
Introduction

To obtain relevant information for prudent
decision-making in forest management and forest
policy, it is necessary to understand the growth
patterns of a species and to assess site quality

(Avery and Burkhart, 1994). Site quality can be
defined as the timber production potential of a
site for a particular tree species or forest type
(Clutter, 1983). Thus, site quality has meaning
only with respect to the one or more species that
may be considered at a particular site. For
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Summary

The first plantations of the North-West American conifer Douglas-fir were established in Portugal in
1904. Investigations into growth and yield patterns were started in 1969. Since then others have
carried out further studies. This study includes data from the previous studies and covers the whole
range of site conditions where Douglas-fir grows in Portugal. Dominant height data from 87 stem
analysis trees from 12 sites were used to model dominant height growth of Douglas-fir using the
McDill–Amateis, Chapman–Richards and Lundqvist–Korf growth functions. The
Chapman–Richards and Lundqvist–Korf growth functions were used in their integral and difference
forms. For the evaluation of the candidate growth models’ performance, three steps were adopted:
(1) all the candidate growth equations were fitted with the data available from stem analysis from 87
trees, eliminating growth equations with non-logical and non-biological consistency and poor
statistical properties; (2) the remaining growth equations were cross-validated using two sub-samples
of the stem analysis data and selection of the growth equations with the best statistical results; (3)
validation, using the whole data set from stem analysis for fitting growth models and the stand data
for calculation of the prediction errors, was carried out. Out of the nine models evaluated five were
rejected in the first step and two in the second step. The two best models had similar results in the
third step and were compared with previous Douglas-fir site index curves. The McDill–Amateis
function performed best.
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example, a given site might have an excellent site
quality for maritime pine (Pinus pinaster Ait.)
and be very poor for Douglas-fir. Additionally,
for species such as Douglas-fir, provenance trials
show that site index can vary with provenance.

The most widely used indirect method for
assessing site quality in single species, even-aged
stands is based on the dominant height–age
relationship and is termed the site index (Clutter,
1983; Tomé, 1988; Avery and Burkhart, 1994;
Savill et al., 1997). The dominant height of a
uniform stand, at a given age, is a good indicator
of the potential productivity of that type of forest
on that particular site (Cailliez and Alder, 1980).
This is based on Eichhorn’s hypothesis (Eichhorn,
1904) that total production from a fully stocked
stand, which is the volume currently standing
plus anything removed in previous thinnings, is a
function of its height (Savill et al., 1997).

Site index curves are families of curves repre-
senting dominant height and are developed from
data collected from as wide a range of sites as
possible. The total range of dominant heights at
the base-age is divided into a number of classes,
each having an equal but limited range of heights,
usually 2 or 3 m (Philip, 1994). There are three
methods for site index curve construction
(Clutter, 1983): (1) the guide curve method; (2)
the difference equation method; and (3) the para-
meter prediction method.

Before the development of computers, the most
common way of constructing site index curves
was to use the guide curve method, a graphical
version of the current guide curve version (Spurr,
1952; Curtis, 1964; Cailliez and Alder, 1980;
Tomé, 1988). The data for dominant height and
age are plotted on a graph and an average curve,
or guide curve, is drawn by hand. From this,
other curves are drawn at proportional distances
from the guide curve. This method originates an
anamorphic family of curves. Using it for any two
curves, the height of one at any age is a constant
proportion of the height of the other at the same
age. There are two other types of curve families:
polymorphic disjoint and polymorphic non-
disjoint curves. Neither has a constant propor-
tionality relationship but in the disjoint curve
family the curves do not cross within the age
range of interest. In the polymorphic curve family
it is assumed that the shape of the height growth
curve is dependent on the site quality, whereas in

the anamorphic family it is assumed to be inde-
pendent. The height of the site index curve relates
to the site index and the shape to the pattern of
growth of the species.

The difference equation method requires the
development of a difference form of the
height/age equation being fitted. Therefore it is
necessary to re-write the height/age equation to
express height at remeasurement (ht2) as a
function of remeasurement age (t2), initial
measurement age (t1) and height at initial remea-
surement (ht1). It is a flexible method and can be
applied to any height/age equation to produce
anamorphic or polymorphic curve families
(Clutter, 1983).

