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Abstract With each passing day, the information and com-

munication technologies are evolving with more and more

information shared across the globe using the internet super-

highway. The threats to information, while connected to

the cyber world are getting more targeted, voluminous, and

sophisticated requiring new antifragile and resilient net-

work security mechanisms. Whether the information is being

processed in the application, in transit within the network or

residing in the storage, it is equally susceptible to attack at

every level of abstraction and cannot be handled in isolation

as the case has been with conventional security mechanisms.

The advent of Software-Defined Networks (SDN) has given

a new outlook to information protection, where the network

can aid in the design of a system that is secure and depend-

able in case of cyber threats. The nature of SDN, mainly its

programmability and centrality of network information and

control has led us to think of security in an antifragile per-
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spective. Our networks can now thrive and grow stronger

when they are exposed to volatility by overwhelming cyber

threats. However, SDN infrastructure itself is susceptible to

severe threats that may mutilate the provision of its usabil-

ity as security provider. Both these perspectives of “Security

with SDN” and “Security for SDN” have invited research and

innovations, yet both these approaches remain disintegrated,

failing to support each other. The contribution of this paper is

threefold, with first reviewing the current state of the art work

for both perspectives of SDN security. Second, it advocates

the necessity and introduces a novel approach of antifragile

cyber security within SDN paradigm and finally it proposes

a unified model for integrating both approaches of “Security

with SDN” and “Security for SDN” to achieve the overall

objective of protecting our information from cyber threats in

this globally connected internetwork.

Keywords Modelling · Antifragility · Cyber security ·

SDN

1 Introduction

Taleb defines antifragility as a nonlinear response, stating

that “Simply, antifragility is defined as a convex response to

a stressor or source of harm, leading to a positive sensitivity

to increase in volatility” [1]. The basic properties of a secure

system demand its protections to grow stronger throughout

its entire lifecycle to fight against the overwhelming security

threats. This is especially the case when malicious attacks

and unintentional damages to data, assets, and communica-

tion transactions are always imminent from inside as well as

outside the network.

A typical network running commercial applications

accessed by users from across the internet fears far more risks
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than its intranet counterpart. A traditional cyber attack to any

organization’s information resources has mostly consisted of

breaking into the network by exploiting vulnerabilities in the

internet facing systems. Using these victims machine, the

intruder has to really work hard to gain access to internal

network and its diverse segments installed with a variety of

middleboxes. These middleboxes may have their own set

of vulnerabilities requiring tremendous effort, skill and hard

work for exploitation.

The nature of SDN [2], mainly its central control and

programmability has transformed the entire paradigm of

enterprise security inviting a divided opinion. SDN’s nature,

as one opinion, is regarded as a point of failure and the

weakest link in the chain of network security measures offer-

ing a highly significant and lucrative option for intruders.

However, in the other opinion, this very nature of SDN is

the strongest aspiration for SDN adoption due to its ease

of control and jurisdiction for enabling and managing secu-

rity functions in a network. This later opinion influenced by

the SDN’s resilient and antifragile nature has made us think

differently for enterprise security from the trending cyber

threats.

A new perspective of cyber antifragility can be thought of

as the ability to deal with an attack, return to normal opera-

tion with minimal damages and with enhanced capability to

thwart the future challenges of known or unknown types.

A basic SDN architecture, offering programmability and

control logic centralization can be seen from Fig. 1. The

infrastructure layer or the data plane consists of network

elements merely capable of forwarding data to the selected

destinations. The infrastructure layer is managed by the con-

trol layer which offers network services and control logic

centralization. Application layer sits on top of control layer

Fig. 1 Basic SDN architecture

and offers user-driven application and services. SDN’s con-

trol layer mediates between the networking requirements

that arise from the application layer and translates them

into instructions for the network elements in the infrastruc-

ture layer. However, these capabilities have introduced new

faults and vulnerabilities that are easily exploitable with new

avenues of threats opened by the SDN framework.

To ensure the security of the system throughout life time,

it is required to introduce a functional method of identifying

challenges associated with security of the application, con-

trol and data plane along with their associated interfaces. An

SDN-enabled reference network offering state of the art capa-

bilities and services to its users is elaborated in Fig. 2. The

application layer consists of a range of user-specific applica-

tions that interact with underlying pool of shared resources.

This process is arbitrated through one or more controllers

and network elements. The said network provides services

and management capabilities to users inside the network and

across the internet, hence requiring protection from imminent

threats.

In contrast to the work above, the security of SDN is eval-

uated in [5] against the conventional networks across a set

of five key parameters of security namely the Confidential-

ity, Authenticity, Integrity, Availability and Consistency. It is

established that the threats to the SDN infrastructure are not

new and can be tackled in more or less the same way as of the

conventional networks. The need of the hour is to reap the

benefits of SDN design that outweigh the security problems

introduced by SDN.

This wide disparity in SDN security is a driving factor

to consider an overall, simplistic, unified approach towards

achieving both elementary principles of “Security with SDN”

and “Security for SDN” as shown in Fig. 3. The overall

aim is to provide a continuously evolving system-wide pro-

tection that wraps up the application level and underlying

network level security requirements. This paper presents a

novel antifragile cyber security model that encompasses the

Fig. 2 SDN-enabled network offering services to end user
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Fig. 3 Cyber security model

for SDN

known threats to the SDN-enabled systems, their outcomes,

possible locations and countermeasures offered by SDN or

with addition of external security devices.

The rest of the paper is distributed as follows. Sections

2 and 3 pertain to a survey of recent advancements in both

perspectives of SDN security and Sect. 4 highlights the secu-

rity and threat modelling approaches. Section 5 presents our

proposed Antifragile Cyber Security Model and debates the

idea and need for security that is beyond resilience in the

realm of SDN. Section 6 concludes the discussion and Sect. 7

presents our ideas about the way forward for the proposed

model.

2 Survey of security enhancement using SDN

framework

The idea of using SDN framework for enabling security in

enterprise environment is a widely held belief. The argument

is based on the exploitation of SDN architecture to provide

enterprise level security. This section describes the state of

the art work in security with SDN, highlighting the enhance-

ments using SDN framework.

2.1 Monitoring systems and middleboxes

The integration of middleboxes in a network based on

SDN leverages the centrally controlled nature of program-

mable networks to redirect selected traffic through them.

The authors in [6] suggest SLICK, which is a central con-

trol plane responsible for installing and migrating functions

onto custom middleboxes in the network. Applications direct

SLICK controller for routing particular kind of traffic through

middleboxes. There are three main components of SLICK

architecture namely (1) Control Plane protocol, (2) The Pro-

gramming Model and (3) The SLICK Controller. SLICK’s

primary goal is to support a network operator to easily imple-

ment policies across all the middleboxes in the network. This

results in efficient deployment of middleboxes with lowest

possible path overhead for traffic.

A modification of middleboxes is proposed as FlowTags

in [7] which interact with SDN controller through Flow-

Tags API. Flow tags are embedded in packet headers to

provide flow tracking. The dynamic and traffic-dependent

modifications by middleboxes make it difficult to establish

the correctness of network-wide policy enforcement (e.g.

access control, accounting, and performance diagnostics).

The solution is a new “southbound” controller–middlebox

interface that enables SDN controllers to configure the flow

tagging capability, and the support needed from middleboxes

to implement FlowTags-related functions. The flow tracking

capability is introduced to ensure consistent policy enforce-

ment in the presence of dynamic traffic modifications.

FlowTags has three key dimensions highlighted in Fig. 4:

1. FlowTags-enhanced middleboxes that read incoming

packet’s existing Tags while processing it and may also

add new Tags based on the context.
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Fig. 4 Flowtag architecture [7]

2. FlowTags APIs between the FlowTags-enhanced middle-

boxes and controller.

3. Control applications that configure the tagging behaviour

of the middleboxes and switches, and that also organize

Tags to support policy enforcement and verification.

Qazi et al. [8] describe SIMPLE (Software-defIned Middle-

box PoLicy Enforcement) which is an SDN-based policy

enforcement layer that translates a high-level middlebox

policy into an efficient and load balanced data plane con-

figuration. It then steers traffic through the desired sequence

of middleboxes without making any modification to SDN

architecture or the middleboxes. Figure 5 gives an overview

of the SIMPLE architecture showing the inputs, the modules’

interactions, and the interfaces to the data plane. SIMPLE

controller has three basic modules described as below.

