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Insertion and deletion are operations that occur commonly in DNA processing and RNA editing. Since biological macro-

molecules can be viewed as symbols, gene sequences can be represented as strings and structures can be interpreted as

languages. This suggests that the bio-molecular structures that occur at different levels can be theoretically studied by for-

mal languages. In the literature, there is no unique grammar formalism that captures various bio-molecular structures. To

overcome this deficiency, in this paper, we introduce a simple grammar model called the matrix insertion–deletion system,

and using it we model several bio-molecular structures that occur at the intramolecular, intermolecular and RNA secondary

levels.
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1. Introduction

Natural computing is a field of research that investigates

various computing models and computational

(algorithms) techniques that are inspired by nature.

It is an interdisciplinary area that nudges natural science

with computing science, and attempts to understand the

world around us in terms of information processing. In

the last few decades, natural computing which includes

biologically inspired computing, has been pursued with

a great deal of interest. This comprises evolutionary

computing (Eiben and Smith, 2003), membrane com-

puting (Calude and Paŭn, 2001), genetic algorithms

(Goldberg, 1989), DNA computing (Păun et al., 1998),

ant colony optimization (Dorigo and Stutzle, 2004) and

many other computing models that are inspired from

biology and nature. The developments which have taken

place in DNA computing inspired the definition and study

of new theoretical models in formal language theory,

such as sticker systems, splicing systems, Watson–Crick

automata, insertion–deletion systems and P systems

∗Corresponding author

(Calude and Paŭn, 2001; Păun et al., 1998; Păun, 2002).

Insertion–deletion systems are introduced to

theoretically analyze the insertion and deletion operations

that take place in gene sequences. These operations

frequently occur in DNA processing and RNA editing.

The insertion operation was first studied by Galiukschov

(1982). A study of properties of the insertion operation

was carried out by Haussler (1982; 1983). Informally, the

insertion and deletion operations of an insertion–deletion

system are defined as follows: If a string β is inserted

between two parts w1 and w2 of a string w1w2 to get

w1βw2, we call the operation insertion, whereas if a

substring α is deleted from a string w1αw2 to get w1w2,

we call the operation deletion. Consider a production of

the form A → cAB in a rewriting system. In a derivation

step, if there is a presence of non-terminal A, then it

will be replaced by cAB. But in the insertion–deletion

system the derivations are obtained either by inserting or

by deleting a string. As the system is not exactly based

on the rewriting mechanism, it has attracted particular

attention in the field of formal language theory.

The biological sequences that occur in DNA, RNA

klakshma@vit.ac.in
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and protein molecules can be considered words formed

over well-defined chemical alphabets. The DNA molecule

consists of sequences that are built of nucleotides, which

are in four forms: a(adenine), t(thymine), g(guanine),
c(cytosine). The RNA molecule consists of sequences

that are built of nucleotides, which are in four forms; a,

u(uracil), g, c. The complementary pair for RNA (DNA)

is given as ā = u(t), ū(t̄) = a, ḡ = c and c̄ = g. Based

on the complementary pairs in chemical objects and other

biological constraints, sequences form patterns and these

patterns are considered structures. These structures play

a vital role in governing the functionality and behavior of

bio-molecules (Brendel and Busse, 1984; Searls, 1993).

Gene sequence prediction is considered one of the

important and fundamental problems in computational

biology. Such a sequence prediction problem is

dealt with by developing suitable string (pattern)

matching algorithms. The above mentioned problem is

somewhat akin to analyzing the structural descriptions

in computational linguistics. The following example

shares a common point between formal languages and

molecular strings. Consider the context-free language

L = {wwR | w ∈ {a, b}∗}, where wR is the reversal

of w. For example, if w is aabb, then wR will be

bbaa. Consider the gene sequence cggcaacggc. This

gene sequence resembles the palindrome (context-free)

language {wwR | w ∈ {a, u, g, c}∗}. Also, there

exist some relations between bio-molecular sequences and

non-context-free natural language constructions such as

triple agreements: {anbncn | n ≥ 1}, crossed depen-

dencies: {anbmcndm | n,m ≥ 1} and copy language:

{ww | w ∈ {a, b}∗} (Searls, 1992; 1993; 2002). They are

discussed in the next paragraph.

We now discuss briefly the bio-molecular structures

that are frequently noticed in bio-molecules such as

protein, DNA and RNA. Figure 1 shows two popular

structures, stem and loop and hairpin, which can

be modelled by context-free grammars (Searls, 1988).

Figure 2 shows two structures, pseudoknot and atten-

uator, which are beyond the power of context-free

grammars (Searls, 1992). In Figs. 1 and 2, the strings

are obtained by reading the symbols as per directed

dotted lines. The string cuucaucagaaaaugac represents

the stem and loop language (Fig. 1(a)) and the string

atcgcgat represents the hairpin language (Fig. 1(b)). The

string gcucgcga (Fig. 2(a)) represents the pseudoknot

structure and the string gucgacgucgac (refer Fig. 2(b))

represents attenuator structure. Figure 2 shows the

coherence between the natural language constructs and

the gene sequences. Figure 2(a) represents the pseudoknot

structure, which has the crossed dependency pattern, and

Figure 2(b) represents the attenuator structure, which

has the copy language pattern. The formal language

notations for such structures and for a few other structures

are discussed in detail in the coming sections. For

more details on genome structures, their corresponding

languages and gene structure prediction using linguistic

methods, we refer to the works of Brendel and Busse

(1984), Chiang et al. (2006), Dong and Searls (1994),

Durbin et al. (1998), as well as Searls (1988; 1992; 2002).
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Fig. 1. Bio-molecular structures: stem and loop (where the ◦ de-

notes the complementary pair) (a), hairpin (where S is a

non-terminal for the context-free grammar and # denotes

the empty string) (b).
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Fig. 2. Pseudoknot (a), attenuator (b).
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Fig. 3. Intermolecular structures: double stranded molecule

(where S is a non-terminal for the context-free gram-

mar) (a), nick language (where S is a non-terminal for

the context-free grammar) (b).

The structures that are formed in RNA are mostly

intermolecular. Figure 3 represents some of the

intermolecular structures (Searls, 1995): (a) double strand

language and (b) nick language, where the cut takes place

at arbitrary positions, which is represented by a •. The

double strand language can be given as {w • wR | w ∈
{a, u, g, c}∗}. In a double stranded molecule, if the cut
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is done at many places, then the molecule is said to be

nicked.

