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Modelling Effects of Halo Breakup on Fusion
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Theories of breakup and fusion of two-body projectiles are examined, to see how complete
and incomplete fusion may be predicted separately. A proposal is made for an ‘optical
decoherence model’ which uses semigroup evolution equations to describe the decoherence
effects of the imaginary parts of optical potentials without also losing flux.

§1. Fusion and irreversibility

The fusion of two nuclei around the Coulomb barrier provides a fascinating
testing ground for theories of quantum tunneling leading to an irreversible fusion
of the nuclei into a compound nucleus. In the fusion of a halo nuclei with a stable
target, the breakup of the halo can occur before or during the tunneling process,
leading to a competition between fusion and breakup, both of which remove flux
from the elastic channel.

It is clear that compound nucleus formation is almost certainly irreversible, since
the compound nucleus is very unlikely to decay to exactly the entrance channel, but
considerable debate exists concerning the irreversibility (or otherwise) of breakup.
We might think, because of the large phase space available for breakup, that it
should not be reversible for the same reasons as for fusion. Another way of saying
this is that there should be a loss of phase coherence between some sets of channels:
a decoherence between the initial elastic and final breakup channels. Yet another
standpoint is that breakup might deplete flux from the elastic channel, generating
an effective absorptive component of the optical potential that is much larger than
any real polarisation potential. This is true for fusion channels, we agree, but still
we wish to solve an explicit few-body dynamical model to calculate the effects of
breakup.

The subject of decoherence is of wide interest in the foundations of quantum
mechanics. It is generally accepted, in what is now called the Decoherent Histories
approach,1) that decoherence arises from couplings to the many degrees of freedom in
the environment of a quantum system. While decoherence might not occur exactly
in strict quantum mechanics without ‘observations’, many systems evolve over time
into superpositions of states that are decoherent for all practical purposes. In halo
fusion, we accept that the fusion channels definitely act like such an environment,
but debate whether breakup channels are also an environment to induce decoherence
in this sense.

A completely microscopic model of the interaction between a two-body halo
projectile with a target should ideally begin with real-valued (effective) interactions
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between the fragments and the target. Complete quantum theories of breakup,
therefore, would all be reversible, and generate just the real and absorptive potentials
for the elastic channel that are physically appropriate.

In practice, however, we have to use ‘semi-microscopic’ or ‘few-body’ theories
that start with effective interactions or optical potentials with imaginary parts, be-
cause the fragments may excite and/or fuse with the target in a detail that is outside
the scope of the model. These imaginary parts describe the irreversible step of frag-
ment fusion with the target, and hence produce phase decoherence as well as a loss
of flux. Using an imaginary part of an effective interaction in a few body model,
therefore, already makes assumptions about irreversibility, because absorption can-
not be undone. But are these the correct and adequate assumptions to make? Does
the few-body wave function calculated with these fragment-target optical potentials
tell us all we need to know about the halo system, its breakup, and its complete and
incomplete fusion?

These questions have added urgency in the theory of halo fusion (and in the
breakup of many-body projectiles generally), because of the need for finding a theory
which can describe both complete and incomplete fusion. We need to know not just
those integrated cross sections, but the phase space distributions of the surviving
fragment(s).

There is some confusion about the definition of fusion.2) Theorists3),4) usually
define complete fusion as the capture all projectile fragments, and incomplete as
the capture of only some fragments. Experimentalists,5),6) however, tend to define
complete fusion as the capture all projectile charge, and incomplete as the capture
only some of the charge. For 6Li and 7Li, for instance, the definitions would agree,
but for halo projectiles, the classification depends on the fate of the neutrons that
are difficult to detect.

We may, as theorists, assume that future experiments will be able to determine
the destination of individual neutrons, and therefore look for a theory that can
describe the evolution of all the fragments. In this scenario, halo nuclei (and other
two-cluster systems) will be good testing grounds for such a theory.

In this contribution we examine the different ways in which the fragment-target
imaginary parts have been included in scattering calculations of halo breakup and
fusion, and present a new proposal for modelling their role that should yield further
information about surviving subsystems.

§2. Where are the imaginary potentials?

Let us take an historical look at the different ways of including imaginary po-
tentials in the calculations for the scattering of cluster projectiles. We talk here of
core and valence clusters as the heavy and light fragments respectively.

2.1. Core imaginary potentials

The simplest approach is to have no imaginary potentials but to restrict the
impact parameters to outside a grazing radius. Almost equivalently, we could have
short-range potentials in only the coordinate of the core relative to target, as sug-
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gested by Yabana et al.7) In such an approach, ‘complete fusion’ not calculated, and
‘incomplete core fusion’ could be defined as the absorption from this core imaginary
potential.