The parameter prediction method involves
fitting linear or nonlinear functions to the data on
a tree-by-tree or plot-by-plot basis. It requires
preliminarily knowledge of the site index or site
class of the plot before fitting the model. Two
types of models have been used, constrained and
unconstrained models. Using constrained models
the dominant height (ht0) is forced to equal site
index (S) when the age is equal to the index age
(t0). Using unconstrained models the curves must
be conditioned after fitting to ensure that the
dominant height corresponds to the site index at
the index age (Cailliez and Alder, 1980).

According to Furnival et al. (1990), the three
methods are identical for fitting a site index
equation that can be transformed into a simple
linear model. However, these results cannot be
applied to a majority of current site index
models, which are non-linear (Cao, 1993). In
addition, although the parameter prediction
method has the advantage of great flexibility in
the type of model adopted, it requires an a priori
estimation of site index (Cailliez and Alder,
1980). With stem analysis data, the site index for
each tree is usually known or assessed by inter-
polation, provided that the tree is older than the
base-age. The problem is that the derived site
index curves are dependent on the base-age
which in the future may be changed (the other
two methods are base-age invariant). For these
reasons the parameter prediction method was not
considered for modelling Douglas-fir dominant
height growth in Portugal, only the guide curve
and difference equation methods seemed suitable.

Following model construction, it is necessary
to test the model to determine its validity and
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precision. This is best done using data collected
independently from that used in the model con-
struction, which was not used to fit any of the
functions in the model (Cailliez and Alder, 1980;
Myers, 1990; Soares et al., 1995).

Studies have already been made of Douglas-fir
dominant height growth in Portuguese stands
(Diniz, 1969; Loureiro, 1986; Luis, 1989).
However, Diniz (1969) based his work only on
temporary sample plots and very few sites, while
Loureiro (1986) based his on stem analysis for
just one site (Serra de Vila Pouca), and Luis
(1989) his on stem analysis over a range of sites
using predominantly young stands. The aim of
this work was to construct site index curves
based on stem analysis covering the whole range
of site conditions where Douglas-fir grows in
Portugal.

Materials and methods

Study area and preliminary field measurements

Data for this study came from the re-measurement
of existing plots complemented with data
gathered in new plots. One plot established in
1988 by Costa (1992) at Lousã was re-measured.
All except two of the plots established by Luis
(1989) were re-measured. These plots range from
600 to 2800 m2 and from 75 to 150 trees. One of
the two excluded plots had been burnt, the other
had had the dominant trees thinned. New planta-
tions were chosen if they had uniform stocking
and an area that permitted the establishment of a
plot of 80–100 trees, excluding the edges. The
location of the plots is shown in Figure 1 and a
summary of stand data is given in Table 1.

MODELLING DOMINANT HEIGHT GROWTH OF DOUGLAS-FIR 511

Figure 1. Study area: locations of the 20 plots that were established. Each contained 30–103 trees and was
589–2808 m2 in area.
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Stem analysis

There are references to the use of stem analysis
from at least as early as 1898 (Mlodziansky,

1898). Stem analysis involves the analysis of a
complete tree stem and entails counting and
measuring the annual growth rings on a series of
cross-sections taken at different heights, to

512 FORESTRY

Table 1: Stand variables of the Douglas-fir plots from which the stem analysis were selected

Year of Plot Age N Hdom QM d.b.h. G
Site measurement no. (years) (tree ha–1) (m) (cm) (m2 ha–1)

Aveleira 1986 1 23 1717 12.6 14.9 29.9
2 23 1571 13.1 15.2 28.5
3 23 1845 13.9 15.8 36.2

Bornes 1986 1 14 1400 8.5 12.7 17.7
2 14 1231 8.5 12.0 13.9
3 14 1344 8.6 12.6 16.8