The study of linguistic behavior of biological

sequences using formal grammars was initiated in the

work of Brendel and Busse (1984) as well as Head

(1987). Soon after, it was carried out by Searls (1988;

1992; 1993). In this regard, in the last two decades,

there have been many attempts made to establish the

linguistic behavior of biological sequences by defining

new grammar formalisms like cut grammars, ligation

grammars (Searls, 1988; 1992; 1993) crossed-interaction

grammar (Rivas and Eddy, 2000), simple linear tree ad-

joining grammars and extended simple linear tree adjoin-

ing grammars (Uemura et al., 1999). These are capable

of generating some of the biological structures mentioned

above.

Like DNA and protein, RNA is also considered one

of the important and essential macromolecules that occur

in all forms of life. RNA structures are mainly classified

as primary, secondary and tertiary structures. The

primary structures of a nucleic acid molecule represent

the exact sequence of nucleotides that forms the complete

molecule. The secondary structures are a two dimensional

representation formed by folding back onto itself the base

pairing of complementary nucleotides (Watson–Crick

pairs). The tertiary structures are 3D structures formed

by a single molecule. 3D structures formed by more

than one molecule are called quaternary structures. Study

of such structures tends to be more complex as it is

very difficult to predict the interactions between the

molecules. In an RNA secondary structure, the basic

(a) (b)

Fig. 4. RNA secondary structure: internal loop (a), bulge

loop (b).

structural motifs can be classified as stem and loop (H-

loop) (Fig. 1(a)), internal loop (I-loop) (Fig. 4(a)), bulge

loop (B-loop) (Fig. 4(b)) and multi branch loop (M-

loop) (Fig. 5(a)). Pseudoknots are also considered to

be a structural motif and are formed later in the folding

process. Extended pseudoknots (Fig. 5(b)) and kiss-

ing hairpin (Fig. 6) are considered to be a common

folding motif belonging to the class of pseudoknots.

(a) (b)

Fig. 5. RNA secondary structures: multi branch loop (a), ex-

tended pseudoknot (b).

To model and predict such structures, many attempts

have been made by defining new grammar formalisms

like stochastic context-free grammars (Sakakibara et al.,

1996), pair hidden Markov models (Sakakibara, 2003)

and stochastic multiple context-free grammars (Yuki and

Kasami, 2006). In particular, more research work is

carried out on RNA pseudoknotted secondary structure

prediction. In the work of Theis et al. (2010), prediction

of RNA secondary structure is carried out including

kissing hairpins. Cai et al. (2003) propose a grammatical

approach for stochastic modelling of RNA pesudoknotted

structures. In the work of Brown and Wilson (1995),

RNA pseudoknot interactions are modelled using the

intersection of stochastic context-free grammars. For

more details on RNA secondary structures, we refer to

the works of Lyngso et al. (1999), Lyngso and Pedersen

(2000) or Rivas and Eddy (2000). Figure 7 shows

Fig. 6. RNA secondary structure: kissing hairpin.

the simple H-type and recursive pseudoknot structure.

Figure 8 presents the three-knot structure. Elements

u1, u2, u3, u4, u5, ū1
R, ū2

R, ū3
R, ū4

R, ū5
R, v, v1, v2, v3,

v4, AĀ, BB̄ used in Figs. 4(a), 4(b), 5(a), 5(b), 6,

7(a), 7(b) and 8 are explained in Section 5. Table 1

shows various bio-molecular structures that are commonly

noticed in DNA, protein, RNA secondary structures and

their corresponding formal grammars which generate the

structure.

However, there is no unique grammar model

that encapsulates all the above-discussed bio-molecular

structures. For example, the double copy language

cannot be modelled by a simple linear tree adjoining
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Fig. 7. RNA secondary structures: simple H-type (a), recursive

pseudoknot (b).
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Fig. 8. RNA secondary structure: three-knot structure.

grammar (Uemura et al., 1999). To overcome this failure,

we introduced (Kuppusamy et al., 2011a) a simple and

powerful grammar model called matrix insertion–deletion

systems that captures all the popular and important

bio-molecular structures noticed often in bio-molecules.

We also modelled the various bio-molecular structures

that occur at the intramolecular level such as pseudo

knot, hairpin, stem and loop, attenuator (Kuppusamy et

al., 2011a). We have modelled the various bio-molecular

structures that occur at intermolecular level such as double

strand language, nick language, holliday structure, repli-

cation fork (Kuppusamy et al., 2011b).

In this paper, we substantially extend our work

by introducing many RNA bio-molecular structures (see

Section 5) and give a formal language representation

for each such structure. Further, we model such

structures using the matrix insertion–deletion system.

Thus, this paper is an extended journal version of past

conference papers (Lakshmanan et al., 2011a; 2011b).

Incidentally, in the work of Petre and Verlan (2012),

the same matrix insertion–deletion system was discussed

and analyzed the computational completeness result for

the system. However, the motivation was not from a

biological inspiration; it was rather an extension of matrix

grammars. In the work of Petre and Verlan (2012),

matrix insertion–deletion systems were introduced with

the following measures: (i) the maximum number of rules

Table 1. Bio-molecular structure and the corresponding formal

grammar.

Bio-molecular structure

Figure number(s) Formal grammar

Hairpin

Fig. 1(b) Context free grammar

Stem and loop

Fig. 1(a) Context free grammar

Attenuator

Fig. 2(b) Tree adjoining grammar

Pseudoknot

Fig. 2(a) Tree adjoining grammar

Cloverleaf

Fig. 9 Context free grammar

Nick

Fig. 3(b) Cut grammar

Double strand

Fig. 3(a) Ligation grammar

Holliday

Fig. 10 Ligation grammar

RNA structures Stochastic CFG

Figs. 4(a), 4(b), 5(a), 5(b) Multiple stochastic CFG

6, 7(a), 7(b), 8 Pair HMM

Stochastic multiple CFG

in a matrix is denoted by k, (ii) the maximal length of the

left and right context used in the insertion rules is denoted

with m and m′, respectively, (iii) the maximal length of

the left and right context used in deletion rules is denoted

with q and q′, respectively, (iv) the maximal length of the

inserted string is denoted with n, (v) the maximal length

of the deleted string is denoted with p.

Based on these measures, the family of

languages generated by matrix insertion–deletion

systems is denoted by MatkINSm,m′

n DELq,q′

p .