1. ResMgr module which is responsible for implementing

policy requirements. The input to this module is the net-

work’s traffic matrix, policy requirements and topology.

This module is also responsible for optimally balancing

the load across middleboxes by taking into account mid-

dlebox and switch constraints.

2. DynHandler module using a lightweight payload simi-

larity algorithm, correlates the incoming and outgoing

connections of middleboxes and provides these mappings

to the RuleGen module.

3. The RuleGen module takes the output of both the ResMgr

and DynHandler modules and generates data plane con-

figurations for routing the traffic across the appropriate

sequence of middleboxes to their destination.

A solution for network monitoring called Open Security

Auditing and Flow Examination (OpenSAFE) is presented

[9]. Routing of traffic in a robust and high performance man-

ner for network analysis is discussed along with A Language

for Arbitrary Route Management for Security (ALARMS)

policy language. ALARMS is used for simplified manage-

ment of monitoring devices within the network. Moreover,

Fig. 5 SIMPLE Overview: Using SDN to manage middleboxes [8]

Fig. 6 Monitoring path abstraction [9]

Fig. 7 A basic logical monitoring path [9]

Fig. 8 A logical path with a waypoint [9]

OpenSAFE consists of a set of design abstractions for think-

ing about the flow of network traffic and an OpenFlow

component that implements the policy.

The basic abstraction of OpenSAFE design is the path

which is the route that a particular traffic will take. Other

levels of design abstraction consist of input, selection, filter

and sink. Each path starts with input, on which optional selec-

tion criteria are applied and afterwards the traffic is routed

through any or none of the filters, finally ending up at one or

more sinks.

This concept is elaborated in Fig. 6 as abstraction and as

logical monitoring path in Fig. 7.

Another abstraction as shown in Fig. 8, that may be used to

aggregate policy rules and reduced repetition is the “virtual

destination” called the waypoint. The abstraction of Open-

SAFE is translated into the ALARMS policy language where

all components are given names and definition according to

their role.

Starting with the inputs and sinks, which are simply the

OpenFlow switch ports, and ending with waypoint, the defi-

nition according to ALARMS language is given by
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Input span = of:0
Sink tcpdump = of:1
filter to counter = of:2;
filter from counter = of:3;
select http = tp src: 80 || tp dst: 80;

waypoint web;

The abstraction shown in Fig. 8 can be translated into pol-

icy language as

span[http] -> web;
span[https] -> decrypt -> web;
web -> counter -> tcpdump;

Another feature of OpenSAFE is the distribution of traffic

between several components to support, for instance, load

balancing. The distribution rules are applied on per-flow

basis, and can be one of four namely, ALL, RR, ANY or HASH.

The traffic is duplicated to all components in case of ALL

rules, round-robin in case of RR and random in case of ANY.

The HASH rule is somewhat different and depends on the

name of hash function to determine the destination of the

traffic. OpenSAFE is implemented using OpenFlow v0.9.8

and NOX v0.6 with prototype built in Python and suggests

an overall ease in managing and monitoring network traffic

in large- scale networks.

The authors in [10] present ‘CloudWatcher’ in which the

traffic in cloud networks is detoured to pass between moni-

toring systems using a simple policy script. The solution not

only ensures that all necessary traffic is passed through some

security device for monitoring but also provides a simple

language for writing policy scripts to manage the traffic.

CloudWatcher works as an application on top of any Open-

Flow controller and starts working by registering security

devices using SLI-registration script knowing their device

ID, device type, location, installation mode and supported

functions. The next step is the creation of security policies,

which consist of Flow condition representing the flow to be

investigated and device set which shows the security devices

participating in the investigation. An example SLI-policy

script for monitoring traffic between two hosts A and B can

be given by {A :∗→ B :∗, {Device_I D}}, where A :∗ and

B :∗ depicts all traffic originating from two hosts. These

hosts are identified by their IP addresses and Device_ID is

any number assigned to the monitoring device.

Whenever CloudWatcher finds network packets meeting a

specified policy, it routes these packets to satisfy given secu-

rity requirements. CoudWatcher also ensures that the routes

used by these packets are always optimized. Path optimiza-

tion cannot be handled by conventional routing protocol in

the case of added security devices in the path. For the same

reason, the shortest path problem is formulated as minimum

cost flow problem as in Eq. (1).

Fig. 9 CloudWatcher overall design [10]

min
∑

ci, j xi, j

s.t
n
∑

j=1

xi, j −
n
∑

k=1

xk,i = bi for i = 1, 2, . . . n

xi, j ≥ 0 for i, j = 1, 2, . . . , n

(1)

where xi, j represents the amount of data sent along the link

from node i to node j , bi means available supply at node i ,

for bi ≤ 0 there is a required demand at node i , ci, j is the unit

cost for flow between node i and j . A set of four algorithms

is used to find the shortest paths inclusive of security devices,

in different scenarios. Three of these algorithms are used to

find paths that include passive security devices and one is

used to find path with inline security device.

The proposed framework of CloudWatcher is imple-

mented as an application on top of NOX controller [11], using

python. The implementation consists of three main modules

as shown in Fig. 9 and described below,

1. Device and Policy Manager that maintains a device table

containing information of each security device, and a pol-

icy table containing information on each security policy.

2. Routing Rule Generator which initially sends queries to

network switches or routers for network discovery and

afterwards generates a network topology as a graph struc-

ture. It periodically sends query through NOX APIs to

estimate the cost of links within the network. A modified

‘Dijkstra’ algorithm [12] is used to find the shortest path

between two nodes.

3. Flow Rule Enforcer parses routing rules or response

strategies, and it translates them into flow rules for Open-

Flow and sends them to routers or switches.

However, the proposed framework of CoudWatcher may suf-

fer from degradation in case of high network loads, or in case
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Table 1 MTTV Table [13]
Switch name IP MAC Threshold ()

S1 192.168.10.101 05-16-DC-59-C2-34 3

S2 192.168.10.102 FF-EC-DC-12-43-33 4

· · · · · · · · · · · · · · · · · · · · · · · ·

Sn 192.168.10.187 DC-FE-32-29-28-37 3

there are security devices that are disconnected from each

other thus jeopardizing the path generation algorithm.

The integration of SDN-based middleboxes is fully justifi-

able in terms of benefits they offer. However, their appropriate

placement in the network along with the performance penalty

that can be tolerated by an additional link are few questions

still unanswered and needs further investigation into the idea.

2.2 SDN for security as a service

This section reviews the state of the art work in which SDN is

used for providing security as a service in the basic networks

or in the cloud. The research work can be broadly catego-

rized as techniques for (1) Spoofing Detection, (2) Scanning

and Anomaly Detection (3) DoS/DDoS Detection and Miti-

gation (4) Forensic Analysis and (5) SDN-enabled Security

Framework.

2.2.1 Spoofing detection techniques

The very basic of any attack to a resource is to hide or fake

the identity of the attacker or the resources used in generating

the attack. This mechanism of spoofing can be thwarted using

the SDN framework. A solution to the problem of device or

MAC spoofing resulting in the addition of malicious switches

within the SDN is discussed in [13]. A rogue switch can

mislead the controller to make incorrect decisions which may

jeopardize the performance of overall network. Two schemes

are presented for detecting malicious switches, one is based

on Threshold Value Control (TVC), and the other argues on

installing a third party server in the network to facilitate user

feedback for the network.

A table containing Maximum Traffic-flows Threshold

Value (MTTV) is maintained, for TVC, to store the maxi-

mum traffic flows of each switch in Open Flow networks as

shown in Table 1. The controller finds out the threshold value

of each switch’s maximum traffic flows by learning from its

working history. This owes to the fact that if any rogue switch

wants to lure controller to pass traffic through it, this is only

possible by pretending to have more bandwidth than actual.

The controller can, however, refer to the MTTV table to iden-

tify the suspicion on a rogue switch which can then further

be investigated. The method of investigation is, however, not

elaborated in their proposed work.

Fig. 10 UFS placement in SDN [13]

The proposed scheme becomes complimented by a sec-

ond proposal which is presented as an aid to the mentioned

scheme. A User Feedback Server (UFS) considered as a

trusted third party server is placed inside the network as

shown in Fig. 10.