Crasto 1999 1 27 929 18.9 20.9 31.7
Estrela 1985 1 47 848 30.9 32.7 71.2

2 47 1431 27.5 23.9 64.2
3 47 939 33.2 31.1 71.3

1999 2 61 640 32.3 29.5 57.2
3 61 574 37.0 35.5 53.5

Leomil 1986 1 25 1353 15.0 17.2 31.4
2 25 1423 15.2 17.2 33.1
3 25 1281 14.9 16.6 27.7

1999 2 38 1283 23.3 23.0 53.5
3 38 1185 22.6 23.2 33.4

Lousa 1999 1 61 316 33.4 46.3 53.2
Malcata 1999 1 21 1011 11.1 14.3 16.2

2 19 1034 6.9 8.2 5.5
3 20 1280 13.0 14.5 21.2

Marao 1986 1 21 1664 13.2 19.0 47.2
2 21 1545 12.8 18.2 40.2
3 21 1406 12.3 18.1 36.2

1999 1 34 1578 21.3 23.4 67.7
3 34 1357 20.1 26.1 72.6

Nogueira 1986 1 15 875 9.7 16.9 19.6
2 15 967 9.7 15.5 18.2
3 15 893 9.7 16.1 18.2

1999 1 28 776 20.6 30.1 55.0
2 28 951 20.8 25.5 48.7

Padrela 1986 1 48 324 31.4 45.9 53.6
2 48 403 26.4 36.9 43.1
3 48 415 29.6 34.5 38.8

1999 1 62 274 38.4 52.8 60.1
2 62 287 32.8 45.2 46.0

P. Douradas 1999 1 94 298 35.0 51.1 61.2
Soajo 1985 1 35 938 25.3 25.1 46.4

2 35 1008 25.8 24.2 46.4
3 35 695 23.3 26.6 38.6

1999 1 49 588 30.6 32.8 49.5
2 49 595 31.3 32.7 50.0

V. Flor 1999 1 28 927 15.3 18.9 26.1
V. do Minho 1999 1 36 692 28.0 24.6 33.0

The 1985 and 1986 measurements are from Luis (1989).
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determine past rates of growth and changes in
stem form. It can be used with species where it is
possible to recognize annual growth rings.

In all but one plot, two dominant trees were
selected and felled, using the method of Tennent
and Burkart (1981), giving a total of 39 trees.
This method demonstrated that the two trees
with the d.b.h. closest to the mean diameter of
the 100 largest stems per hectare and with
measured heights within 5 per cent of the mean
dominant height are closely related to the plot
mean dominant height development. Felling was
done ~0.10 m above the ground and the exact
height of the first disk was recorded. Tree age was
obtained by counting the rings in the base of the
stem analysis trees. Sectioning was carried out
through percentages of total height. This method
was used because, in even-aged plantations, using
percentages of height, the disks of trees are likely
to have similar ages. Precision increases with the
number of the disks sampled. Two levels of
sampling were adopted since there were big and
old trees and small and young trees. If the same
number of disks had been used for all trees the
intensity of sampling of the older trees would
have been much smaller. Hence for larger trees
12 disks were cut: at the base (0.1 m), d.b.h.
(1.3 m), 10 per cent, 15 per cent, 25 per cent,
35 per cent 45 per cent, 55 per cent, 65 per cent,
75 per cent and 85 per cent of total height, and
at 7 cm top diameter. For smaller trees, 10 disks
were cut; those at 10 per cent and 85 per cent
were not cut. In general for smaller trees, the disk
at 10 per cent of total height was very close to the
d.b.h. disk and the disk at 85 per cent of total
height was very close to 7 cm top diameter.

Correction of heights

When stem analysis is used to determine
height/age pairs the determination of past height
growth presents a problem. Because of the
conical growth pattern exhibited by trees, the
true height of a tree at the age corresponding to
the ring count at a cross-cut will almost always
be located some distance above the cross-cut
(Dyer and Bailey, 1987).