With these measures, in the work of Petre and

Verlan (2012), the computational completeness

result (i.e., showing equivalence to recursively

enumerable languages) for the matrix insertion–deletion

system was proved for the combinations

Mat3INS1,0
1 DEL0,0

2 , Mat3INS1,0
1 DEL1,0

1 , Mat3
INS1,0

1 DEL0,1
1 and Mat3INS0,0

2 DEL1,0
1 . In the

same paper, with binary matrices (matrices having

two rules) the computational completeness result was

proved for the combinations Mat2INS0,0
2 DEL1,0

1 and

Mat2INS1,0
1 DEL0,0

2 . Note that, in these results when

no context is considered in deletion rules, the maximal

length of the deleted string is 2. Also, insertion and

deletion rules are together used in a matrix. In this paper,

we have modelled the bio-molecular structures using the

matrix insertion–deletion systems where the length of the

deletion string is 1 only. Also, insertion and deletion rules

are not used together in a matrix.

This paper is organized as follows. In Section 2,
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we deal with the preliminaries. In Section 3, we

briefly introduce matrix insertion–deletion systems. In

Section 4, we show that these systems can encompass

several essential bio-molecular structures that occur at

intramolecular and intermolecular levels in DNA and

RNA. In Section 5, we give the language representation

for RNA secondary structures and we model them using

our grammar model. In Section 6, we conclude the paper

with further research direction.

2. Preliminaries

We start with recalling some basic notation used in formal

language theory. A finite non-empty set V or Σ is called

an alphabet. ΣDNA is a finite non-empty set over the

symbols {a, t, g, c}. ΣRNA is a finite non-empty set over

the symbols {a, u, g, c}. We denote by V ∗ or Σ∗ the free

monoid generated by V orΣ, by λ its identity or the empty

string, and by V + or Σ+ the set V ∗ − {λ} or Σ∗ − {λ}.

The elements of V ∗ or Σ∗ are called words or strings. A

language L is defined as L ⊆ Σ∗. Let w be a string,

and |w|a denote the number of a in w. For more details

on formal language theory, we refer to Rozenberg and

Salomaa (1997).

Next, we recall the basic definition of

insertion–deletion systems. Given an insertion–deletion

system γ = (V, T,A,R), where V is an alphabet (set

of non-terminal and terminal symbols), T ⊆ V (set of

terminal symbols), A is a finite language over V , R
is a set of finite triples of the form (u, α/β, v), where

(u, v) ∈ V ∗ × V ∗, (α, β) ∈ (V + × {λ}) ∪ ({λ} × V +).
The pair (u, v) is called contexts, which will be used

in deletion/insertion rules. The insertion rule is of the

form (u, λ/β, v), which means that β is inserted between

u and v. The deletion rule is of the form (u, α/λ, v),
which means that α is deleted between u and v. In

other words, (u, λ/β, v) corresponds to the rewriting rule

uv → uβv, and (u, α/λ, v) corresponds to the rewriting

rule uαv → uv.

Consequently, for x, y ∈ V ∗ we can write x =⇒∗ y,

if y can be obtained from x by using either an insertion

rule or a deletion rule which is given as follows (the down

arrow ↓ indicates the position where the string is inserted,

the down arrow ⇓ indicates the position where the string

is deleted and the underlined string indicates the string

inserted):

(i) x = x1u
↓vx2, y = x1uβvx2, for some x1, x2 ∈ V ∗

and (u, λ/β, v) ∈ R.

(ii) x = x1uαvx2, y = x1u
⇓vx2, for some x1, x2 ∈ V ∗

and (u, α/λ, v) ∈ R.

The language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A},

where =⇒∗ is the reflexive and transitive closure of the

relation =⇒.

Next, we discuss matrix grammar. A matrix

grammar is an ordered quadruple G = (N, T, S,M)
where N is a set of non-terminals, T is a set of terminals,

S ∈ N is the start symbol and M is a finite set of

nonempty sequences whose elements are ordered pairs

(P,Q). The pairs are referred to as productions and

written in the form P → Q. The sequences are referred

to as matrices and written as m = [P1 → Q1, . . . , Pr →
Qr], r ≥ 1. For a matrix grammar G, the relation =⇒ on

the set V ∗ is defined as follows. For any P,Q ∈ V ∗,

P =⇒ Q holds if and only if there exist an integer

r ≥ 1 and words β1, . . . , βr+1, P1, . . . , Pr, Q1, . . . , Qr,

R1, . . . , Rr, R1, . . . , Rr over V such that (i) αi = P
and αr+1 = Q, (ii) m is one of the matrices of G,

(iii) αi = RiPiR
i and αi+1 = RiQiR

i. If the above

conditions are satisfied, it is also said that P =⇒ Q holds

with specifications (m,R1). The reflexive and transitive

closure of =⇒ is denoted by =⇒∗. The above matrix

grammar is without appearance checking. The language

generated by the matrix grammar is defined by L(G) =
{w ∈ T ∗ | S =⇒∗ w}. A matrix grammar with ap-

pearance checking is defined as G = (N, T, S,M, F ),
where F is a set of occurrences of rules in the matrices

of M . While deriving, a rule may be exempted to apply

if the rule is in F . The language generated by the

matrix grammar with appearance checking is defined as

Lac(G,F ) = {w ∈ T ∗ | S =⇒∗ w}. For more details on

matrix grammars, we refer to the work of Rozenberg and

Salomaa (1997).

Next, we discuss cut grammars (Searls, 1995)

designed specifically for modelling intermolecular

structures. A cut grammar G = (N, T, S, P ) where N is

a finite set of non-terminals, T is a finite set of terminals,

S is a start symbol and P is a finite set of productions

in (N ∪ T )∗N(N ∪ T )∗ × (N ∪ T ∪ {•})∗ where •
is a new symbol called cut symbol not in N or T. The

language generated by the cut grammar is defined as

L(G) = {w ∈ (T ∪ •)∗ | S =⇒∗ w}.

Given any string w = w1 • w2 • . . . • wn where

wi ∈ T ∗ for 1 ≤ i ≤ n, the cut function is given as

ŵ = {w1, w2, . . . , wn} and the uncut function is given as

w̃ = w1w2 . . . wn. For a given cut grammar G and start

symbol S, the cut language is defined as L̂(G) = {ŵ ∈
2T

∗

| S =⇒∗ w} and the uncut language is defined as

L̃(G) = {w̃ ∈ T ∗ | S =⇒∗ w}. With cut grammars, the

structures double strand language, nick language, holl-

iday structure are represented. For more details on cut

grammars, we refer to the work of Searls (1995).

