

ization constant, the model was re-trained on the

union of the train and tune sets, and evaluated on

the test set.

To train our neural model, we first had to

choose a suitable architecture and hyperpa-

rameter set. However, selecting the optimal

network parametrization would require an ex-

tensive search over a large configuration space.

Therefore, in these experiments, we followed

the recommendations in Zhang and Wallace

(2015), focusing our search over combinations of

dropout rates D = [0.0, 0.1, 0.3, 0.5], filter heights

H = [(1, 3, 5), (2, 4, 6), (3, 5, 7), (4, 6, 8), (5, 7, 9)],
number of feature maps M = [100, 200, 400, 600]
and size of the hidden layer Z = [25, 50, 75, 100].

We performed random search by sampling with-

out replacement over half of the possible configu-

rations. For each data split, 20% of the training

set was reserved for early stopping. We compared

the sampled configurations by fitting the model on

the remaining training data and testing on the tune

set. After choosing the best configuration, we re-

trained the model on the union of the train and tune

set (again reserving 20% of the data for early stop-

ping) and evaluated on the test set.

The model was trained by minimizing the cross-

entropy error between the predictions and true la-

bels, the gradients w.r.t to the network parameters

were computed with backpropagation (Rumelhart

et al., 1988) and the model weights were updated

with the AdaDelta rule (Zeiler, 2012).

6 Results

6.1 Classification Results

Figure 3 presents the main experimental results.

In Figure 3a, we show the performance of lin-

ear classifiers with the manually engineered fea-

ture sets proposed by Bamman and Smith (2015).

Our results differ slightly from those originally re-

ported. Nonetheless, we observe the same general

trends: namely, that including contextual features

significantly improves the performance, and that

the biggest gains are attributable to features encod-

ing information about the authors of tweets.

The results of neural model variants are shown

in Figure 3b. Once again, we find that modelling

the context (i.e., the author) of a tweet yields sig-

nificant gains in accuracy. The difference is that

here the network jointly learns appropriate user

representations, lexical feature extractors and, fi-

nally, the classification model. Further improve-

ments are realized by pre-training the user embed-
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(a) Users colored according to the politicians they follow on
Twitter: the blue circles represent users that follow at least one
of the (democrats) accounts: @BarackObama, @HillaryClin-
ton and @BernieSanders; the red circles represent users that
follow at least one of the (republicans) accounts: @marcoru-
bio, @tedcruz and @realDonaldTrump. Users that follow ac-
counts from both groups were excluded. We can see that users
with a similar political leaning tend to have similar vectors.

(b) Users colored with respect to the likelihood of following a
sports account. The 500 most popular accounts (according to
the authors in our training data) were manually inspected and
100 sports related accounts were selected, e.g., @SkySports,
@NBA and @cristiano. We should note that users for which
the probabilities lied in the range between 0.3 − 0.7 were dis-
carded to emphasize the extremes.

Figure 4: T-SNE projection of the user embeddings into 2-dimensions. The users are color coded ac-

cording to their political preferences and interest in sports. The visualization suggests that the learned

embeddings capture some notion of homophily.

dings (we elaborate on this in the following sec-

tion). We see additional gains when we introduce

a hidden layer capturing the interactions between

the context (i.e., user vectors) and the content (lex-

ical vectors). This is intuitively agreeable: the

recognition of sarcasm is possible when we jointly

consider the speaker and the utterance at hand. In-

terestingly, we observed that our proposed model

not only outperforms all the other baselines, but

also shows less variance over the cross-validation

experiments.

Finally, we compared the effect of obtaining

negative samples uniformly at random with sam-

pling from a unigram distribution. The experimen-

tal results show that the latter improves the accu-

racy of the model by 0.8%. We believe the reason

is that considering the most likely words (under

the model) as negative samples, helps by pushing

the user vectors away from non-informative words

and simultaneously closer to the most discrimina-

tive words for that user.

6.2 User Embedding Analysis

We now investigate the user embeddings in more

detail. In particular, we are interested in two ques-

tions: first, what aspects are being captured in

these representations; and second, how they con-

tribute to the improved performance of our model.

Figure 5: Two sarcastic examples that were mis-

classified by a simple CNN (no user). Using

the CUE-CNN with contextual information drasti-

cally changes the model’s predictions on the same

examples.

To investigate the first question, we plotted a T-

SNE projection (Maaten and Hinton, 2008) of the

high-dimensional vector space where the users are

represented into two-dimensions. We then colored

each point (representing a user) according to their

apparent political leaning (Figure 4a), and accord-

ing to their interest in sports (Figure 4b). These

attributes were inferred using the Twitter accounts

that a user follows, as a proxy. The plots sug-

gest that the user vectors are indeed able to cap-
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ture latent aspects, such as political preferences

and personal interests. Moreover, the embeddings

seem to uncover a notion of homophily, i.e. sim-

ilar users tend to occupy neighbouring regions of

the embedding space. Regarding the second ques-

tion, we examined the influence of the contextual

information on the model’s predictions. To this

end, we measured the response of our model to

the same textual content with different hypothet-

ical contexts (authors). We selected two exam-

ples that were misclassified by a simple CNN and

ran them trough the CUE-CNN model with three

different user embeddings. In Figure 5, we show

these examples along with the predicted probabil-

ities of being a sarcastic post, when no user in-

formation is considered and when the author is

taken into account. We can see that the predic-

tions drastically change when contextual informa-

tion is available and that two of the authors trigger

similar responses on both examples. This example

provides evidence that our model captures the in-

tuition that the same utterance can be interpreted

as sarcastic or not, depending on the speaker.

7 Conclusions

We have introduced CUE-CNN, a novel, deep

neural network for automatically recognizing sar-

castic utterances on social media. Our model

jointly learns and exploits embeddings for the con-

tent and users, thus integrating information about

the speaker and what he or she has said. This is

accomplished without manual feature engineering.

Nonetheless, our model outperforms (by over 2%

in absolute accuracy) a recently proposed state-

of-the-art model that exploits an extensive, hand-

crafted set of features encoding user attributes and

other contextual information. Unlike other ap-

proaches that explicitly exploit the structure of

particular social media services, such as the forum

where a message was posted or metadata about

the users, learning user embeddings only requires

their preceding messages. Yet, the obtained vec-

tors are able to capture relevant user attributes and

a soft notion of homophily. This, we believe,

makes our model easier to deploy over different

social media environments.

Our implementation of the proposed method

and the datasets used in this paper have been made

publicly available7. As future work, we intended

to further explore the user embeddings for context

7https://github.com/samiroid/CUE-CNN

representation, namely by also incorporating the

interaction between the author and the audience

into the model.
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