For estimating the true height at a given age
several proposed algorithms exist: graphic
(Mlodziansky, 1898), Graves’ (1906), Lenhart’s
(1972), Carmean’s (1972), Newberry’s (1991)

and Ratio (Brister and Schultz). Fabbio et al.
(1994) proposed another method named ISSA.
Dyer and Bailey (1987) in a comparison of the
first six methods concluded that Carmean’s
method (1972) was the most accurate. Fabbio et
al. (1994) compared ISSA, Lenhart’s (1972),
Carmean’s (1972) and branch whorl methods.
They concluded the ISSA method is the most
precise if the interval between cross-cuts is
~0.5 m and Carmean method is best at an
interval of 2 m. Since the average interval
between cross-cuts was 2.2 m, Carmean’s
method was chosen for height corrections in this
work.

Carmean’s method can be expressed as
follows:

hij = hi + [(hi + 1 – hi)/(ri – ri + 1)]/2 +
(j – 1) * [(hi + 1 – hi)/(ri – ri + 1)] (1)

where hij = estimated total height for growth ring
j based on section point i, hi = height at the ith
section point, ri = number of growth rings at the
ith section point, j = growth ring number
(assuming the pith as the starting point), j = 1,
. . ., ri. In this study the modification proposed by
Newberry (1991) by subtracting 0.5 years, in
formula (1), for the portion of the tree bole above
the highest section point, was used.

Candidate growth equations for dominant
height modelling

It was aimed to have growth equations for
modelling growth in dominant height with desir-
able attributes such as polymorphism, inflection
point, asymptote, logical behaviour and base-age
invariance (Tomé, 1988; Goelz and Burk, 1992;
Elfving and Kiviste, 1997). The equations most
often used for site index purposes have been the
Chapman–Richards (Mitscherlich, 1919) and
Schumacher (1939) growth equations. Thus, the
candidate growth equations considered were:
Chapman–Richards (Mitscherlich, 1919); Lund-
kvist–Korf (Korf, 1939; Lundqvist, 1957) which
is a generalization of the Schumacher equation;
and McDill–Amateis (McDill and Amateis,
1992).

Chapman–Richards growth equation

m1 -( )Y CeA 1 kt= - -
1

(2)
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where A is the asymptote of dominant height, k
is a growth related parameter, t is the age of the
stand and m is a shape parameter. The parameter
C (C = e–kt0 was considered 1, since t0 = 0.

Lundkvist–Korf growth equation

tn-
k

Y Ae= (3)

where A is the asymptote of dominant height, k
is a growth-related parameter, t is the age of the
stand and n is a shape parameter.

McDill–Amateis growth equation

Y

Y
A

t
t

A

1 1
a2

1 2

1

=

- -f fp p

(4)

where A is the asymptote of dominant height, a
is a growth rate/shape parameter, t is the age and
the subscripts 1 and 2 refer to age 1 and age 2
years.

Difference equations To apply the difference
equation method of Clutter et al. (1983), the
growth functions must be expressed in the form
of difference equations. A difference form
expresses height at remeasurement (ht2) as a
function of remeasurement age (t2), initial or
previous measurement age (t1), and height at
initial or previous measurement (ht1):

ht2 = f(t2, ht1, t1).

In order to obtain difference forms of the equa-
tions one of the parameters may be left free
leaving two parameters to be statistically esti-
mated. The difference forms of the
Chapman–Richards (Mitscherlich, 1919) and
Lundkvist–Korf (Korf, 1939; Lundqvist, 1957)
growth equations were taken from Amaro et al.
(1998).

Selection of a growth equation for dominant
height modelling

For the selection of a growth function to be used
in this study three steps were followed: (1) fitting
the candidate growth equations; (2) cross-vali-
dation for model selection; (3) validation using
stand data.

(1) Fitting all the candidate growth equations

with the data available from stem analysis of 87
trees (39 felled for this study, plus 48 felled by
Luis (1989) in 1985/6). The candidate models
were fitted by nonlinear regression using the
PROC NLIN (SAS, 1996) function based on the
Gauss–Newton procedure. The starting values
have to be relatively close to the estimates or the
procedure may result in convergence to a local
minimum of the SSRes function (Myers, 1990). In
this case the starting values found by Amaro
(1997) for Eucalyptus for the same functions
were used. The criteria for comparing models
were as follows.