The UFS is used to collect user experiences whenever

users are having trouble to connect to the network or there

is no response to the traffic they originated. The feedback

is sent to the UFS which collects all feedbacks for a certain

period of time and send them to the controller. In this way,

the controller can find some suspicious paths and suspicious

switches within the network.

The mentioned approaches in [13] are fairly simple but

their significance is questionable. The proposed work is not

supported by any practical implementation and hence its

impact is not well justified. Moreover, no comparison is made

to any other approaches available in literature. Performance

and traffic overheads, false positives and many other para-

meters should have to be calculated for a healthy impact.

The authors in [14] describe an incrementally deployable

anti-spoofing mechanism for SDNs named as BASE (BGP-

based Anti-spoofing Extension). An incrementally deploy-

able protocol, as argued, should have three properties: initial

benefits for early adopters, incremental benefits for subse-

quent adopters, and effectiveness under partial deployment.

Three techniques lie at the heart of BASE, namely (1) Mes-
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Fig. 11 BASE architecture [14]

sage Authentication Code (MAC), (2) one-way hash chains

and (3) packet marking. MAC and one-way hash chains are

used for generating a cryptographically unique value for a fil-

ter node, whereas packet marking is employed for storing and

delivering the value to destinations. The BASE architecture

as shown in Fig. 11 inherits and combines the features from Pi

[15] and DPF [16] as having per-packet deterministic packet

marking inherited from former and overloading a routing

protocol BGP inherited from the later to propagate marking

information.

However, BASE extends concept of Distributed Packet

Filtering (DPF) with cryptographic packet marking, making

it more suitable for verifying path correctness. The BASE

mechanism is divided into four phases namely, (1) Distri-

bution of marking values, (2) Filter invocation, (3) Packet

marking and filtering and (4) Filter revocation. The approach

not only works well on the SDN architecture in a high

network load, but also recovers network connectivity auto-

matically by filtering the spoofed packets. BASE has a very

small overhead during the distribution phase as the markings

are piggybacked with BGP update messages. The invoca-

tion and revocation phases incur negligible overhead, since

only a single BGP update is used to initiate each start or stop

signal.

Another lightweight and efficient framework for route-

based IP spoofing filtering, named Software dEfined Filtering

Architecture (SEFA), is proposed in [17]. SEFA provides a

collective view of the network and decouples the filtering rule

generation from network devices. It is a hybrid architecture

in which filtering is managed by OpenFlow and forward-

ing is still handled by routing protocols. The design of SEFA

enables to collect and build the overall view of address assign-

ments and routing within the network. It presents this view to

the applications and also caters for their requests of insertion

Fig. 12 Overview of SEFA architecture [17]

or removal of filtering rules. An overview of SEFA is given

in Fig. 12.

2.2.2 Scanning and anomaly detection techniques

A solution to the defence against scanning and fingerprinting

attack is presented in [18] as OpenFlow Random Host Muta-

tion (OF-RHM). The dynamic and programmable nature of

SDN is exploited to present a novel proactive Moving Target

Defence (MTD) strategy. This strategy works by hiding the

real IP addresses from the inside/outside scanning attacks.

The key idea is to frequently mutate the host IP addresses

and assign virtual IPs (vIPs) to the hosts with high rate of

unpredictability and transparency from the end hosts. The

real IP addresses are only accessible by authorised entities.

Suppose with the address ranges r1, r2 . . . , rm and sub-

nets s1s2 . . . , sz, the problem of appropriate assignment of
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Fig. 13 AnonyFlow operation

[21]

ranges to subnet is considered as NP-hard [19] problem and is

formulated using Satisfiability Modulo Theories (SMT) [20].

The problem of unpredictable and rapid mutation is estab-

lished as a valid assignment of unused address ranges under

multi-constraint satisfaction. Equation (2) dictates the muta-

tion rate constraint and shows that total number of mutated

vIPs of all hosts in subnet sk during time T must be less than

the aggregate size of all ranges assigned to sk .

∀

⎛

⎝

∑

1≤i≤n

cik Ri

⎞

⎠ ∗ T ≤
∑

1≤ j≤m

b jk

∣

∣r j

∣

∣ (2)

Equation (3) defines the unpredictability constraint and

establishes that the ranges must be assigned to subnets in

proportion to their total required mutation rate.

∀k, Pk =
T ∗

∑

1≤i≤n cik Ri
∑

1≤ j≤m b jk

∣

∣r j

∣

∣

(3)

where Pk is the total required mutation of subnet sk during

time T on total range size allocated to it and Pa as given in

Eq. (4) is the total required mutation of all hosts on total size

of unused address ranges.

Pa =
T ∗

∑

1≤i≤n Ri
∑

1≤ j≤m

∣

∣r j

∣

∣

(4)

It has been shown through analysis and simulation that OF-

RHM can invalidate the information gathering of external

scanners up to 99 %. It can also save up to 90 % of network

hosts from even zero-day unknown attacks

Mendonca et al. present AnonyFlow in [21] that provides

anonymity to the users for the prevention of port scanning.

The basic concept is to assign temporary IP addresses and

flow IDs to the user traffic which is exiting their respective

ISP’s domain. The architecture of AnonyFlow consists of few

identifiers notably AnonID, which is assigned to every node

in the network for its communication with other nodes. It can

either be used on per-flow basis or fixed for every service.

Machine IP address and network IP address are two other

identifiers used in this scheme.

This scheme is implemented as a service in OpenFlow-

based networks using NOX controller. The AnonyFlow

service consists of AnonyFlow conduit, Local AnonyFlow

service and Global AnonyFlow service. AnonyFlow conduit

is used to rewrite IP addresses to/from AnonIDs, and forwards

the packets towards required destination. Local AnonyFlow

service handles mappings within the network, and communi-

cates with global service. Global AnonyFlow service is used

for network lookup for AnonIDs outside local managed net-

work.

AnonyFlow’s operation is illustrated in Fig. 13 which

elaborates the process when host ‘A’ opens a connection to a

service on host ‘B’. For this, ‘A’ sends a packet with source

IP address ‘11.11.0.1’ and destination ‘2’ that passes through

the AnonyFlow conduit on network ‘N1’. The conduit con-

sults with the local AnonyFlow service of ‘N1’ for the leading

packet of the flow. The local AnonyFlow service determines

that both the source address and the destination AnonID ‘2’ is

within the same network. It then rewrites the source address

to ‘1’ and destination to ‘11.11.0.2’ and forwards the flow to

the destination. If the destination AnonID is of another net-

work as in case when host ‘A’ communicates with host ‘D’,

the local AnonyFlow service must opt for a global lookup

of the destination AnonID to determine a routable address to

the destination network. The source address is rewritten to

AnonID ‘1’ when the flow arrives at a conduit in the desti-
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Fig. 14 Learning IDS controller/switch interaction [22]

nation network and the destination address is changed to the

machine address of ‘D’. The AnonyFlow service is compared

to Tor-based anonymity service and result shows tremendous

increase of throughput using AnonyFlow.

A learning intrusion detection system (L-IDS) based on

SDN for protection of embedded mobile devices is presented

in [22]. The L-IDS can be deployed within the existing net-

work alongside existing security systems and suggests no

modification to mobile devices. The proposed solution han-

dles mobility of end-user devices and offers a wide variety of

action space for responding to anomalies (flow dropping, re-

authentication, honey pot redirection, and system isolation),

which, however, traditional IDS solutions do not offer.

Implementation of L-IDS is based on a biomedical site

in which implanted biomedical devices and robotic mater-

ial transport are considered as a case study. These mobile

embedded devices connect to the fixed infrastructure via the

OpenFlow-enabled wireless switches deployed at specific

points in the site. OpenFlow controller and the switch collec-

tively work to detect different types of anomalies including

stateless, stateful, volumetric and physical anomalies at dif-

ferent point in the network. Figure 14 shows the interaction

of OpenFlow controller and switches, highlighting their con-

tributions in terms of anomaly detection and the values

exchanged for that purpose.

Another solution focusing on anomaly detection includ-

ing TCP port scan detection, TCP and UDP flooding (DoS)

attack detection is discussed in [23]. The authors have imple-

mented a few well- known anomaly detection algorithms on

SDN. Their basic idea is to place the Anomaly Detection

System (ADS) in home networks built upon SDN instead of

core network due to two problems at core (1) low detection

rate versus large false positives, (2) inability to run at line

speed.

