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Abstract

In this paper we propose a new modelling framework for electricity futures markets

based on so-called ambit fields. The new model can capture many of the stylised facts

observed in electricity futures and is highly analytically tractable. We discuss martingale

conditions, option pricing, and change of measure within the new model class. Also, we

study the corresponding model for the spot price, which is implied by the new futures

model, and show that, under certain regularity conditions, the implied spot price can be

represented in law as a volatility modulated Volterra process.

Keywords: Electricity market; futures price; random field; ambit field; Lévy base;

Samuelson effect; stochastic volatility

2010 Mathematics Subject Classification: Primary 91G99

Secondary 60G51; 60G57; 60G60

1. Introduction

Over the past two decades, electricity markets have been liberalised in many areas in the

world. The typical electricity market, such as, for instance, the Nordic Nord Pool market or the

European Energy Exchange (EEX) market, organises trade in spot, forward/futures contracts

and European options on these. Although these assets are parallel to other markets, such as

traditional commodities or stock markets, electricity has its own distinctive features calling

for new and more sophisticated stochastic models for derivative pricing as well as for risk

management purposes; see [22].

Recent research has particularly focused on modelling electricity spot (or day-ahead) prices;

see, e.g. [4], [5], [30], [41], [55], and [67]. Since electricity cannot be stored directly, except

via reservoirs for hydro-generated power or large and expensive batteries, the supply of power

is very inelastic, and spot prices may rise by several magnitudes when demand increases, due

to temperature drops, say. Since spot prices are determined by supply and demand, some form

of mean reversion or stationarity can be observed. The spot prices have clear deterministic

patterns over the year, week, and intra-day. The literature has focused on stochastic models for

the spot price dynamics, which take some of the various stylised facts into account. Recently, a

general, yet analytically tractable class of models has been proposed in [16] based on volatility

modulated Volterra processes and the subclass of Lévy semistationary processes.
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One of the fundamental problems in power market modelling is to understand the formation

of futures prices. Nonstorability of the spot makes the usual buy-and-hold hedging arguments

break down, and the notion of convenience yield is not relevant either; see [36], [40], and [42].

There is thus a highly complex relationship between spot and forwards, which is often modelled

by risk premiums; see, e.g. [35], [55], or [64] for some recent work on this aspect. A way around

this would be to follow the so-called Heath–Jarrow–Morton (HJM) approach, which has been

introduced in the context of modelling interest rates, see [45], and model the futures price

dynamics directly (rather than modelling the spot price and deducing the futures price from

the conditional expectation of the spot at delivery); see, e.g. [32]. However, many challenging

problems are connected to this way of modelling futures prices. First, standard models for

the futures dynamics generally depend on the current time and the time to maturity. However,

power markets trade in contracts that deliver power over a delivery period, introducing a new

dimension in the modelling. Hence, comprehensive futures price models should be functions

of both time to and length of delivery, which calls for random field models in time and space.

Furthermore, since the market trades in contracts with overlapping delivery periods, specific

noarbitrage conditions must be satisfied which essentially puts restrictions on the space structure

of the field. So far, the literature is sparse on modelling power futures prices applying the HJM

approach, presumably due to the lack of analytical tractability and empirical knowledge of the

price evolution; however, see, e.g. [19], [47], and [52].

Empirical studies, see [38], have shown that the logarithmic returns of futures prices are

nonnormally distributed with clear signs of (semi-) heavy tails. Also, a principal component

analysis by Koekebakker and Ollmar [54] revealed a high degree of idiosyncratic risk in power

futures markets. This strongly points towards random field models which, in addition, allow

for stochastic volatility. Moreover, the structure determining the interdependencies between

different contracts is by far not properly understood. Some empirical studies, see [2], suggest

that the correlations between contracts are decreasing with time to maturity, whereas the exact

form of this decay is not known. But how to take length of delivery into account in modelling

these interdependencies has been an open question. A first approach on how to tackle these

problems will be presented later in this paper.