(a) Adjusted coefficient of determination R2
a

(Draper and Smith, 1998):

( )

( )

( )
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(5)

where RSSn – p is the residual sum of squares, n
the number of observations, p is the total number
of parameters in a fitted model and CTSS the cor-
rected total sum of squares. The R2

a value is an
attempt to correct the tendency for over-fitting of
R2 by adjusting both the numerator and the
denominator by their respective degrees of
freedom. The R2

a can decline in value if the con-
tribution to the explained deviation by the
additional variable is less than the impact on the
degrees of freedom. Thus R2

a will react to alterna-
tive equations for the same dependent variable in
a manner similar to the standard error of the
estimate; i.e. the equation with the smallest
standard error of the estimate will most likely
also have the highest R2

a . While the R2 is a per-
centage, the R2

a is not and should be referred to
as an index value (Draper and Smith, 1998).

(b) Significance of the parameters. The final
estimate of the parameters, and an ~95 per cent
confidence band, should exclude zero, indicating
that there are only non-zero values for the par-
ameters and then they are always significant.

(c) Normality of the studentized residuals. A
graph of studentized residuals plotted against
their expected values under normality – the so
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called QQ-plots – will display a straight line with
a slope of 1 in the ideal situation, when the errors
are normal. The residuals are ranked in increas-
ing order e[1] < e[2] < . . . < e[n] and are plotted
against the cumulative probability of a normal
distribution Pi = (i – 1/2)/n, i = 1, 2, . . ., n (Myers,
1990).

(d) Homogeneity of residuals. Plotting the stu-
dentized residuals against the fitted values ŷi
highlighting a deviation from the homogeneous
variance assumption.

(e) Statistics based on prediction sum of
squares (PRESS) residuals. Considers a set of data
in which the ith observation is set aside from the
sample and the remaining n – 1 observations are
used to estimate the coefficients for the candidate
model. The procedure continues until all the
observations have been removed, one at a time,
and thus the candidate model is fitted n times.
Each candidate model will have n PRESS residu-
als yi – ŷi, –1 = ei, –1 (i = 1, 2, . . ., n) (Myers, 1990).
Since ŷi, –1 is independent from yi PRESS residuals
can be considered prediction errors. PRESS resid-
uals are indicated for examining the predictive
abilities of the candidate models when sample
sizes are small (Green, 1983). The mean of the
PRESS residuals (MPRESS) is a measure of bias
of a model, the ideal value for the MPRESS is
zero while the mean of the absolute PRESS resid-
uals (MAPRESS) is used to evaluate the precision
of a model (Soares and Tomé, 2001).

(f) Analysis of the logical and biological con-
sistency of the estimates of the parameters. The
estimates have to be logically consistent and bio-
logically realistic (Vanclay, 1994; Soares et al.,
1995). The growth equations with non-logical
and non-biological consistency and poor statisti-
cal properties were eliminated.

(2) Following the adjustment of the candidate
functions and elimination of growth equations
with non-logical and non-biological consistency
and poor statistical properties, the remaining
functions were submitted to cross-validation. The
PRESS residuals are to a certain extent prediction
residuals and therefore they were used in the first
stage for model selection. The use of an indepen-
dent data set for cross-validation was thought to
be useful for a second stage.

The data set of the stem analysis trees was
split into two sub-samples: a fitting sample and
a validation sample. First, the fitting group was

used for fitting the model and estimating the
coefficients, while the validation group was used
to estimate the responses of the model, through
the calculation of prediction errors. After this,
the validation group was used for fitting while
the fitting group was used for estimating the
prediction errors. These errors are then predic-
tion errors and can be used for comparative
purposes. The average of prediction errors was
used to assess the bias of the models. To
evaluate the precision of the models, the mean
of the absolute value of the prediction errors
was used (Myers, 1990). To aid a better under-
standing of the prediction capacity of the
models, the prediction errors were analysed in
detail for each age class and site index through
box plot graphs.