3. Matrix insertion–deletion systems

In this section, we explain the grammar model matrix

insertion–deletion systems. A matrix insertion–deletion
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system is a construct Υ = (V, T,A,R), where V is

an alphabet, T ⊆ V , A is a finite language over

V , R is a set of finite triples in the matrix format

[(u1, α1/β1, v1), . . . , (un, αn/βn, vn)], where (uk, vk) ∈
V ∗×V ∗, and (αk, βk) ∈ (V +×{λ})∪({λ}×V +), with

(uk, αk/βk, vk) ∈ RIi ∪ RDj
∪ RIi/Dj

, for 1 ≤ i ≤ m,

1 ≤ j ≤ m, 1 ≤ k ≤ n, where m is the number of rules

in the matrix format in R. Here RIi denotes the matrix

which consists of only insertion rules, RDj
denotes the

matrix which consists of only deletion rules and RIi/Dj

denotes the matrix which consists of both insertion and

deletion rules.

Consequently, for x, y ∈ V ∗ we can write x =⇒
x′ =⇒ x′′ =⇒ . . . =⇒ y, if y can be obtained from

x by using a matrix consisting of insertion rules (RIi ),

or deletion rules (RDj
) or insertion and deletion rules

(RIi/Dj
). In a derivation step the rules in a matrix are

applied sequentially one after the other in order, and

no rule is in appearance checking (note that the rules

in a matrix are not applied in parallel). The language

generated by Υ is defined by

L(Υ) = {w ∈ T ∗ | x =⇒∗
Rχ

w, for some

x ∈ A, χ ∈ {Ii, Dj , Ii/Dj}},

where Rχ denotes the matrix rules from an insertion

matrix or a deletion matrix or a combination of both the

rules. =⇒∗ is the reflexive and transitive closure of the

relation =⇒. Note that the string w is collected after

applying all the rules in a matrix and also w ∈ T ∗.

4. Modelling bio-molecular structures

In this section, we show that matrix insertion–deletion

systems can capture the commonly noticed biological

structures that are discussed earlier in the paper. In most

of the following derivations, in each derivation step, we

directly write the resultant string obtained by applying

all the rules in a matrix. In all the lemmas, we adopt

the method of proof by construction in modelling the

bio-molecular structures using matrix insertion–deletion

systems. In the derivation step, the rule at the suffix of

=⇒ denotes the corresponding matrix rule applied. From

the formal language theory perspective, since structures

can be viewed as languages, in many places we refer to be

structure as language.

4.1. Representation of intramolecular structures.

In this section, we model some of the bio-molecular

structures that occur at the intramolecular level.

Lemma 1. The pseudoknot structure language (see

Fig. 2(a)) Lps = {uvūRv̄R | u, v ∈ Σ∗
DNA} can be gen-

erated by a matrix insertion–deletion system.

Proof. The language Lps can be generated

by the matrix insertion–deletion system Υps =
({b, b̄, †1, †2, †3, †4}, {b,
b̄}, {λ, †1 †2 †3†4}, R), where b ∈ {a, t, g, c}, b̄ is

complement of b and R is given as follows:

RI1 = [(λ, λ/b, †1), (λ, λ/b̄, †3)],

RI2 = [(λ, λ/b, †2), (λ, λ/b̄, †4)],

RD1
= [(λ, †1/λ, λ), (λ, †3/λ, λ)],

RD2
= [(λ, †2/λ, λ), (λ, †4/λ, λ)].

The Υps generates only the language Lps. The

idea behind the construction of the system is given as

follows. †1, †2, †3, †4 are used as markers. Whenever

a b is adjoined to the left of †1, its corresponding

complementary b̄ should be adjoined to the left of †3 using

the rule RI1 . So, †1 and †3 are used to control the uūR part

of the language. Similarly, whenever a b is adjoined to the

left of †2, its corresponding complementary b̄ should be

adjoined to the left of †4 using the rule RI2 . So, †2 and

†4 are used to control the vv̄R part of the language. When

the rule RD1
is used first, then system Υps generates only

vv̄R part of the language. When the rule RD2
is used

first, then the system Υps generates only the uūR part

of the language. We present a sample derivation for a

better understanding (the rule at the suffix of the derivation

symbol=⇒ denotes whether an insertion rule or a deletion

rule is applied),

↓ †1 †
↓
2 †3 †4 =⇒RI1

a †↓1 †2t †
↓
3 †4 =⇒RI2

a †1 g
↓ †2 t †3 c

↓†4 =⇒RI2
a †1 ga †2 t †3 ct †4

=⇒RD1
a⇓ga †2 t

⇓ct†4 =⇒RD2
aga⇓tct⇓.

�

From Fig. 2(b), the attenuator language can be given

as Lan = {uūRuūR | u ∈ Σ∗
DNA}.

Lemma 2. The attenuator language Lan (see Fig. 2(b))

can be generated by a matrix insertion–deletion system.

Proof. The language Lan can be generated by the matrix

insertion–deletion system

Υan = ({a, t, g, c, †1, †2}, {a, t, g, c}, {λ, †1†2}, R),

where R is given as follows:

RI1 = [(λ, λ/a, †1), (†1, λ/t, λ), (λ, λ/a, †2),

(†2, λ/t, λ)],

RI2 = [(λ, λ/t, †1), (†1, λ/a, λ), (λ, λ/t, †2),

(†2, λ/a, λ)],

RI3 = [(λ, λ/c, †1), (†1, λ/g, λ), (λ, λ/c, †2),

(†2, λ/g, λ)],

RI4 = [(λ, λ/g, †1), (†1, λ/c, λ), (λ, λ/g, †2),

(†2, λ/c, λ)],

RD1
= [(λ, †1/λ, λ), (λ, †2/λ, λ)].
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Here Υan generates only the language Lan. Marker

†1 is used to control the first part of the language

(uūR) and marker †2 is used to control the second

part of the language (uūR). Whenever a b and its

corresponding complementary b̄ are adjoined by using

the †1, simultaneously by using the †2, the same b and

its complementary b̄ are adjoined. As the rule RI1 uses

both the markers †1 and †2, synchronization is easily

maintained. A similar procedure holds for the remaining

rules RI2 , RI3 and RI4 , e.g.,

↓ †↓1
↓†↓2 =⇒RI1

a↓ †↓1 t a
↓ †↓2 t =⇒RI2

at↓ †↓1 atat
↓ †↓2 at =⇒RI3

atc↓ †↓1 gatatc
↓ †↓2 gat

=⇒RI4
atcg †1 cgatatcg †2 cgat =⇒RD1

atcg⇓cgatatcg⇓cgat.