In this paper we introduce a new modelling framework for electricity futures prices, which

is based on ambit fields. Ambit fields are defined as stochastic integrals with respect to an

independently scattered, infinitely divisible random measure, where the integrand is given by a

product of a deterministic weight function and a stochastic volatility field, and the integration is

carried out over an ambit set describing the sphere of influence for the stochastic field. Owing

to their very flexible structure, ambit processes have successfully been used for modelling

turbulence in physics and cell growth in biology; see [6]–[11] and [63].

In this paper we will show how the ambit concept can be used to develop a general modelling

framework for electricity futures. Ambit fields form a flexible class of random field models,

where one has a high degree of flexibility in modelling complex dependencies. These may be

probabilistic coming from a driving random noise and the stochastic volatility, or functional

from a specification of an ambit set or the deterministic weight function. Moreover, ambit fields

easily incorporate leptokurtic behaviour in price increments, stochastic volatility and leverage

effects, and the observed Samuelson effect in the volatility. Note that the Samuelson effect,
see [58], refers to the finding that, when the time to maturity approaches 0, the volatility of

the futures increases and converges to the volatility of the underlying spot price (provided the

futures price converges to the spot price).

Last but not least we will show that the ambit framework can shed some light on the connec-

tion between electricity spot and futures prices. Understanding the interdependencies between
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these two assets is crucial in many applications, e.g. in the hedging of exotic derivatives on the

spot using futures. Typical examples in electricity markets are so-called flexible load/virtual

power plant (VPP) contracts, which are particular kinds of swing option; see, e.g. [44].

The outline for the remaining part of the paper is as follows. In Section 2 we give a short

overview of the traditional models within the HJM class used for electricity futures. In Section 3

we introduce the new modelling framework for electricity futures markets together with its key

properties. The model will be specified as an arithmetic model. Examples of relevant model

specifications are discussed in detail. Next we derive the implied spot price from our new model

for the futures price, and we show that, under certain conditions, the implied spot price process

equals in law a volatility modulated Volterra process; see Section 4. In Section 5 we describe

how a geometric model based on ambit fields can be defined. Next, Section 6 focuses on option

pricing in our new modelling framework. In order to also obtain a visual impression of the new

models for the term structure of futures prices, we present a simulation algorithm for ambit

fields in Section 7 and highlight the main theoretical properties of the modelling framework

graphically. Moreover, since we do the modelling under the risk-neutral measure, we discuss

how a change of measure can be carried out to get back to the physical probability measure;

see Section 8. Finally, in Section 9 we conclude the paper.

2. A brief literature review

Although commodity markets have very distinct features, most models for energy futures

contracts are inspired by models for instantaneous forward rates in the context of the term

structure of interest rates; see [54] for an overview on the similarities between electricity futures

markets and interest rates. Hence, in order to get an overview on modelling concepts within

the HJM framework which have been developed in the context of the term structure of interest

rates, but which can also be used in the context of electricity markets, we will now review these

examples from the interest rate literature. However, later we will argue that, in order to account

for the particular stylised facts of power markets, there is a case for leaving these models behind

and focusing instead on ambit fields as a natural class for describing energy futures markets.

Throughout the paper, we denote by t ∈ R the current time, by T ≥ 0 the time of maturity

of a given futures/forward contract, and by x = T − t the corresponding time to maturity. We

use F(t, T ) to denote the price of a futures/forward contract at time t with time of maturity T .

Likewise, we use f for the futures/forward price at time t with time to maturity x = T − t when

we work with the Musiela parameterisation, i.e. we define f by ft (x) = ft (T − t) = F(t, T ).

Let us begin by looking at so-called multifactor models. Motivated by the classical HJM

framework (see [45]), the dynamics of the forward rate under the risk-neutral measure can

be modelled by dft (x) =
∑n

i=1 σ
(i)
t (x) dW

(i)
t for t ≥ 0 and n ∈ N, where the W (i) are

independent standard Brownian motions and the σ (i)(x) are independent positive stochastic

volatility processes for i = 1, . . . , n. The advantage of using these multifactor models is that

they are to a high degree analytically tractable. Extensions to allow for jumps in such models

have also been studied in detail in the literature. However, a principal component analysis by

Koekebakker and Ollmar [54] has indicated that we in fact need many factors (large n) to model

electricity futures prices. Hence, it is natural to study extensions to infinite-factor models which

are also called random field models.