The disadvantage is that the valence-target interaction is completely transparent,
and may need very many partial waves7) to describe that motion, as, for example,
transfers to bound and resonant target states have to be described within the model.

2.2. Valence imaginary potentials

Alternatively, models could include the short-range imaginary parts in only
valence-target potential, as in Esbensen and Bertsch.8) In this case again, ‘com-
plete fusion’ not calculated, but now we can obtain ‘incomplete valence fusion’ as
the absorption from this valence imaginary potential.

2.3. Projectile imaginary potential

A third option is to have short-range potentials in simply the coordinate of
whole projectile centre of mass relative to target. This has the advantage that we
can now calculate separate fusion cross sections from the absorption through the
ground state and through the breakup channels, since there are no off-diagonal fusion
contributions. Hagino et al.4) have used this approach, and have gone on to suggest
identifying ‘complete fusion’ as absorption from ground state, and ‘incomplete fusion’
as absorption from breakup states. We have also used this approach,9) in order to test
other questions concerning continuum-continuum couplings, but in fact we know that
the identification of fusion using projectile energy levels is not the true separation of
complete and incomplete fusion.

2.4. Imaginary potentials for all fragments

A more physically justified approach is to include the short-range imaginary
potentials in the coordinates of both projectile fragments relative to target.2) This
is more realistic from the viewpoint of few-body dynamics, as capture of the c.m.
of the projectile is not necessarily connected to the capture of the fragments. This
approach has the disadvantage, however, of having no way of separating complete
from incomplete fusion. We can only calculate ‘total fusion’ as the total absorption
by any imaginary part, and identify this as the sum of complete and incomplete
fusions.

We have used this approach for 6,7Li breakup on targets of 59Co and 209Pb,2)

and compared the numerical results with those using projectile imaginary potentials.
We saw that there are many events where one of the fragments of 6Li is captured,
but the c.m. of the projectile does not reach the absorption (fusion) region.

§3. Complete and incomplete fusion

We come back to the need for a theoretical model of few-body dynamics that
is able to distinguish complete from incomplete fusion. To do this, it is clear that
we need to follow correlations after breakup, so we need either time-dependent7)

or CDCC2) calculations as a starting point. The need is still, after absorption of
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one fragment, to follow the evolution of remaining part(s), in order to see whether
it escapes (yielding incomplete fusion) or fuses with the target (yielding complete
fusion).

An preliminary estimate of this may be obtained by following classical trajecto-
ries of the fragments. Three-body classical trajectory model has recently be solved10)

for 6Li and 7Li breakup on 209Bi, to find whether no, one or two fragments are ‘cap-
tured’ by colliding with the target. It is then reasonable to identify these three
outcomes with elastic breakup, incomplete fusion, and complete fusion, respectively.
The paper10) remarks at its end that “CDCC would give a more realistic picture”,
but, for reasons given below, this will still not be sufficient.

There is already a history of attempts to develop theories of incomplete fu-
sion, also called partial fusion, inelastic breakup, or stripping. Eikonal scattering
theory is capable of predicting total projectile ‘stripping’ as well as ‘diffraction dis-
sociation’ (see Hansen and Tostevin11) for a recent review), but not the momentum
distributions of the surviving fragment. Other workers have developed integral ex-
pressions (exact and approximate) for the integrated incomplete-fusion cross section.
A survey and comparison of these was given by Ichimura12) in 1989, who reviewed
three-body models by Austern et al.,13) approximations based on post-form DWBA
by Ichimura, Austern and Vincent,15) as well as an imaginary potential integral
suggested by Hussein and McVoy,14) and the theory of elastic-breakup-fusion from
Udagawa and Tamura.16) Hussein’s group has continued these investigations with a
more recent series of papers,3),17) and Baur and Trautman18) have usefully employed
a ‘surface approximation’ to calculate inelastic breakup.

We now propose a new theoretical model, whose results should in the future
be compared with the methods summarised by Ichimura. The main argument is
that we do need more information than is present in a full few-body calculation of
dynamics of elastic scattering and breakup, because we still need, after absorption
of one fragment, to follow evolution of remaining parts. This information is not in
the CDCC wave function, since the complete three-body state undergoes depletion
as soon as any one fragment is absorbed by its imaginary interaction with the tar-
get. A dynamical approach using a density-matrix semigroup theory, outlined here,
separates the decoherence from the absorption caused by the imaginary potentials.