�

Lemma 3. The hairpin language (see Fig. 1(b)) Lhp =
{ww̄R | w ∈ Σ∗

DNA} can be generated by a matrix

insertion–deletion system.

Proof. The hairpin language Lhp can be generated by the

matrix insertion–deletion system

Υhp = ({b, b̄, †}, {bb̄}, {λ, †}, R),

where b ∈ {a, t, g, c}, b̄ is complement of b and R is given

as follows:

RI1 = [(λ, λ/b, †), (†, λ/b̄, λ),

RD1
= [(λ, †/λ, λ)].

We present a sample derivation which itself suffices

to see that L(Υhp) = Lhp,

↓†↓ =⇒RI1
t↓ †↓ a =⇒RI1

tg↓ †↓ ca =⇒RI1

tgc↓ †↓ gca =⇒RI1
tgcg↓ †↓ cgca =⇒RD1

tgcg⇓cgca.

�

Lemma 4. The stem and loop language (see Fig. 1(a))

Lsl = {uvūR | u, v ∈ Σ∗
DNA} can be generated by a

matrix insertion–deletion system.

Proof. The stem and loop language Lsl can be

generated by the matrix insertion–deletion system Υsl =
({b, b̄, †1, †2, †3}, {b, b̄}, {λ, †1 †3 †2}, R), where b ∈
{a, t, g, c}, b̄ is the complement of b and R is given as

follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(λ, λ/b, †3)],

RD1
= [(λ, †1/λ, λ), (λ, †2/λ, λ)],

RD2
= [(λ, †3/λ, λ)].

A sample derivation is given follows:

↓ †1 †3 †
↓
2

=⇒RI1
c †↓1 †3 †2 g =⇒RI2

c †1 t
↓ †3 †2g =⇒RI2

c †1 tc †3 †2g

=⇒RD1
c⇓tc †⇓3 g =⇒RD2

ctc⇓g.

�

Fig. 9. Cloverleaf representation (where A = v1v̄
R
1 , B =

v2v̄
R
2 , C = v3v̄

R
3 ).

Lemma 5. The cloverleaf language (see Fig. 9,

for n = 3) (Searls, 1988; 1992)

Lcl = {uv1v̄
R
1 v2v̄

R
2 . . . vnv̄

R
n ū

R | u, v1, v2, . . . ,

vn ∈ Σ∗
DNA, n ≥ 0}

can be generated by a matrix insertion–deletion system.

Proof. The cloverleaf language Lcl (for n = 3) can be

generated by the matrix insertion–deletion system Υcl =
({b, b̄, †1, †2, †3, †4, †5}, {b, b̄}, {λ, †1†2, †3†4†5, †1†3†4†5
†2}, R), where b ∈ {a, t, g, c}, b̄ is a complement of b and

R is given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(λ, λ/b, †3), (†3, λ/b̄, λ)],

RI3 = [(λ, λ/b, †4), (†4, λ/b̄, λ)],

RI4 = [(λ, λ/b, †5), (†5, λ/b̄, λ)],

RD1
= [(λ, †1/λ, λ), (λ, †2/λ, λ)],

RD2
= [(λ, †3/λ, λ)],

RD3
= [(λ, †4/λ, λ)],

RD4
= [(λ, †5/λ, λ)].
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A sample derivation is given as follows:

↓ †1 †3 †4 †5†
↓
2 =⇒RI1

c↓ †1 †3 †4 †5 †
↓
2 g

=⇒RI1
cg †↓1 †

↓
3 †4 †5 †2 cgt

=⇒RI2
acg †1 t †3 a

↓ †↓4 †5 †2 cg

=⇒RI3
cg †1 t †3 a c †4 g

↓ †↓5 †2cg

=⇒RI4
cg †1 t †3 ac †4 ga †5 t †2 cg

=⇒RD1
cg⇓t †3 ac †4 ga †5 t

⇓cg

=⇒RD2
cgt⇓ac †4 ga †5 tcg

=⇒RD3
cgtac⇓ga †5 tcg

=⇒RD4
cgtacga⇓tcg.

�

Using five markers, †1, †2, †3, †4, †5 the system Υcl

generates the cloverleaf language Lcl for n = 3. By

introducing more markers, the system Υcl can generate

a cloverleaf language for an arbitrary value of n.

4.2. Representation of intermolecular structures.

In this section, we model some of the bio-molecular

structures that occur at intermolecular level.

Lemma 6. The double strand language

Lds = {u • ūR | u ∈ Σ∗
DNA}

can be modelled by a matrix insertion–deletion system.

Proof. The double strand language (see Fig. 3(a))

Lds can be be modelled by a matrix insertion–deletion

system Υds = ({b, b̄, •}, {b, b̄, •}, {•}, R) where b ∈
{a, t, g, c}, b̄ is complement of b and R is given as RI1 =
[(λ, λ/b, •), (•, λ/b̄, λ)]. We present a sample derivation

which itself is sufficient to see that L(Υds) = Lds,

↓•↓ =⇒RI1
a↓ •↓ t =⇒RI1

ag↓ •↓ ct =⇒RI1

aga↓ •↓ tct =⇒RI1
agac↓ •↓ gtct.

�

From Fig. 3(b) the nick language can be informally

described as Lnl = {w1 • w2 | w̃2 = w̄1
R}, where w1 ∈

Σ∗ andw2 ∈ (Σ∪{•})∗ (i.e., w2 is a string which contains

a number of •).

Lemma 7. The nick language Lnl can be generated by

matrix insertion–deletion system.

Proof. The nick language (see Fig. 3(b)) Lnl can

be generated by the cut grammar Gnl = S → bSb̄ |
S• | • for each b ∈ ΣDNA. The grammar Gnl

can be modelled by the matrix insertion–deletion system

Υnl = ({b, b̄, †, •}, {b, b̄, •}, {b † b̄, †•, •}, R) where b ∈
{a, t, g, c}, b̄ is a complement of b and R is given as

RI1 = [(λ, λ/b, †), (†, λ/b̄, λ)],

RI2 = [(†, λ/•, λ)],

RD1
= [(λ, †/λ, λ)].