Modelling efficiency (ME) was another stat-
istical parameter analysed for different models
and can be expressed as follows (Soares et al.,
1995):

( )
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(6)

ME provides an index of model performance on
a relative scale, where 1 indicates a ‘perfect’ fit, 0
reveals that the model is no better than a simple
average, and negative values indicate a poor
model (Vanclay and Skovsgaard, 1997).

(3) Validation using all the data set from stem
analysis for fitting equations and the stand data
for calculation of the prediction errors of the best
models in step (2). Selection of the growth
equation for dominant height modelling. The
stand data were obtained from field measure-
ments and from existing stand data from
previous studies (Loureiro, 1986; Luis, 1989;
Luis and Monteiro, 1998).

Results

The final data set included 87 trees correspond-
ing to 39 trees felled during field-work in 1999
and 48 trees felled between 1985 and 1986 by
Luis (1989). Figure 2 shows their growth after
applying Carmean’s (1972) height correction.
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Fitting the candidate growth equations

The estimates of the parameters are summarized in
Table 2. Lundqvist–Korf-n, Chapman–Richards-i
and Lundqvist–Korf-k functions were rejected due
to non-logical estimates of parameters. The
Lundqvist–Korf-n and Chapman–Richards-i func-
tions had estimates for the asymptotes (35.5 m and
36.5 m, respectively) smaller than the dominant
height of trees from the largest stand (38 m, plot
1 at Vila Pouca). The estimate for the asymptote
of the Lundqvist–Korf-k function was too large to
be biologically realistic (350 m).

The non-linear least squares statistics were also
used to evaluate the candidate functions
(Table 3). The adjusted coefficients of correlation,
R2

a, showed that all models have values above
93 per cent, with the exception of
Lundqvist–Korf-n, with 84 per cent. All par-

ameters for all candidate functions were signifi-
cantly different from zero (at 95 per cent confi-
dence level).

The graphs of normality of the studentized
residuals showed some deviations from the slope
of one as, for example, where there is a skewed
positive tendency which is often caused by model
misspecification (Myers, 1990). However, small
departures from normality do not greatly affect
the model (Montgomery and Peck, 1982). In
addition, no improvement was found by re-fitting
the model using iteratively re-weighted least
squares (Huber’s M-estimator; Myers, 1990).
Thus the estimates of the ordinary least squares
were retained.

The graphs of studentized residuals against the
fitted values were used to assess violations of the
assumption of homogeneity of variance.
Deviations were highlighted in graphs for
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Figure 2. Height growth of 87 stem analysis trees after height correction using Carmean’s method. The
curves give the corrected heights in metres.
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Table 2: Estimates of the parameters (notation of functions: i = integral form; k, A, n and m = when k, A, n and
m are free parameters of difference equations)

Candidate function Estimates of the parameters
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Lundqvist–Korf-i, Lundqvist–Korf-n, Chapman–
Richards-i and Chapman–Richards-m functions.

Fitting the candidate growth equations
allowed the elimination of the Lundqvist–Korf-n,
Chapman–Richards-i and Lundqvist–Korf-k
functions due to non-biologically realistic
estimates. In addition, Lundqvist–Korf-i,
Lundqvist–Korf-n, Chapman–Richards-i and
Chapman–Richards-m were eliminated due to
failures in the assumption of homogeneity of
variance.

Cross-validation for model selection

Following the adjustment of the candidate
models the Lundqvist–Korf-a, McDill–Amateis,
Chapman–Richards-a and Chapman–Richards-k
models were retained for cross-validation. Data

for the set of 87 trees were split into two sub-
samples of 45 trees and 42 trees, respectively. The
results of cross-validation came up with two
models with small prediction errors,
Chapman–Richards-k and McDill–Amateis
(Table 4).

The graphs of the prediction residuals against
the fitted values showed reasonably homo-
geneous patterns of variance. However, the
Lundqvist–Korf-a function showed some biased
tendency for negative prediction errors for height
estimations of ~0 m.

