GLOWAVolta

OWA

Modelling daily precipitation features in the Volta Basin of West Africa

Patrick Laux ${ }^{1}$, Sven Wagner ${ }^{1}$, Harald Kunstmann ${ }^{1}$ \& András Bárdossy ${ }^{2}$ Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe GmbH, Garmisch-Partenkirchen, Germany
${ }_{2}$ Institute for Hydraulic Engineering, University of Stuttgart, Germany

Motivation

The analysis of the monthly or annual precipitation amount does not provide any adequate information for agricultural sector in the Volta Basin. Therefore, rainfall modelling must be performed on a daily basis to account for the intra-seasonal rainfall distribution. As an example, the dry spells occurrences with durations of more than 6 days within the following month after planting are calculated, because they are essential for the survival of the plants (Laux et al., 2008A).
Important plant physiological needs are calculated and condensed to maps for agricultural decision support. These maps can assist farmers in their decision when, where and what to plant (Laux et al., 2008B).

Methodologies

- Markov chain model (zero and first order) and gamma distribution for modelling rainfall occurrence and rainfall amount
- Effective Drought Index (EDI) to derive important drought properties
- Copula approach to model drought events more realistic considering jointly drought duration and drought intensity

Results

Fig. 4: Spatial distribution of rainfall occurrence pr
information, was applied for spatial interpolation.

Based on the EDI time series (Fig. 5), drought intensity, drought duration and drought interarrival time are calculated for 5 different regions within the Volta Basin. Strong linear dependencies between drought duration (DD) and drought intensity (DI) can be found (Fig. 6). The events are accumulated in the lower marginals. A Clayton copula model is estimated to account for the joint distribution of DD and DI under consideration of the marginal distribution. On that basis, regional drought return periods are derived.

References

[^0]
[^0]: Laux, P., Kunstmann, H. \& Bárdossy A. (2008A): Predicting the Regional Onset of the Rainy Season in West Africa; International Journal of Climatology, Vol. 28, issue 3, pp. 329-342.
 Laux, P., Wagner, S., Wagner, A., Kunstmann, H. \& Bárdossy A. (2008B): Modelling Daily Precipitation Features for the Volta Basin in West Africa; submitted to International Journal of Climatology.