Four well-known algorithms used for anomaly detection,

namely Threshold Random Walk with Credit-Based Rate

Limiting (TRW-CB) [24], Rate Limiting [25,26] Maximum

Entropy Detector [27] and NETAD [28] are ported to judge

their feasibility for SDN infrastructure. The experiments

show that these algorithms are implemented in SDN and they

process only a small fraction of the total traffic. However, they

attain the equivalent accuracy achievable by inspecting every

packet in conventional networks.

The TRW-CB algorithm detects scanning worm infections

on a host by maintaining that the probability of a successful

connection attempt should be much higher for a normal host

than a malicious one. The algorithm maintains a list of new

connection requests that have pending connection responses

and increases the likelihood or probability of host being

infected once the connection times out without a response.

The likelihood is decreased if a successful reply is received.

The implementation of TRW-CB in NOX leverages the basic

concept of SDN which enables the new connection request

to be forwarded to controller before the flow is installed in

the SDN switches. Once a connection is successfully estab-

lished and flows installed in the switches, the remaining

packets are not further monitored. This enables the algorithm

to achieve the accuracy comparable to inspection of every

packet.

Rate Limiting uses the observation that an infected

machine mostly attempts to connect with many different

machines in a short span of time. An uninfected machine, on

the other hand, attempts to connect at lower rate and mostly

that too with recently accessed machines called ‘working

set’. If the connection is requested to a machine not present

in the working set, it is put into a delay queue. The requests in

the delay queue are taken out one by one every d seconds and

forwarded to destination. Once connection successful mes-

sage (i.e. TCPSYNACK) is received, the flows are installed

to handle the rest of the traffic.

The Maximum Entropy detector estimates the benign traf-

fic distribution using maximum entropy estimation. Traffic

is divided into 2348 packet classes and maximum entropy

estimation is then used to develop a baseline benign dis-

tribution for each class. The comparison of packet class

distribution with the baseline distribution is made using KL

(Kullback–Leibler) divergence measure [29]. If the KL diver-

gence exceeds a threshold ηk , more than h time in last W

windows of traffic, it raises an alarm for suspicious traffic.

The NETAD protocol works on a subset of traffic filtered

as ‘Uninteresting Traffic’ based on the reason that a first

few packets of a connection request are sufficient for anom-

aly detection. All incoming traffic, non-IP packets and TCP

packets with sequence number more than 100, can be con-

sidered as a type of ‘Uninteresting traffic’. To implement the

same, for example, all packets having sequence number less

than 100 are passed through the controller. Once the sequence

number exceeds 100, the flows are installed in the switches

and the traffic is passed without controller intervention.
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The above algorithms are implemented in SDN environ-

ment and the efficacy of these in case of HOME/SOHO/ISP

networks is evaluated based on NOX controller. The com-

parison among the different points of placement reveals that

the detection is far more accurate in the home networks than

the ISP.

2.2.3 DoS/DDoS detection and mitigation techniques

A lightweight DDoS flooding attack detection is proposed

in [30] that uses Self-Organizing Maps (SOM) [31]. The

problem is discussed as an unsupervised Artificial Neural

Network (ANN) trained with features of the traffic flow. The

algorithm frequently takes statistics about flows from the

NOX registered switches as parameters for the SOM compu-

tations, which are then used to classify network traffic flows

as either normal or sign of a potential attack. The proposed

solution works in three modules as described in Fig. 15.

1. The Flow Collector module is responsible for periodi-

cally polling all Flow Tables of OF switches for flow

entries over a secure channel, which is isolated from hosts

connected to the switches.

2. The Feature Extractor module receives collected flows,

extracts features that are important to DDoS flooding

attack detection. It then gathers them in 6-tuples asso-

ciated with a switch ID and passes it to the classifier.

3. The Classifier module uses SOM to analyse and classify

whether a given 6-tuple corresponds to a DDoS flooding

attack or to legitimate traffic.

The experimental setup is emulation based and the results are

based on three parameters namely the (1) time to train and

classify traffic, (2) detection performance and (3) Method

Fig. 15 DDoS detection loop using SOM [30]

overhead. The performance is compared to other approaches

that are based on the KDD-99 [32] dataset and established

that overhead in these approaches is due to the reason that

they collect every packet sent to a victim, and then process

this information to generate connection records. However,

there is no discussion about the mitigation of the subject

threats.

The authors in [33] have proposed a solution for DDoS

mitigation that monitors OpenFlow statistics regarding traf-

fic flows to detect indications of a DDoS attack. The first

phase of DDoS mitigation is the initial detection, followed

by the identification mechanism and then the blocking of the

source of attack. The approach is fairly simple and starts with

collecting flow statistics from the OF switches regarding the

byte and packet counters polled every second. The difference

between the current and previous value is added to data set

Q with a limit of 60 entries. The standard deviation of this

list (σ (Q)) is given in Eq. (5) as

σ(Q) =

√

√

√

√

1

60

60
∑

i=1

(Qi − µ)2 (5)

The anomalies that may potentially be signs of DDoS attacks

can be detected by comparing the expected deviation and the

real deviation in data set Q. Any sign of anomaly such as a

sudden burst of data can trigger the identification mechanism

to establish it as benign or DDoS attack. The identification

of DDoS attack can be one of the two methods, (1) by sam-

pling the specific flow, i.e. analysing the packet symmetry or

(2) by temporarily blocking outgoing traffic and see which

nodes continue to send traffic. Both methods are useful in

identifying the source of DDoS attack with the later much

useful in determining the spoofed sources.

The next phase is the blocking of all traffic from the

identified sources of attack. The authors have performed

experiments for their approach but have not compared their

approach to any of the existing ones in literature. Therefore,

it is difficult to conclude whether their solution is effective in

detection and mitigation of DDoS attack and to what extent.

2.2.4 Forensic techniques

SDN’s novel capabilities can be used to aid in better forensic

analysis. The authors in [34] have introduced a Provenance

Verification Point (PVP) component and have demonstrated

the ability to detect the presence of attacks that were previ-

ously unobservable by conventional forensic systems.

The scenario elaborated in Fig. 16 is considered by the

authors in which an administrator (Alice), running a data cen-

tre has observed unexpected behaviour within the network

and now it is required to investigate whether the behaviour

is legitimate or is indicative of a fault or attack. However, it
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Fig. 16 Typical scenario of data loss from a network [34]

Fig. 17 PVP interaction as traffic interposition [34]

Fig. 18 PVP interaction as traffic mirroring [34]

is not feasible for Alice to simply ask the nodes about their

activities as an attacker may have gained complete control

of nodes and could return false information in response to

Alice’s request. As nodes in the network cannot be inherently

trusted, a number of correct nodes are required. However,

even if there are enough correct nodes available, they are

often poorly positioned to observe the network interior and

collectively they are unable to achieve complete observabil-

ity of the network.

This problem of global observability is resolved using a set

of middleboxes called Provenance Verification Point (PVP)

collaborating with the SDN switches. The traffic is passed

through these PVPs which monitor and report the statistics to

the central controller. Each PVP is responsible for monitoring

activity for some subset of system nodes. The architecture

relies on forwarding traffic to middleboxes, and dropping

traffic that does not adhere to a specified behaviour. The two

basic forms of middlebox routing are the traffic interception

and traffic mirroring and can be visualized in Figs. 17 and 18,

respectively.

To achieve line speed processing of traffic at PVPs and to

collect all necessary information at these points, PVPs are

made to operate as a verification layer in an inter-node com-

mitment protocol similar to PeerReview [35]. All inter-node

communication, even between two faulty nodes, is monitored

by the corresponding PVP, and an evidence for the commu-

nication is retained. Such capability allows PVPs to achieve

full observability and catch a wider class of misbehaviour.

For example, Alice suspects a potential attack on her net-

work around the time m was sent. She queries the nodes A

and B in the network about m, its derivation, and its conse-

quences. Consider the case in which A and B are both faulty

and wish to hide m’s presence. The PVP monitoring A and

B possesses proof of m’s transmission by A and receipt by

B. Alice can demand a record of network activity from the

relevant parts of A’s and B’s respective local logs, then com-

pare the record to the PVP’s list of authenticators. Alice will

be able to detect the absence of the message and its acknowl-

edgment, and declare both A and B to be faulty.