In order to overcome the shortcomings of the multifactor models, Kennedy [50] pioneered

the approach of using random field models, in some cases called stochastic string models, for

modelling the term structure of interest rates. Random field models have a continuum of state

variables (in our case futures prices for all maturities) and, hence, are also called infinite-factor
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models, but they are typically very parsimonious in the sense that they do not require many

parameters. Note that finite-factor models can be accommodated by random field models as

degenerate cases.

Kennedy [50] proposed to model the forward rate by a centred, continuous Gaussian random

field plus a continuous deterministic drift. Furthermore, he specified a certain structure of the

covariance function of the random field which ensured that it had independent increments

in the time direction t (but not necessarily in the time to maturity direction x). Such models

include as special cases the classical HJM model when both the drift and the volatility functions

are deterministic, and also two-parameter models, such as models based on Brownian sheets.

Kennedy [50] derived suitable drift conditions which ensure the martingale properties of the

corresponding discounted zero-coupon bonds.

In a later article, Kennedy [51] revisited the continuous Gaussian random field models and

showed that the structure of the covariance function of such models can be specified explicitly

if one assumes a Markov property. Adding an additional stationarity condition, the correlation

structure of such processes is already very limited and Kennedy [51] proved that, in fact, under

a strong Markov and stationarity assumption, the Gaussian field is necessarily described by just

three parameters.

The Gaussian assumption was later relaxed and Goldstein [43] presented a term structure

model based on non-Gaussian random fields. Such models incorporate, in particular, condi-

tional volatility models, i.e. models which allow for more flexible (i.e. stochastic) behaviour

of the (conditional) volatilities of the innovations to forward rates (in the traditional Kennedy

approach such variances were just constant functions of maturity), and, hence, are particularly

relevant for empirical applications. Also, Goldstein [43] pointed out that one is interested in

very smooth random field models in the context of modelling the term structure of interest rates.

Such a smoothness (e.g. in the time to maturity direction) can be achieved by using integrated
random fields, e.g. he proposed integrating over an Ornstein–Uhlenbeck process. Goldstein [43]

derived drift conditions for the absence of arbitrage for such general non-Gaussian random field

models.

While such models are quite general and, hence, appealing in practice, Kimmel [53] pointed

out that the models defined by Goldstein [43] are generally specified as solutions to a set of

stochastic differential equations, where it is difficult to prove the existence and uniqueness of

solutions. Goldstein’s [43] models and many other conditional volatility random field models

are in fact complex and often infinite-dimensional processes, which lack the key property of

the Gaussian random field models introduced by Kennedy [50], i.e. that the individual forward

rates are low-dimensional diffusion processes. The latter property is in fact important for model

estimation and derivative pricing. Hence, Kimmel [53] proposed a new approach to random

field models which allows for conditional volatility and which preserves the key property of the

Kennedy [50] class of models: the class of latent variable term structure models. He proved

that such models ensure that the forward rates and the latent variables (which are modelled as

a joint diffusion) follow jointly a finite-dimensional diffusion.

A different approach to generalising the Kennedy [50] framework was proposed byAlbeverio

et al. [1]. They suggested replacing the Gaussian random field in the Kennedy [50] model by a

(pure jump) Lévy field. Special cases of such models are, e.g. the Poisson and the gamma sheet.

Finally, another approach for modelling forward rates has been proposed by Santa-Clara and

Sornette [59], who built their model on stochastic string shocks. Such models are related (and

under some assumptions even a special case) of the new modelling framework we present in

this paper.
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3. Arithmetic model for the futures price

Throughout this paper, we consider a probability space (�, F , Q), where the notation Q

is used for the probability measure since it denotes a risk-neutral probability measure. We

will define our new model in such a way that forward/futures prices are martingales under a

risk-neutral probability measure.

3.1. Background on Lévy bases

In the following, we will briefly sketch the basic traits of Lévy bases; a more detailed review

can be found in [15]. Recall that a Lévy basis is an infinitely divisible, independently scattered

random measure; see, e.g. [56]. Let Bb(R
d) denote the class of bounded Borel sets in Rd for

d ∈ N. We call L = {L(A) : A ∈ Bb(R
d)} a Lévy basis taking values in R if it satisfies the

following three properties.