Validation using stand data

The two best models from the results of cross-
validation were the McDill–Amateis and
Chapman–Richards-k functions. These were
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Table 3: Summary of the statistical analysis of the candidate functions using data from 87 stem analysis trees

Candidate function R2
a Homogeneity of residuals* MPRESS MAPRESS

Lundqvist–Korf-i 0.933 3 0.126 1.757
Lundqvist–Korf-k 0.992 1 0.302 0.634
Lundqvist–Korf-a 0.993 1 0.237 0.569
Lundqvist–Korf-n 0.835 2 –0.269 2.939
Chapman–Richards-i 0.993 3 0.251 0.574
Chapman–Richards-k 0.949 1 0.059 1.490
Chapman–Richards-a 0.992 1 0.289 0.620
Chapman–Richards-m 0.993 2 0.244 0.574
McDill–Amateis 0.994 1 0.217 0.525

* 1 = almost homogeneous distribution of studentized residuals; 2 = near to homogeneous distribution of stu-
dentized residuals; 3 = non-homogeneous distribution of studentized residuals.

Table 4: Summary of the cross-validation statistics of the candidate functions

Candidate function Sub-samples Resp Resp% Aresp Aresp% ME

Lundqvist–Korf-a 1_2 0.35 7.67 0.64 11.28 0.99
2_1 0.39 9.64 0.67 12.03 0.99

Chapman–Richards-k 1_2 0.26 7.23 0.58 11.08 0.99
2_1 0.30 6.41 0.57 10.53 0.99

Chapman–Richards-a 1_2 0.32 8.38 0.62 11.78 0.99
2_1 0.27 7.39 0.61 11.25 0.99

McDill–Amateis 1_2 0.27 7.30 0.58 11.12j 0.99
2_1 0.24 6.51 0.56 10.60 0.99

Sub-samples 1_2 = using fitting sample for estimation of parameters and validation sample for calculation of
errors; 2_1 = using validation sample for estimation of parameters and fitting sample for calculation of errors.
Resp = mean prediction error (in m); Resp% = mean prediction error (in per cent); Aresp = mean absolute pre-
diction error (in m); Aresp% = mean absolute prediction error (in per cent); ME = modelling efficiency.
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selected for validation using stand data. The
results are similar for both models for charac-
terization of prediction errors (Table 5) but the
McDill–Amateis function had a slight superiority.

The two models were plotted in order to illus-
trate their differences (Figure 3). Both models
are very similar except that on the best sites at
older ages the McDill–Amateis function gives
higher estimates for dominant height than
Chapman–Richards-k.

Discussion

Validation using stand data in the third step led
to very similar statistical characteristics of the
McDill–Amateis and Chapman–Richards-k func-
tions, differing mainly in the faster growth of
higher productivity site classes at older ages in the
McDill–Amateis model. They were compared
with previous Douglas-fir site index curves,
attempting to identify a general tendency of

MODELLING DOMINANT HEIGHT GROWTH OF DOUGLAS-FIR 519

Figure 3. Site index curves for Douglas-fir in Portugal, base-age 30 years. Comparison of the two models
with the best statistical properties: McDill–Amateis (continuous lines) and Chapman–Richards-k (broken
lines) growth models.

Table 5: Summary of statistics when stand data was used for the calculation of the prediction errors

Candidate function Resp Resp% Aresp Aresp% ME

Chapman–Richards-k –0.22 –4.09 1.06 8.40 0.98
McDill–Amateis –0.22 –4.04 1.04 8.32 0.98

Notations as in Table 4.
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growth on the higher productivity site classes, so
this difference could be used to indicate the better
model.

Site index curves for Douglas-fir in Portugal
(Diniz, 1969; Luis, 1989), the Netherlands
(Bastide et al., 1972), Italy (Maetzke and Nocen-
tini, 1994), France (Decourt 1973), Canada
(Mitchell and Cameron, 1985), USA (Curtis et
al., 1982), Germany (Landesforstverwaltung

Baden-Wurttemberg, 1993), Belgium (Rondeux
and Thibaut, 1996) and Great Britain (Hamilton
and Christie, 1971) were compared with
the Chapman–Richards-k and McDill–Amateis
models (Figure 4) derived here. These compari-
sons highlighted an overall tendency for lower
estimations of dominant height for high produc-
tivity sites at older ages for both McDill–Amateis
and Chapman–Richards-k models. This is even