This SDN-based forensic tool offers many other features

such as detection of covert communication, detection of

inconsistence false claims by a node and automation of foren-

sic analysis by introducing an upper layer script parsing.

2.2.5 SDN-enabled security framework

FRESCO [36] is an OpenFlow security application develop-

ment framework and one of its kinds to facilitate the rapid

design of OF-enabled detection and mitigation modules and

their composition. FRESCO has addressed several key issues

that when resolved can help accelerate the composition of

new SDN-enabled security services. FRESCO has a built-in

library of 16 basic reusable modules, and more sophisticated

security modules can be built by connecting these basic mod-

ules. Each FRESCO module includes five interfaces, namely

input, output, event, parameter and action. A wide range of

essential security functions, such as firewalls, scan detectors,

attack deflectors, or IDS detection logic can be fabricated

using the basic modules and its properties.

FRESCO framework mainly consists of an application

layer and an Security Enforcement Kernel (SEK) integrated

into NOX controller. An overview of FRESCO architecture

can be seen in Fig. 19. The application layer provides an inter-

preter and APIs to support application development and SEK

is used to enforce the policy actions from developed secu-

rity applications. The basic components of application layer

are Development Environment (DE), Resource Controller

and the FRESCO scripting language. The development envi-

ronment offers services such as script-to-module translation,

database management and event handling.

FRESCO’s script language is used to instantiate and

to define the interactions between different NOX security

modules. These scripts invoke FRESCO’s internal modules,

which are instantiated to form any security application. The

application is driven by the input specified via the FRESCO

scripts and accessed via FRESCO’s DE database API. These

modules once instantiated are executed by FRESCO DE

whenever the input events are received.
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Fig. 19 Overview of FRESCO

architecture [36]

Two case studies are presented to show the power and

range of FRESCO. One application is used to detect and

entrap malicious scanners and is named Reflector Net, which

consists of a ScanDetector module and an Action Handler

module. Scan Detector is triggered once it detects a large

number of failed TCP connections and in turn invokes the

ActionHandler to redirect malicious traffic towards a honey-

pot. Hence, the attacker continues to receive valid responses

from the honeypot machine, under the impression that the

attack is successful. In the second example, a use case of

FRESCO’s integration with a legacy security application is

demonstrated. A BotHunter [37] application is used to detect

a threat which in turn invokes the security applications writ-

ten in FRESCO script to quarantine infected hosts on the

network.

3 Survey of techniques for SDN protection

The advent of SDN has no doubt enabled a new vision of

networking with its logical centralization of control and pro-

grammability, but has also opened up new avenues of threats

due to the same. The security of SDN itself is still in infancy

with not much work done in protecting the SDN and its com-

ponents. This section highlights the contributions done so far

in literature for securing the SDN.

3.1 Security analysis of SDN

A comprehensive study that highlights the major areas of

concern for security of SDN is presented in [38]. The need

for new responses to the imminent threats to the network

Fig. 20 SDN threat vector [38]

is argued by giving a generalized description of threats to

seven key areas of SDN as shown in Fig. 20. The threat vector

associated with these seven areas are (1) Forged or fake traffic

flows, (2) Attacks on vulnerabilities in switches, (3) Attack on

Control Plane communication, (4) Attacks on/vulnerabilities

in Controllers, (5) Trust between the controller and the appli-

cations, (6) Vulnerabilities in Admin station and (7) Trusted

resources for forensics and remediation.

A security analysis of SDN based on a hybrid combina-

tion of STRIDE [39] and Attack trees [40,41] is given in

[42]. The work is based on the security analysis of OPEN-

FLOW protocol and is confined to the data plane only. A

secure communication is assumed between the controller

platform and the SDN switches. As the approach is con-

fined to the data plane, the only focus is on addressing the

threats that can exploit the vulnerabilities related to data flows

within the SDNs. At first, the focus is on the denial of ser-
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vice attack against the flow table, arguing and evaluating that

the flow table can be flooded by flow rules. With respect to

Information Disclosure, the attacker may be able to derive

information about network state, e.g. active flow rules, by

observing differences in controller response times. At last,

the Tampering attack is discussed and the possibility of cache

poisoning attacks against the flow table and/or controller state

is suggested.

The security analysis and practical evaluation is followed

by recommendations for mitigation of subject threats. The

authors suggest that DoS attack, though possibly hard to

detect, can be mitigated by rate limiting, event filtration,

packet dropping and timeout adjustment. At the same time,

access control and flow aggregation might help limit the

chances of DoS attack. The outcomes of timing attack in

the form of information disclosure can be dealt with proac-

tive flow rule establishment and by increasing the variance of

measureable response time for flow rule insertion. However,

there are no suggestions regarding counter-acting tampering

attacks.

3.2 Threats to SDN

Similar to the evolved nature of SDN, the threats in SDN

framework have also evolved into more complicated phe-

nomena that can take advantage of the SDN framework in

many new ways. The authors in [43] have contributed a way

to fingerprint SDN networks. Their idea is based on the strat-

egy that the difference in response times for existing flow and

a new flow in SDN network can be exploited by the attacker

to gain knowledge about the network. A custom SDN scanner

as shown in Fig. 21 is built that works on the same principle

and collects a set of values for response times.

The statistical differences, i.e. mean and standard devia-

tion values are sufficient to gain knowledge about the SDN

Fig. 21 Function diagram of SDN Scanner [43]

network. Once it is established that the network in question

is the SDN network, it is fairly simple to attack resource con-

sumption or DoS attack against the control and data plane.

The work is limited as of just identification of SDN network

and needs further research in the area of fingerprinting and

scanning of SDN networks to know about the topology of

the target network. Moreover, they have not presented any

solution to defend the SDN network from the fingerprinting

attack.

Another attempt to thwart the SDN topology is an ARP

cache poisoning attack specific to SDN topology poison-

ing along with a solution to such attacks is presented in

[44]. With the poisoned network visibility, the upper-layer

OpenFlow controller services and applications are totally

misled, leading to serious hijacking, denial of service or

man-in-the-middle attacks. The vulnerabilities in the Device

Tracking and Link Discovery Services of main stream SDN

controllers are exploited to present two types of topology

poisoning attacks, i.e. Host Location Hijacking Attack and

Link Fabrication Attack. These attacks are further used to

launch Man-In-The-Middle (MITM) and DoS attacks.

Two possible mitigation methods to secure Host Tracking

Service (HTS) in SDN controllers are discussed with the abil-

ity to dynamically track network mobility. One possibility is

to generally authenticate host using PKI infrastructure, and

particularly whenever the host changes its location. The other

solution is to explicitly verify the legitimacy of the migration

before allowing services to host. Link fabrication attack is

avoided by strengthening the vulnerabilities in Link Discov-

ery Service. One possible way of doing this is to authenticate

the Link Layer Discovery Protocol (LLDP) packets, and the

other method is by verification of switch port property.

3.3 Network consistency solutions

FlowChecker [45] identifies misconfigurations within the

OpenFlow networks. It uses Binary Decision Diagrams

(BDD) to model the switch flow-table configuration in the

form of state machine. It uses Computational Tree Logic

(CTL) to write queries for verifying properties. FlowChecker

then uses the model checker technique to validate correct-

ness of the interconnected network by pair-wise comparison

of each pair of flow table rules in the domain.

FlowChecker is defined as an independent centralized

server application that receives queries from OpenFlow

applications to verify, analyse or debug OpenFlow config-

uration. These queries could be limited within one domain

or across different federated domains. FlowChecker can run

on a master controller (spans number of federated OpenFlow

infrastructures) and it uses a special protocol to communicate

with other controllers and switches.

Figure 22 describes a possible scenario for validating fed-

erated domains. The numbers assigned in the diagram are
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Fig. 22 FlowChecker interaction [45]

stepwise functions performed for validation. A user query

written in CTL logic to check the validity of certain prop-

erties is received by the FlowChecker which sends a special

message to the controller(s) asking for extracting FlowTables

and sending them back to FlowChecker. When controller(s)

receive the message, a request is sent to the respective Open-

Flow switches to provide their FlowTables. The message

sent from a controller to an OpenFlow switch is intercepted

by the FlowVisor, which responds to this message directly

to the FlowChecker by sending “slices policies” for that

domain. FlowTables are sent to the FlowChecker once they

are received by a controller. The FlowChecker has now got

the suggested policies, “slices policies” and the “FlowTa-

bles”. The suggested “slices polices” are compared with

FlowTables for validation and a report is generated to indi-

cate the conflicts and misconfigurations also to reply the CTL

query.