A sample derivation is given as follows:

a↓ †↓ t =⇒RI1
at↓ †↓ at =⇒RI1

atg †↓ cat =⇒RI2

atg↓ †↓ •cat =⇒RI1
atga †↓ t • cat =⇒RI2

atga † •t • cat =⇒RD1
atga⇓ • t • cat.

�

Fig. 10. Holliday structure.

Lemma 8. The holliday structure (see Fig. 10)

Lhs = {u1 • ū1
Ru2 • ū2

Ru3 • ū3
Ru4 • ū4

R | u1, u2,

u3, u4 ∈ Σ∗
DNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lhs can be generated by matrix

insertion–deletion system

Υhs = ({b, b̄, †1, †2, †3, †4, †5, •}, {b, b̄, •},

{†1 • †2 • †3 • †4 • †5, • • ••}, R)

where b ∈ {a, t, g, c}, b̄ is a complement of b and R is
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given as

RI1 = [(†1, λ/b, λ), (λ, λ/b̄, †2)],

RI2 = [(†2, λ/b, λ), (λ, λ/b̄, †3)],

RI3 = [(†3, λ/b, λ), (λ, λ/b̄, †4)],

RI4 = [(†4, λ/b, λ), (λ, λ/b̄, †5)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)],

RD5
= [(λ, †5/λ, λ)].

A sample derivation is given as follows:

†↓1 •
↓ †2 • †3 • †4 • †5

=⇒RI1
†↓1a •

↓ t †2 • †3 • †4 • †5

=⇒RI1
†1ca • tg †

↓
2 •

↓ †3 • †4 • †5

=⇒RI2
†1ca • tg †

↓
2 a •↓ t †3 • †4 • †5

=⇒RI2
†1ca • tg †2 ca • tg †↓3 •

↓ †4 • †5

=⇒RI3
†1ca • tg †2 ca • tg †

↓
3 g •

↓ c †4 • †5

=⇒RI3
†1ca • tg †2 ca • tg †3 ag • ct †

↓
4 •

↓ †5

=⇒RI4
†1ca • tg †2 ca • tg †3 ag • ct †

↓
4 a • t

↓ †5

=⇒RI4
†1ca • tg †2 ca • tg †3 ag • ct †4 ca • tg †5

=⇒RD1

⇓ca • tg †2 ca • tg †3 ag • ct †4 ca • tg †5

=⇒RD2
ca • tg⇓ca • tg †3 ag • ct †4 ca • tg †5

=⇒RD3
ca • tgca • tg⇓ag • ct †4 ca • tg †5

=⇒RD4
ca • tgca • tgag • ct⇓ca • tg †5

=⇒RD5
ca • tgca • tgag • ctca • tg⇓.

�

5. RNA secondary structures

In this section, first we show the interpretation of various

RNA secondary structures in terms of formal language

representations (as shown in Table 2), and we model such

structures using matrix insertion–deletion systems. If the

strings are collected as per the dotted directed lines, the

RNA secondary structures represented in Figs. 4(a), 4(b),

5(a), 5(b), 6, 7(a), 7(b) and 8 can be given in terms of

languages as shown in Table 2.

Thus, given a DNA/RNA sequence, we can (try

to) first identify the corresponding the formal language

and then one can think of what matrix insertion–deletion

system can generate the language.

Lemma 9. The internal loop structure (see Fig. 4(a))

Lil={u1v1u2v3ū2
Rv2ū1

R | u1, u2, v1, v2, v3 ∈ Σ∗
RNA}

can be generated by a matrix insertion–deletion system.

Table 2. Formal language representation: #1 represents the AĀ

and #2 represents the BB̄ in Fig. 8.

Fig. no. Bio-molecular structure

Formal language representation

4(a) Internal loop

Lil = {u1v1u2v3ū2
R
v2ū1

R}

4(b) Bulge loop

Lbl = {u1v1u2v2ū2
R
ū1

R}

5(a) Multi branch loop

Lmbl = {u1v1v̄1
R
u2ū2

R
v2ū1

R}

5(b) Extended pseudoknot

Lepk = {u1v1ū1
R
u2v̄1

R
ū2

R}

6 Kissing hairpin

Lkhp = {u1v1#1v2u2ū2
R
v3#2v4ū1

R}

7(a) Simple H-type

Lsht = {u1v1u2ū1
R
v2ū2

R}

7(b) Recursive pseudoknot

Lrps = {u1u2u3ū2
R
u4ū1

R
ū4

R
u5ū5

R
ū3

R}

8 Three-knot structure

Ltks = {u1vu2u3ū1
R
ū2

R
ū3

R}

Proof. The language Lil can be generated by the matrix

insertion–deletion system

Υil = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †3 †4†2}, R),

where b ∈ {a, u, g, c}, b̄ is the complement of b and R is

given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(λ, λ/b, †3), (†4, λ/b̄, λ)],

RI3 = [(†1, λ/b, λ)],

RI4 = [(†3, λ/b, λ)],

RI5 = [(λ, λ/b, †2)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)].

A sample derivation is given as follows:

↓ †1 †3 †4 †
↓
2 =⇒RI1

a↓ †1 †3 †4 †
↓
2u

=⇒RI1
au †↓1 †3 †

↓
4 †2au

=⇒RI2
au †1 u

↓ †3 †
↓
4a †2 au

=⇒RI2
au †↓1 ua †3 †4ua †2 au

=⇒RI3
au †↓1 gua †3 †4ua †2 au

=⇒RI3
au †1 cgua †

↓
3 †4ua †2 au
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=⇒RI4
au †1 cgua †

↓
3 c †4 ua †2 au

=⇒RI4
au †1 cgua †3 gc †4 ua †2 au

=⇒RD1
au⇓cgua †3 gc †4 ua †2 au

=⇒RD2
aucgua †3 gc †4 ua

⇓au

=⇒RD3
aucgua⇓gc †4 uaau

=⇒RD4
aucguagc⇓uaau.

The idea is that †1, †2, †3 and †4 are used as markers.