§4. A density matrix model

4.1. Schrödinger time evolution

Given an initial time t0 state ψ(x, t0), the initial density matrix is

ρ(x, x′, t0) = ψ(x, t0)ψ(x′, t0)∗ ,

or, as an operator,
ρ(t0) = |ψ(t0)〉〈ψ(t0)| .

From the Schrödinger equation for ψ(x, t) with Hamiltonian H = H0 − iW , the
Schrödinger time evolution of the density matrix is

∂ρ/∂t = −i[H, ρ]
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= −i[H0, ρ] −Wρ− ρW .

With Schrödinger density evolution, there is a continuing pure state ρ(t) =
|ψ(t)〉〈ψ(t)| from i�∂ψ(x, t)/∂t = Hψ(x, t). The effect of the imaginary potential in
Schrödinger evolution is to reduce the off-diagonal terms of the density matrix, and
this is the density-matrix representation of decoherence.

Consider H0 = 0 in a toy model, with

∂ρ(x, x′, t)/∂t = −W (x)ρ(x, x′, t) − ρ(x, x′, t)W (x′) ,

which has solution

ρ(x, x′, t) = e−W (x)tρ(x, x′, 0)e−W (x′)t. (4.1)

Here the off-diagonal terms are indeed reduced, but diagonal terms also! Is there a
way of producing decoherence by reduction of the off-diagonal terms, but still not
loss of flux, by having no reduction of the diagonal terms ρ(x, x, t)?

4.2. Semigroup decoherence model

We may consider the more general case of semigroup time evolution. Semigroups
are a set of groups in which inverse elements do not necessary exist, and hence are
appropriate for describing irreversible time evolution. Lindblad19) proved that the
general trace-preserving completely-positive master equation is

∂ρ/∂t = −i[H, ρ] +
∑
m

(2LmρL
†
m − L†

mLmρ− ρL†
mLm)/2 , (4.2)

where Lm are any bounded operators, now often called ‘Lindblads’.
Let us choose a Lindblad form to give same decoherence effect on the off-diagonal

terms of the density matrix as the imaginary optical potential above. Consider for
example the Lindblad

L1 =
√

2W (x) .

In the H0 = 0 simplified case, the evolution equation (4.2) is

ρ′(t) = 2
√
Wρ

√
W −Wρ− ρW ,

which has the exact solution

ρ(x, x′, t) = ρ(x, x′, 0) exp(−[
√
W (x′) −

√
W (x)]2t)

= e−W (x)tρ(x, x′, 0)e−W (x′)t × e+2
√

W (x)W (x′)t. (4.3)

The properties of this semigroup evolution are that if one of the W (x) and W (x′)
is zero, then this evolution gives the same result as in Eq. (4.1). When x = x′ we
have ρ(x, x′, t) = ρ(x, x′, 0), so that there is no diagonal decoherence or loss of any
flux. If W (x) = W (x′), there is again no decoherence where W (x) is constant. If,
by contrast, W (x) �= W (x′), then ρ(x, x′, t) → 0, so that we do have off-diagonal
decoherence where W (x) varies.
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4.3. Optical decoherence model (ODM)

It is therefore proposed that we try to solve the time evolution of composite
projectile with the semigroup master equation:

ρ′(t) = −i[H0, ρ] + 2
√
Wρ

√
W −Wρ− ρW

= −i[H, ρ] + 2
√
Wρ

√
W . (4.4)

The imaginary potential −iW (x) = −iW1(x1) − iW2(x2), for each fragment-target
interaction of a two-body projectile, gives decoherence, but no loss of flux as Tr(ρ) =
1 always. After one fragment has fused, for example, this dynamical model can still
follow time evolution to give the flux and momenta of the other fragments. The
fused fragment does not disappear, but remains trapped in one of the regions of the
imaginary potentials.

4.4. Potential scattering

Consider one-body scattering from a potential with an imaginary part −iW (x).
Let |u(t)〉 be the time-evolving solution of the normal Schrödinger withH = H0−iW ,
namely i�∂|u(t)〉/∂t = H|u(t)〉. We may expand the density matrix as

ρ(t) =
∑
s,s′

css′(t)|s〉〈s′| + cu(t)|u(t)〉〈u(t)| , (4.5)

where the |s〉〈s′| projection operators are a complete set defined where W (s) �= 0 �=
W (s′), and before the collision css′(t0) = 0 and cu(t0) = 1. If normal scattering
theory results are to be regained, we will want to prove that cu(t) = 1 at all times t.
Define Nu(t) = 〈u(t)|u(t)〉 as the time-dependent square norm of u(t).