FlowChecker can also be used to analyse the impact of

applications on the network before installation. Experimen-

tal evaluation follows the description of FlowChecker in

which randomly generated flow tables of various sizes are

overlapped, and analysed for configuration conflicts. Results

show that FlowChecker takes approximately 160 ms to ver-

ify correctness in a network of 120 switches and flow tables

having 1000 rules.

A role-based authorization and security constraint

enforcement solution for NOX OpenFlow controller named

as FortNOX is presented in [46]. FortNOX solves a critical

challenge of efficiently detecting and reconciling potentially

conflicting flow rules imposed by dynamic OpenFlow (OF)

applications. It enables NOX to check flow rule contradic-

tions in real time. The algorithm is robust even in cases

where an adversarial OF application attempts to strategically

insert flow rules that would otherwise circumvent flow rules

imposed by OF security applications.

The architecture consists of a security policy enforce-

ment engine running a novel algorithm called alias set rule

reduction. A role-based authentication is recommended for

security authorization of each OF application using digital

signatures. A privilege value is assigned to the flow rule

of each application, whereas unsigned applications have the

lowest priority. The second part of the algorithm is the conflict

analyzer. It is used to analyse conflict for a newly installed

flow rule against those in the aggregate flow table.

Another important feature of FortNOX is the Security

Directive Translation that mediates a set of high-level threat

mitigation directives into flow rule. These flow rules are then

digitally signed before submitting to FortNOX. There are

seven security directives, namely block, deny, allow, redirect,

quarantine, undo, constrain and info. The most important of

these seven are the redirect, quarantine and constraint direc-

tives. The redirect directive enables a security application to

tunnel all flows between a source and given target to a new

destination, e.g. diversion of malicious traffic into a honey

pot. The quarantine directive enables the security application

to isolate the host from the entire network thus preventing it

to originate any flow. The constraint directive enables the

security application to deactivate the current flow rules that

are not set to a specific priority. This helps to rate-limit the

flows in case of DDoS attack.

No bugs In Controller Execution (NICE) [47] uses auto-

mated model checking to discover errors in SDN applica-

tions. The details about the controller, network topology

specification, number of switches and hosts are input to NICE

for testing applications. These inputs automatically generate

specific traffic flows to study the network for a variety of dif-

ferent events, and recognize property violations. The logical

placement of NICE and its components in OpenFlow-based

network can be seen from Fig. 23. NICE checks for user spec-

ified ‘correctness properties’ which include no black holes or

direct paths, no forwarding loops, no forgotten packets, etc.

A novel idea of utilizing symbolic execution is employed to

avoid the rapid expansion in state space that usually arises

when model checking is used. NICE models the impact of

a subset of representative packets of all the different packet

classes instead of exploring all possible states in the network.

NICE is implemented for the NOX controller using Python

to test real applications and uncovers several bugs. Experi-

mental results indicate that NICE is five times efficient than

existing model checkers. This shows that finite-state mod-

elling is a relatively simple verification technique which can

be applied to various types of applications. However, it is

challenging to scale this approach to large networks. In appli-
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Fig. 23 Logical placement of NICE and its components [47]

Fig. 24 VeriFlow architecture [48]

cations with infinite states, this approach cannot definitively

prove the lack of errors.

Another novel approach for network consistency verifica-

tion is VeriFlow [48]. It is a dynamic solution which verifies

network correctness in real time. The key challenge is to

keep the network latency to a minimum possible value when

performing verifications as the network evolves. VeriFlow

works as layer between the controller and the switches and

checks the validity of network invariants whenever a new

forwarding rule is installed.

VeriFlow’s primary job is to keep track of every

forwarding-state change event. This is done by dividing the

network into a set of equivalence classes on the basis of exist-

ing rules. Packets belonging to a certain class undergo the

same forwarding decisions throughout the network. When it

is time to introduce a new rule, the classes that will be altered

are located and network invariants are verified within those

classes. VeriFlow maintains individual forwarding graphs

for the equivalence classes and traverses them to query the

invariants. Each flow modification is thus verified in real

time before it is implemented. VeriFlow then traverses these

graphs to determine the status of one or more invariants. The

logical structure of VeriFlow is shown in Fig. 24.

The VeriFlow prototype implementation is run using a

NOX controller managing a simulated OpenFlow network

on Mininet [49]. It shows that VeriFlow has minimal impact

on network performance and it takes only a few hundreds of

microseconds to verify network-wide invariants. However, as

per recommendation from the authors, it is not yet feasible to

implement VeriFlow with multiple controllers as it is difficult

to obtain a complete view of network state in that case.

3.4 Trust management solutions

A dynamic trust model is proposed in [50] arguing the

requirements for software attestation and trust management.

The authors put forward and exhibit the feasibility of a model

to support autonomic trust management in component-based

software systems. Their model allows a trustor to assess the

trustworthiness of the trustee by observing its behaviour.

Quality attributes such as Availability, Reliability, Integrity,

Safety, Maintainability, and Confidentiality are considered

as the parameter to measure the behaviour.

Another solution for trust management between Open-

Flow application and controller is given in [50]. The authors

propose PermOF, which isolates the controller kernel mod-

ules at runtime thus preventing the applications form calling

on them directly. It also defines a set of fine-grained permis-

sion categories namely Read, Notification, Write and System,

which allow sharply defined access privileges to applications.

It is argued that enforcing security policies is a deterministic

and low-cost solution for over-privilege problem in applica-

tions.

4 Security modelling

Threat or security modelling is a procedure for identifying

system objectives, associating known or foreseen vulnerabil-

ities and then defining countermeasures to prevent, mitigate

or minimize the effects of threats to the system. There

are three general approaches to threat modelling namely at

Attacker-centric, software-centric and asset-centric.

4.1 Attacker-centric

Attacker-centric threat modelling starts with an attacker,

and evaluates their goals, and how they might achieve

them. Attacker’s motivations are often considered which are

broadly categorized into either stealing information or jeop-

ardizing the system and the same is the reason this approach

starts from either entry points or assets.

Modelling using attack tree [40] is one such example of the

same in which any attack against a system is represented in

a tree structure, with the goal as the root node and different

ways of achieving that goal as leaf nodes. Complex attack
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Fig. 25 Attack tree for login to

a UNIX account [52]

trees with numerous sub-goals can further be divided into

separate trees for convenience. There is an AND/OR logic

between every node depending on how these nodes (attack

method) contribute to their parent node (goal/sub-goal).

Figure 25 represents an illustration of attack tree for login

to a UNIX account [52].

4.2 Software-centric

Software-centric threat modelling (also called ‘system-

centric,’ ‘design-centric,’ or ‘architecture-centric’) begins

with the design of the system, and attempts to step through

a model of the system, looking for types of attacks against

each element of the model. Microsoft’s STRIDE [39] model

is one example of the software-centric threat model.

The basic goal of security in a system is to ensure Con-

fidentiality, Integrity, Availability, Authentication, Autho-

rization and Non-repudiation. One way to ensure that the

application have these properties is to employ threat mod-

elling using STRIDE, an acronym for Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service, and

Elevation of Privilege. It is a security model focusing primar-

ily on the application security aspects of the system.

The system under observation is decomposed into rel-

evant components and the inter-component interaction is

highlighted using Data Flow Diagram, UML or any other

representation. Each component is then analysed for suscep-

tibility to above six threats. What follows is the mitigation of

the threats by introducing security components. The process

is then repeated until threats are alleviated and a comfortable

argument can be passed for the system being secure.

Primarily, the STRIDE model is developed for applica-

tion and software security but can be expanded to the system

level. However, it is unjustifiable to use the same for net-

works as the entities in network are inherently different from

that of applications. For example, to mitigate the threat of

information disclosure between two software components,

the most common way is to upgrade your APIs to the ones

that support secure protocols such as SSL/TLS or IPSEC.

However, the same upgrade is not available in network com-

ponents at easy cost. The solution is either a device upgrade

or installing a new hardware that comes with its own piece

of vulnerabilities.