†1 and †2 are used to control the u1ū1
R part of the

language. Whenever a b is adjoined to the left of †1, its

corresponding complementary b̄ is adjoined to the right of

†2 and the synchronization is maintained. Similarly, †3
and †4 are used to control the u2ū2

R part of the language,

†1,†2 and †3 are used to control the v1, v2 and v3 part of

the language, respectively. �

Lemma 10. The bulge loop structure (see Fig. 4(b))

Lbl = {u1v1u2v2ū2
Rū1

R | u1, u2, v1, v2 ∈ Σ∗
RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lbl can be generated by the matrix

insertion–deletion system

Υbl = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †4 †3†2}, R),

where b ∈ {a, u, g, c}, b̄ is the complement of b and R is

given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(λ, λ/b, †4), (†3, λ/b̄, λ)],

RI3 = [(†1, λ/b, λ)],

RI4 = [(†4, λ/b, λ)],

RD1
= [(λ, †1/λ, λ),

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)].

As the derivation and the language are similar to

internal loop structure, we omit the sample derivation.

�

Lemma 11. The multi-branch loop structure (see

Fig. 5(a))

Lmbl = {u1v1v̄1
Ru2ū2

Rv2ū1
R | u1, u2, v1, v2 ∈ Σ∗

RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lmbl can be generated by the matrix

insertion–deletion system

Υmbl = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †3 †4†2}, R),

where b ∈ {a, u, g, c}, b̄ is complement of b andR is given

as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(λ, λ/b, †4), (†4, λ/b̄, λ)],

RI3 = [(λ, λ/b, †3), (†3, λ/b̄, λ)],

RI4 = [(λ, λ/b, †2)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)].

As the derivation and the language are similar to

internal loop structure, we omit the sample derivation.

�

Lemma 12. The extended pseudoknot structure (see

Fig. 5(b))

Lepk = {u1v1ū1
Ru2v̄1

Rū2
R | u1, u2, v1 ∈ Σ∗

RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lepk can be generated by the matrix

insertion–deletion system

Υepk = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †2 †3†4}, R),

where b ∈ {a, u, g, c}, b̄ is a complement of b and R is

given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(†1, λ/b, λ), (†3, λ/b̄, λ)],

RI3 = [(λ, λ/b, †3), (†4, λ/b̄, λ)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)].

A sample derivation is given as follows:

↓ †1 †
↓
2 †3 †4 =⇒RI1

a↓ †1 †
↓
2u †3 †4

=⇒RI1
ag↓ †1 †

↓
2cu †3 †4

=⇒RI1
agc †↓1 †2gcu †↓3 †4

=⇒RI2
agc †↓1 a †2 gcu †↓3 u †4

=⇒RI2
agc †1 ga †2 gcu

↓ †3 cu †↓4

=⇒RI3
agc †1 ga †2 gcua

↓ †3 cu †↓4 u

=⇒RI3
agc †1 ga †2 gcuac †3 cu †4 gu

=⇒RD1
agc⇓ga †2 gcuac †3 cu †4 gu

=⇒RD2
agcga⇓gcuac †3 cu †4 gu

=⇒RD3
agcgagcuac⇓cu †4 gu

=⇒RD4
agcgagcuaccu⇓gu.

�
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Lemma 13. The kissing hairpin structure (see Fig. 6)

Lkhp = {u1v1AĀv2u2ū2
Rv3BB̄v4ū1

R | u1, u2, v1,

v2, v3, v4 ∈ Σ∗
RNA and A,B ∈ ΣRNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lkhp can be generated by the matrix

insertion–deletion system

Υkhp=({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1AĀ

†3 †4BB̄†2}, R),

where A,B, b ∈ {a, u, g, c}, Ā, B̄, b̄ is the complement of

A, B, b and R is given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(†3, λ/b, λ), (λ, λ/b̄, †4)],

RI3 = [(†1, λ/b, λ)],

RI4 = [(λ, λ/b, †3)],

RI5 = [(λ, λ/b, †2)],

RI6 = [(†4, λ/b, λ)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)].

A sample derivation is given as follows:

↓ †1 au †3 †4ua†
↓
2 =⇒RI1

c↓ †1 au †3 †4ua †
↓
2 g

=⇒RI1
cu †1 au †3

↓↓ †4 ua †2 ag

=⇒RI2
cu †↓1 au †3 c g †4 ua †2 ag

=⇒RI3
cu †1 gau

↓ †3 cg †4 ua †2 ag

=⇒RI4
cu †1 gauu †3 cg †4 ua

↓ †2 ag

=⇒RI5
cu †1 gauu †3 cg †

↓
4 uac †2 ag

=⇒RI6
cu †1 gauu †3 cg †4 guac †2 ag

=⇒RD1
cu⇓gauu †3 cg †4 guac †2 ag

=⇒RD2
cugauu †3 cg †4 guac

⇓ag

=⇒RD3
cugauu⇓cg †4 guacag

=⇒RD4
cugauucg⇓guacag.

The idea for generating the languageLkhp is given as

follows. As AĀ and BB̄ are already present in the axiom,

markers are not required to generate it. To generate the

remaining part of the language, †1, †2, †3 and †4 are used

as markers. †1 and †2 are used to control the u1ū1
R part

of the language. Whenever a b is adjoined to the left of †1,

its corresponding complementary b̄ is adjoined to the right

of †2 and the synchronization is maintained. Similarly, †3
and †4 are used to control the u2ū2

R part of the language,

†1,†3, †4 and †2 are used to control the v1, v2, v3 and v4
part of the language, respectively. �

Lemma 14. The simple H-type structure (see Fig. 7(a))

Lsht = {u1v1u2ū1
Rv2ū2

R | u1, u2, v1, v2 ∈ Σ∗
RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lsht can be generated by the matrix

insertion–deletion system

Υsht = ({b, b̄, †1, †2, †3}, {b, b̄}, {†1 †2 †3}, R),

where b ∈ {a, u, g, c}, b̄ is a complement of b and R is

given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],

RI2 = [(λ, λ/b, †2), (†3, λ/b̄, λ)],

RI3 = [(†1, λ/b, λ)],

RI4 = [(λ, λ/b, †3)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)].

As the derivation and the language are similar to

extended pseudoknot structure, we omit the sample

derivation. �

Lemma 15. The recursive pseudoknot structure (see

Fig. 7(b))

Lrps = {u1u2u3ū2
Ru4ū1

Rū4
Ru5ū5

Rū3
R | u1, u2,

u3, u4, u5 ∈ Σ∗
RNA}

can be modelled using a matrix insertion–deletion system.