Substituting the expansion (4.5) into the master Eq. (4.4) we find the coefficient
evolution equation:∑

s,s′
ċss′(t)|s〉〈s′| + ċu(t)|u(t)〉〈u(t)| = cu(t)

√
W |u(t)〉〈u(t)|

√
W

+
∑
s,s′

css′(t)
{
−i[H0|s〉〈s′| − |s〉〈s′|H0] − (

√
W (s) −

√
W (s′))2|s〉〈s′|

}
. (4.6)

From this, the diagonal terms vary as

ċss(t) = 2W (s)|u(s, t)|2 ,
whose integral

∑
s ċss(t) = 2

∫
W (s)|u(s, t)|2ds gives the rate of change dNu(t)/dt of

the square norm of u(t), and hence agrees with the conservation of flux Tr(ρ) = 1.
If we can neglect the commutator [H0, |s〉〈s′|] in Eq. (4.6), it leads to the result

ċu(t)


Nu(t)2 −

{∑
s

|〈s|u〉|2
}2


 = 0 ,

which, if u(t) extends outside the range of the imaginary potentials so that its norm
Nu(t) >

∑
s |〈s|u〉|2, implies ċu(t) = 0 and hence that cu(t) = 1 always. This result,
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which should be confirmed by a complete (e.g. numerical) analysis, ensures that
expectation values taken outside the range of the imaginary potentials will be the
same as in conventional quantum mechanics.

Assuming that cu(t) ≡ 1, we have the expansion

ρ(t) =
∑
s,s′

css′(t)|s〉〈s′| + |u(t)〉〈u(t)| (4.7)

from which the (exact) time evolution of the css′(t) is given by

∑
s,s′

ċss′(t)|s〉〈s′| =
√
W |u(t)〉〈u(t)|

√
W

+
∑
s,s′

ċss′(t)
{
−i[H0|s〉〈s′| − |s〉〈s′|H0] − (

√
W (s) −

√
W (s′))2|s〉〈s′|

}
. (4.8)

If we may again neglect the H0 commutator, this becomes

ċss′(t) =
√
W (s)u(s, t)u(s′, t)∗

√
W (s′) − css′(t)(

√
W (s) −

√
W (s′))2 . (4.9)

Here we see that the terms css′(t) are generated by imaginary potentials when the
incoming wavepacket overlaps with non-zero values of both W (s) and W (s′), and
that the off-diagonal terms are damped in proportion to (

√
W (s) − √

W (s′))2, just
as in Eq. (4.3).

4.5. Summary of the ODM agenda

This new approach is not yet worked out in detail. We should:
• Rederive stationary-state scattering theory for optical potentials, by evolving

the density matrix rather than simply the wave function.
• Include the second (semigroup) term of the master equations (4.4) in, for exam-

ple, model problems of reduced dimensions. Verify the identity of expectation
values with those from Hamiltonian evolution.

• Determine the practicality of evolving three-body-model density matrices (where
the number of spatial dimensions is squared!).

• If solving for the few-body ρ(x1..., x
′
1..., t) is too difficult, we could try to pro-

duce a statistical ensemble of source terms for the set of wave function eigen-
solutions of the density matrix, which are the different decoherent outcomes of
the remaining particle(s).

This approach is summarised by noting again that quantum mechanics gives
approximate decoherence. A semi-group theory as above, with its exact decoherence
over time, is therefore an approximation to quantum mechanics, and is equivalent20)

to averaging randomised unitary evolution. The present theory may hence be useful
when solving approximate quantum models such as the few-body models of halo
breakup that use optical potentials, and expectation values are needed for subsystems
of the original projectile. As a semigroup theory, it is one of a more general class of
reduction models recently reviewed.21)
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§5. Conclusions

Halo and cluster nuclei, with well-defined breakup and fusion modes, are good
test-benches for theories of breakup and fusion. At least they soon should be, when
experimentalists can measure the final destinations of all projectile fragments, in-
cluding that of the neutrons.

There are still severe theoretical varieties and uncertainties in modelling incom-
plete and complete fusion in a clearly distinguishable manner. To produce predic-
tions which discriminate between complete and incomplete fusion modes, this paper
proposes an ‘Optical Decoherence Model’ (ODM), which uses semigroup evolution
of density matrix in order to separate the decoherence and flux-loss effects of imag-
inary potentials. This should allow after us to follow, even after the absorption of
one fragment, the evolution of the remaining parts.
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