4.3 Asset-centric

Asset-centric threat modelling starts from assets entrusted to

a system, such as a collection of sensitive personal informa-

tion. Assets are classified according to data sensitivity level

and their value to a potential attacker, to prioritize risk levels.

Although obsolete but Microsoft’s DREAD [50] model is one

example of asset-centric security evaluation of the software

system.

DREAD is used to quantify, compare and prioritize the

amount of risk presented by each evaluated threat. The

DREAD acronym is formed from the first letter of each cat-

egory as Eq. (6)
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Risk_DREAD = (DAMAGE + REPRODUCIBILITY

+ EXPLOITABILITY + AFFECTED USERS

+ DISCOVERABILITY)/5. (6)

The calculation always produces a number between 0 and

10. Higher numbers indicate more serious risk.

4.4 Hybrid models

Despite the usability and flexibility of both models presented

by Microsoft, however, there exist a few less flexible or

limited threat modelling techniques such as TRIKE [54],

AS/NZS 4360:2004 Risk Management [55], CVSS [56] and

OCTAVE [57].

5 Antifragile cyber security model

In this section, we propose a cyber security model for SDN

framework as a unified approach to put together all elements

of securing SDN- enabled systems. The concept of antifragile

cyber security is introduced and the application of this model

in this perspective is also outlined.

5.1 Fundamentals of cyber security model

The fundamental concept of our model suggests seven key

threats to SDN-enabled networks while connecting to the

cyber world. These are (1) Scanning/Enumeration/Probing,

(2) Spoofing, (3) Sniffing, (4) DoS/DDoS flooding, (5) Unau-

thorized Access/Elevation of Privileges, (6) Malwares/Logic

Bombs and (7) Anti-Forensic Techniques. Our proposed

model merges the need of securing SDN itself with the secu-

rity services offered by SDN into a single entity and is the

first step towards achieving the overall objective of antifragile

cyber security.

5.1.1 Scanning/enumeration/probing

The very basic of an attack starts with a scanning or probing

attempts against the target. Here, the word scanning, probing

and enumeration are used interchangeably in our proposed

model. Probing can be done in many ways but the basic goal

is always the same, i.e. to know the maximum about the

network and its services.

We propose that the following different kinds of probing

attack can affect the SDN network as shown in Fig. 26,

1. Network scanning—used to visualize the network, such

as placement of controller, switch architecture and man-

agement stations.

2. Port scanning—used to gain knowledge about the ser-

vices running within the network, applications using

Fig. 26 Affected segments from Probing Attack

Fig. 27 A typical IP spoofing attack

specific ports can be revealed through port scanning.

Target systems are SDN controller and application

servers.

3. Vulnerability scanning—application servers and SDN

controller are potential victims. Host operating system’s

vulnerabilities serve as primary target in such scanning

attack.

Possible countermeasures include different ways to hide

the identity of hosts in the network, host hardening and patch-

ing for possible vulnerabilities

5.1.2 Spoofing attack

A malicious party may impersonate another device or user

on a network to launch attacks against network hosts such

as Man-in-middle and Denial of Service attacks, steal data,

spread malware or circumvent access controls. Some of the

most common methods include IP/Port spoofing shown in

Fig. 27, ARP spoofing and MAC (device) spoofing attacks as

shown in Fig. 28.
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Fig. 28 A basic MAC spoofing/ARP cache poisoning attack

We envision that SDNs are no exception to these spoofing

attacks and when it comes to securing them, there is still a

lot of work required to be done.

Our model proposes the following types of possible spoof-

ing attacks on the SDN-enabled networks, and is illustrated

in Fig. 29.

1. IP/Port Spoofing: Can lead to DoS/DDoS attack against

the infrastructure including the controller.

2. ARP Spoofing/Poisoning attack: A malicious party can

use ARP spoofing to steal information, modify data in

transit or stop traffic on a network. The network is poi-

soned with false ARP information so that the legitimate

communicating parties unknowingly start transmitting

data to the adversary. We envision that a successful attack

on SDN can effectively poison the network topology

information. With the poisoned network visibility, the

upper-layer OpenFlow controller services and applica-

tions may be totally misled, leading to serious hijacking,

denial of service or man-in-the-middle attacks.

3. MAC Spoofing: Impersonating a device using the legit-

imate device identity, e.g. MAC address can seriously

downgrade the network performance and may lead to

data stealth as well. We suggest that a rogue switch or a

rogue machine may mislead the controller to make incor-

rect decisions which may jeopardize the performance of

overall network. An impersonated SDN controller can

wreak havoc and can lead to more serious consequences.

5.1.3 Sniffing

Sniffing involves capturing, decoding, inspecting and inter-

preting the information inside a network packet on a TCP/IP

network. The purpose is to steal information, usually user

IDs, passwords and network details. Sniffing is generally

referred to as a “passive” type of attack, wherein the attackers

sit silent/invisible on the network which makes it difficult to

detect, and hence it is a dangerous type of attack. Figure 30

Fig. 29 Possible areas affected by spoofing attack (attacker imperson-

ates as a legitimate user)

Fig. 30 Possible areas of sniffing attack

shows the proposed areas of SDN affected by sniffing attack.

Sniffing can range from Layer 1 through Layer 7 depending

on the type of information required by the attacker. It is very

hard to detect a sniffer on network because its activities are

quiet and powerful and many times there are no traces left to

determine the presence of a sniffer.

There is no effective solution which can be used to defend

against the sniffer’s installation and attack on a network.

Limiting broadcast information and using secure transfer

protocols may limit the dangers of the sniffing attacks. How-

ever, the prelude to sniffing is the spoofing attack and hence,

in our recommendation if avoided, may lead to avoid the

sniffing attack.

5.1.4 DoS/DDoS flooding

DoS/DDoS attack is considered a nightmare for networked

systems. Leveraging the SDN’s capabilities of providing

security as a service shows great promise for mitigation of

DoS/DDoS attacks. However, SDN’s own infrastructure is
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Fig. 31 Possible avenues of DoS/DDoS attack

highly susceptible to DoS/DDoS attack at every layer of

abstraction, i.e. Application, Control and Infrastructure lay-

ers, but very little work has been done in this regard. We

suggest that there is a need of an integrated solution that

is able to cope with this dilemma of SDN being both the

defender and victim of DoS/DDoS attacks.

Figure 31 shows the possible areas affected due to a

DoS/DDoS attack. There are numerous DDoS attack meth-

ods used to degrade the overall performance of the services

associated with the target network. These methods can be

classified as

1. Volume-based attacks such as UDP floods, ICMP floods,

and other spoofed-packet floods that can target the net-

work links in SDN.

2. Protocol level attack such as SYN floods, fragmented

packet attacks, Ping of Death, Smurf DDoS can target

the switches and controller in SDN.

3. Application layer attacks include Buffer overflow and

Zero-day attack and can affect the SDN-enabled appli-

cations.

5.1.5 Unauthorized access/elevation of privileges

Unauthorized access, access in excess of authorization and

elevation of privileges are the class of attack through which

a bug, design flaw, or a misconfiguration in software or the

operating system is exploited to gain privileged access to the

system resources.

We suggest that programmability of SDN by applica-

tions leaves room for misbehaving applications fiddling with

the underlying network. Vulnerabilities in application may

help an adversary to not only compromise application but

the entire network. A compromised or malicious applica-

tion running on top of SDN can access system or network

resources beyond its access. For example, a poorly config-

ured web application running on a specific operating system

may allow the entire OS and other running application shar-

ing the same server to be compromised. Figure 32 shows the

possible points where a rogue user can escalate privileges to

gain unauthorized access to system resources not meant for

it.

5.1.6 Malwares/logic bomb

Although malwares have remained a consistent threat

throughout the history of software, their functioning and

potential to damage the victim has changed ever since.

Benign applications may contain pieces of code planned to

execute at some fixed point in time, i.e. logic or time bomb.

Code or software containing a logic bomb may not be

detected by traditional antimalware tools. These tools use

custom code designed for a particular system and scenario

and hence no signature for logic bomb exists to detect them.

We believe that in any data centre network, with application-

driven network infrastructure, it would be nightmare to see

an application suddenly behaving maliciously and wreaking

Fig. 32 Possible points of privilege escalation

Fig. 33 Possible avenues of attack by Malwares
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Fig. 34 Possible threat avenues

of anti-forensic techniques

havoc in the network with the first step as confusing the con-

troller.