520 FORESTRY

Figure 4. Comparison of site index curves derived from McDill–Amateis model and published site index
curves for Douglas-fir in Portugal, the Netherlands, France, Germany and UK.
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clearer for the Chapman–Richards-k model,
where only the curves for the Netherlands
(Bastide et al., 1972) do not show better perform-
ances for dominant height on high productivity
sites at older ages. The tendency for lower esti-
mates of dominant height on high productivity
sites is related to a lower estimation of the asymp-
tote. These low estimates are likely to be related
to the absence of long-term data for high produc-
tivity sites. Estimates of the asymptote can vary
considerably with different model formulations
when long time-series of data are not available.
There are inherent inaccuracies in attempting to
project long-term growth using short-term data
(McDill and Amateis, 1992). However, when
information on long-term growth for high
productivity sites becomes available it can be
used to update the parameter estimates of the
models without any fundamental model changes
(McDill and Amateis, 1992). Since the
McDill–Amateis model has higher estimates for
high productivity sites at older ages, and all the
other statistical parameters are similar to the
Chapman–Richards-k model, it is proposed that
it is used for modelling Douglas-fir dominant
height growth in Portugal.

Figure 4 shows that the McDill–Amateis model
has a faster growth rate in younger stands and
slower growth in older ones when compared with
previous Portuguese site index curves established
with temporary sample plots (Diniz, 1969). A
possible higher proportion of lower productivity
temporary sample plots at younger ages and a
higher proportion of temporary sample plots of
high productivity at older ages might explain
these differences. A comparison of the
McDill–Amateis model with the Luis’ (1989) site
index curves showed a similar pattern for higher
productivity site classes and a faster growth than
the McDill–Amateis model for lower produc-
tivity site classes. The inclusion in this work of
stands with lower productivity, such as Vila Flor,
Penhas Douradas and Malcata, are likely to
explain these differences.

The comparison of the McDill–Amateis model
with site index curves from the US (Curtis et al.,
1982) and Canada (Mitchell and Cameron,
1985) show that these countries have faster
growth on the higher productivity sites and lower
growth on the lower productivity sites than in
Portugal. Both these countries have extensive

areas of Douglas-fir corresponding to a wide
range of sites where both higher and lower
productivity sites, than the ones found in
Portugal, might be expected. Comparing the
McDill–Amateis model with Great Britain
(Hamilton and Christie, 1971) and the Nether-
lands (Bastide et al., 1972) site index curves there
is a similar pattern for higher productivity site
classes and slightly slower growth for Great
Britain and the Netherlands on lower produc-
tivity site classes. French (Decourt, 1973) and
German (Landesforstverwaltung Baden–Wurt-
temberg, 1993) site index curves have slightly
higher growth compared with the McDill–
Amateis model, which is more pronounced on
higher productivity site classes. Italian (Maetzke
and Nocentini, 1994) site index curves have con-
siderably higher growth compared with the
McDill–Amateis model.

Conclusions

The best growth function for modelling Douglas-
fir dominant height in Portugal was the following
McDill–Amateis function:

.
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Y t
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(7)

In its graphical form (Figure 3) it has practical
relevance for the evaluation of site quality of
Douglas-fir in Portuguese plantations. It
produces estimates with a precision of ~0.6 m
(mean of absolute prediction errors of cross-vali-
dation). The mean bias of its estimates is <0.3 m
(mean prediction error from cross-validation).

The site index curves were constructed for an
age range of 15–60 years, which includes the
general rotations adopted for Douglas-fir
(between 50 and 60 years). They are useful for
quick qualitative assessments of Douglas-fir plan-
tations. Extrapolations outside the range of ages
of these site index curves are not recommended.
A tendency for lower estimates of dominant
height would be expected at high productivity
site classes, which is likely to be related to the
absence of long-term data for high productivity
sites. If it is considered important to extend
the range of ages for these site index curves,
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information on long-term growth on high
productivity sites will be required to update the
parameter estimates of the model.
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