Proof. The language Lrps can be generated by the matrix

insertion–deletion system

Υrps = ({b, b̄, †1, †2, †3, †4 †5}, {b, b̄}, {†1†2†3†4 †5}, R),

where b ∈ {a, u, g, c}, b̄ is a complement of b and R is

given as follows:

RI1 = [(λ, λ/b, †1), (†3, λ/b̄, λ)],

RI2 = [(†1, λ/b, λ), (†2, λ/b̄, λ)],

RI3 = [(λ, λ/b, †2), (†5, λ/b̄, λ)],

RI4 = [(λ, λ/b, †3), (λ, λ/b̄, †4)],

RI5 = [(†4, λ/b, λ), (λ, λ/b̄, †5)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)],

RD5
= [(λ, †5/λ, λ)].
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A sample derivation is given as follows:

↓ †1 †2 †
↓
3 †4†5 =⇒RI1

a↓ †1 †2 †
↓
3 u †4 †5

=⇒RI1
au †↓1 †

↓
2 †3 au †4 †5

=⇒RI2
au †↓1 g †

↓
2 c †3 au †4 †5

=⇒RI2
au †1 ug

↓ †2 ac †3 au †4 †
↓
5

=⇒RI3
au †1 ugu

↓ †2 ac †3 au †4 †
↓
5a

=⇒RI3
au †1 uguc †2 ac

↓ †3 au
↓ †4 †5ga

=⇒RI4
au †1 uguc †2 aca

↓ †3 auu
↓ †4 †5ga

=⇒RI4
au †1 uguc †2 acau †3 auua †4

↓↓ †5 ga

=⇒RI5
au †1 uguc †2 acau †3 auua †4

↓gc↓ †5 ga

=⇒RI5
au †1 uguc †2 acau †3 auua †4 ugca †5 ga

=⇒RD1
au⇓uguc †2 acau †3 auua †4 ugca †5 ga

=⇒RD2
auuguc⇓acau †3 auua †4 ugca †5 ga

=⇒RD3
auugucacau⇓auua †4 ugca †5 ga

=⇒RD4
auugucacauauua⇓ugca †5 ga

=⇒RD5
auugucacauauuaugca⇓ga.

�

Lemma 16. The three-knot structure (see Fig. 8)

Ltks = {u1vu2u3ū1
Rū2

Rū3
R | u1, u2, u3, v ∈ Σ∗

RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Ltks can be generated by the matrix

insertion–deletion system

Υtks = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †2 †3†4}, R),

where b ∈ {a, u, g, c}, b̄ is the complement of b and R is

given as follows:

RI1 = [(λ, λ/b, †1), (λ, λ/b̄, †3)],

RI2 = [(λ, λ/b, †2), (†3, λ/b̄, λ)],

RI3 = [(†2, λ/b, λ), (λ, λ/b̄, †4)],

RI4 = [(†1, λ/b, λ)],

RD1
= [(λ, †1/λ, λ)],

RD2
= [(λ, †2/λ, λ)],

RD3
= [(λ, †3/λ, λ)],

RD4
= [(λ, †4/λ, λ)].

A sample derivation is given as follows:

↓ †1 †
↓
2 †3 †4 =⇒RI1

a↓ †1 †2u
↓ †3 †4

=⇒RI1
au †↓1 †2ua

↓ †↓3 †4

=⇒RI2
au †1 g

↓ †2 ua
↓ †↓3 c †4

=⇒RI2
au †1 gu †↓2 ua †3 ac

↓ †4

=⇒RI3
au †1 gu †↓2 uua †3 aca

↓ †4

=⇒RI3
au †↓1 gu †2 cuua †3 acag †4

=⇒RI4
au †↓1 ggu †2 cuua †3 acag †4

=⇒RI4
au †1 cggu †2 cuua †3 acag †4

=⇒RD1
au⇓cggu †2 cuua †3 acag †4

=⇒RD2
aucggu⇓cuua †3 acag †4

=⇒RD3
aucggucuua⇓acag †4

=⇒RD4
aucggucuuaacag⇓.

�

6. Conclusion

In this paper, we introduced the matrix insertion–deletion

system and, using it, we modelled several bio-molecular

structures that occur at the intramolecular, intermolecular

and RNA secondary structure level. These structures are

often discussed in the literature, thus they can be assumed

to be important bio-molecular structures.

We remark that, in this paper, to model all the

bio-molecular structures we used a matrix of insertion

rules and a matrix of deletion rules separately (i.e., the

system has no insertion rule and deletion rule together

in a matrix) thus forming a new subclass. In all the

systems we considered here, the insertion rule uses

context and the deletion rule uses no context. This

can be viewed as follows: the insertion operation

works in a context-sensitive manner whereas the deletion

operation works in a context-free manner. Thus, the

system uses both the nature of context-sensitiveness and

context-freeness, and it seems to be a promising model

for application to various domains such as molecular

biology and linguistics. With matrices consisting of both

insertion and deletion rules, more complicated structures

such as tertiary structures, quaternary structures, protein

secondary structures (Mamitsuka and Abe, 1994) can be

modelled, and this is left as a future research work.

From the computational linguistic point of view, one

natural question is where to place this newly introduced

formalism among the other formalisms that exist in

this domain. Though the parsing algorithm for tree

adjoining grammars (TAG) and linear indexed grammar

take O(n6) (Pardo et al., 1997), they have their own

deficiency. For example, TAG cannot generate Li =
{an1a

n
2 . . . a

n
i | n ≥ 1} for i ≥ 5 and the triple copy
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language L3cp = {www | w ∈ {a, b}∗}. However,

multi-component TAG (MCTAG) can cover them. But

there are languages like Lnsl = {a2
n

bn | n ≥ 1}
that cannot be covered by MCTAG, although, on the

other hand, they are accepted by a Turing machine

in polynomial time (Boullier and Sagot, 2011). With

the introduced subclass variant, we can easily generate

Li, i ≥ 5 and L3cp languages; however, to generate Lnsl,

it seems required that both insertion and deletion rules be

used together in a matrix. We suppose that the introduced

grammar formalism can emulate TAG, but subsumed by

the range concatenation grammar (RCG). Analyzing the

relationship among these grammar formalisms with the

introduced formalism in detail is out of objective of this

paper, but can be carried out as a future work.
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