Antivirus softwares and IDPS can be a solution to detect

and prevent damage from malwares. However, we suggest

that the need of hour is to think about application trust level

in addition to other mechanisms. An application communi-

cating with controller to gain access to the SDN network

resources must be first signed and trusted. Figure 33 illus-

trates the possible victim areas when a malware spreads

across the network through infected nodes.

5.1.7 Anti-forensic techniques

Anti-forensic techniques range from as little as removing or

manipulating the traces of attacks to something more stren-

uous as attacking the forensic tools. One of the most widely

accepted subcategory breakdowns was developed by author

in [66]. He has proposed the following sub-categories, (1)

data hiding, (2) artefact wiping, (3) trail obfuscation and (4)

attacks against the computer forensics (CF) processes and

tools.

To investigate and establish facts about an incident, we

suggest that reliable information from all components and

domains of the network is required. Furthermore, this data

will only be useful if its trustworthiness (integrity, authentic-

ity, etc.) can be guaranteed. Similarly, remediation requires

reliable system snapshots to bring network elements to

their working state. The potential areas affected when anti-

forensic techniques are in place to risk the availability of

logged data can be seen in Fig. 34.

5.2 Antifragile cyber security

Our proposed cyber security model has suggested the over-

whelming threats and potential victim areas within SDN-

enabled system and is summarized as Table 2. Applying this

proposed cyber security model can be a repetitive process

evolving with the passage of time as new vulnerabilities

become known in systems and new threats start hovering

over the horizon of information. A classical cycle of security

management Plan, Protect and Respond (PPR) [58] is shown

in Fig. 35. This cycle starts from the very principal of plan-

ning with identifying vulnerabilities, threats and associated

risks to information. These risks are then covered by deter-

ring the related threats by possible means and standing by

for a possible response in case of an incident. This method of

protection continues till the lifecycle of the system and after

every response there happens to be always another phase of

planning, protecting and responding.

Within the PPR cycle, there are methods and proce-

dures involved along with a number of underlying tools and

techniques. They have characteristics that are employed to

prevent, detect, deny and respond to threats imminent to

our information. However, apart from the discussion on their

usage, they always try to facilitate the above-mentioned PPR

cycle to work toward a single goal of realizing a system that

is resilient in case of cyber threats.

The advent of modern technologies such as Internet of

Thing (IoT) and wireless sensor networks (WSNs) deems

it necessary to build systems that are less prone to errors.

A trend of reducing human intervention, in case of recov-
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Table 2 Summary of antifragile cyber security model for SDN

Sr. Threats Sub-categories SDN specific

1 Scanning/Enumeration/

Probing

Network scanning Different types of flows can be originated within SDN to

know the placement of SDN controller(s) and to know

about the topology
Port scan

Vulnerability scanning

2 Spoofing IP-Port spoofing Fake or forged flows, Pre-Req to DoS

ARP spoofing Cache poisoning, MiTM

DNS spoofing Rogue applications

MAC (device spoofing) Rogue switch, rogue controller

3 Sniffing Network (1) Application to controller,

Protocol (2) Controller to switch and

Packet (3) Switch to host communication

4 DoS/DDoS floods Volume-based attacks Saturates bandwidth

Protocol attacks Saturates hardware or server resources

Application layer attack Buffer overflow, Zero day attack etc

5 Unauthorized

Access/Elevation of

Privileges

(1) Programmability of SDN by applications leaves

room for misbehaving applications that may try to

access system or network resources beyond its access

(2) Vulnerabilities in application may help an adversary

to not only compromise application but the entire

network

6 Malwares/Logic Bomb Virus Can corrupt or remove files, spread to other systems and

attaches itself into files and other programs

Worms Can replicates functional copies by exploiting

vulnerabilities in targeted systems

Trojans Can be hidden inside applications that appear to be safe

7 Anti-Forensic Techniques SDN provides a much reliable view of activities within a

network. It can be used as a point of observation for

investigating faults within a network

PROTECT
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Fig. 35 Classical PPR cycle

ering from faults, errors and other damages, is seen for

these systems. The literature presented in [59–63] are a few

cases advocating the need to induce knowledge and intelli-

gence in modern systems. These intelligent systems, when

deployed with minimum knowledge, must learn from their

environment in the wake of challenges and obstacles, making

mistakes and growing stronger as time passes by. This con-

cept of growing stronger is the exact depiction of antifragility

and such intelligence can be added in our security-related sys-

tems, techniques and tools to let them learn from their past

behaviours.

Keeping in view these facts, we propose to apply this con-

cept to the domain of cyber security in the same way as that

of any other realm so as to move beyond resilient security

towards antifragile cyber security.

The concept of proposed antifragile cyber security can be

seen in Fig. 36. The security mechanisms, i.e. tools, tech-

niques and methods, underlying the conventional PPR cycle
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Fig. 36 Antifragile cyber security

are modified so that they are now iterative in nature. They can

now gain from their knowledge base to grow with the passage

of time. These techniques have the behaviours necessary to

be independently antifragile in addition to facilitate and cor-

respond with other techniques and methods. An example of

this solution can be thought of as a technique for detection of

DDoS attack with a behaviour and pattern recognition sys-

tem that continually evolves with passage of time. This DDoS

detection technique can be used to complement prevention

and mitigation of DDoS attacks.

The conventional PPR cycle may not suffice for our

proposed elastic behaviour of security mechanisms. If the

underlying techniques are meant to grow but not the process

itself, this might not be a complete antifragility. We suggest

adding new methods for learning and comprehension to this

cycle, as shown in Fig. 36. This way we can accommodate

the cognitive behaviour of underlying security mechanisms

to achieve the overall goal of a complete antifragile cyber

security mechanism. SDN happens to be just the right way

to realize it.

In conventional networks, there are disintegrated points

of knowledge, due to different hardware, software and

configurations. The problem of collecting and correlating

networking data, specifically related to security, increases

exponentially with the network expansion. Contrary to that,

SDN’s central control of network knowledge has the capabil-

ity to learn and offer learning to other processes to aid them

develop cognitive behaviour. Although very little work has

been done with this perspective in mind, but our proposed

Antifragile Cyber Security Model can be founded on the

principal of security provisions offered by SDN. However, it

eventually lacks the strength in the absence of securing SDN

itself. The techniques mentioned in Sect. 2 are summarized

Table 3 Security enhancement with SDN offering antifragility

Summary of security enhancement using SDN

Category Technique Antifragility

Monitoring systems and

middleboxes

SLICK [6] NO

FlowTags [7] NO

SIMPLE [8] NO

OpenSAFE [9] NO

CloudWatcher [10] NO

SDN for security as a service

Spoofing detection Du et al. [13] NO

BASE [14] NO

SEFA [17] NO

Scanning and anomaly detection MTD [18] NO

AnonyFlow [21] NO

L-IDS [22] YES

Mehdi et al. [23] NO

DoS/DDoS mitigation Braga et al. [29] YES

Dillon [33] NO

Forensic techniques Adam et al. [34] NO

Security framework FRESCO [36] NO

as Table 3 in terms of their contribution towards antifragile

cyber security.

6 Conclusion

SDNs are known for their resilience and antifragile nature.

This paper has outlined a model for securing information

from cyber threats in capacity of SDNs in addition to intro-

ducing the concept of antifragile cyber security. Our proposed

work is a prelude to this concept and serves as the basis for

thinking differently in terms of cyber security in this fast

pacing era of technology. SDNs are currently trending as the

enabler for security; however, requirement for SDN’s own

security cannot be denied. This paper has highlighted the con-

tributions made for SDN-enabled security and their potential

for making systems more than resilient. Securing SDN itself

is the basic necessity and this paper has argued on bridging

the gap between both “Security with SDN” and “Security for

SDN” by presenting a unified model of Antifragile Cyber

Security within SDN. The model has also highlighted the

major cyber threats prevailing in the SDN-based systems and

has indicated the focal points of concern whether information

is being processed by the application, transiting the network,

or resident in storage.

7 Future work

The proposed model can be implemented using SDN frame-

work, focusing on exploiting the benefits of SDN in terms of
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its antifragile nature. The future plan is to contribute to the

same model by practically implementing it as suite of tools to

judge the efficiency of our proposed idea of antifragile cyber

security.
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