(i) For any sequence (An)n∈N of disjoint elements of Bb(R
d) such that

⋃∞
j=1 Aj ∈ Bb(R

d),

we have L(
⋃∞

j=1 Aj ) =
∑∞

j=1 L(Aj ) almost surely (a.s.).

(ii) For any finite sequence A1, . . . , An of disjoint elements of Bb(R
d), the random variables

L(A1), L(A2), . . . , L(An) are independent.

(iii) For any A ∈ Bb(R
d), the random variable L(A) is infinitely divisible.

Note that we call a Lévy basis atomless if L({a}) = 0 a.s. for every one-point set {a} ⊂ Rd .

Moreover, we call a Lévy basis homogeneous if L(A) = L(A + {a}) a.s. for any A ∈ Bb(R
d)

and a ∈ Rd .

Remark 3.1. Note that the term ‘random measure’ has been widely used in the literature, but

can potentially cause confusion in the sense that it has been used with two different definitions.

Classical probability theory defines a random measures as a locally finite kernel from the

underlying probability space to R (or to Rd for d ∈ N); see, e.g. [48, p. 203]. However, Lévy

bases defined above are generally not random measures according to that classical definition

since their realisations are in general not ordinary (signed) measures; see, e.g. [57, p. 118] for

a discussion of this aspect. Hence, some authors would rather call them random noise. The

‘random measures’ we are dealing with in the context of Lévy bases can rather be understood

as set-indexed stochastic processes.

Remark 3.2. It is well known that in the one-dimensional case, i.e. when d = 1, the process

defined by

Lt := L([0, t]) (3.1)

for a homogeneous Lévy basis L is a Lévy process ; see [61, Proposition 3.3]. Likewise, for

any Lévy process, one can find a homogeneous Lévy basis such that (3.1) holds (in law).

In the following we will often work with the so-called cumulant function, which is defined

as the distinguished logarithm of the characteristic function. Recall the definition of the

distinguished logarithm; see, e.g. [31, p. 255] or [60, p. 33].

Definition 3.1. Let g(z) be a complex-valued continuous function on R satisfying g(0) = 1

and g(z) �= 0 for every z. Then there is a unique complex-valued function f on R such that

f (0) = 0 and exp(f (z)) = g(z). We write f (z) = log(g(z)) and call f the distinguished
logarithm of g. In the case that g is a characteristic function, then f is called the cumulant
function.
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Throughout the paper, we will work with homogeneous Lévy bases, which have a cumulant

function of the form

C(ζ, L(A)) = log(E[exp(iζL(A))])

=
[

iζa − 1

2
ζ 2b +

∫

R

(eiζz − 1 − iζz 1[−1,1](z))ν(dz)

]
leb(A),

where leb(·) denotes the Lebesgue measure, a ∈ R, b ≥ 0, and ν is a Lévy measure on R.

Hence, we can associate an infinitely divisible random variable L′, called the Lévy seed, with

every homogeneous Lévy basis L such that, for A ∈ Bd(Rd),

C(ζ, L(A)) = leb(A)C(ζ, L′),

where

C(ζ, L′) = log(E[exp(iζL′)]) = iζa − 1

2
ζ 2b +

∫

R

(eiζz − 1 − iζz 1[−1,1](z))ν(dz). (3.2)

We call (a, b, ν) the characteristic triplet associated with L′ and (a, b, ν, leb) the characteristic

quadruplet associated with the homogeneous Lévy basis L.

3.2. The model

Let us now introduce our new modelling framework for the electricity futures curve

dynamics. Note that throughout the paper we do not distinguish between forward and futures

prices, but present a general framework which is applicable for modelling both forward and

futures prices. In the following, we consider a market with finite time horizon [0, T ∗] for some

T ∗ ∈ (0, ∞).

Note that in energy markets, futures specify a delivery period rather than a time of delivery.

Hence, we are interested in modelling the futures price at time t ≥ 0 with delivery period

[T1, T2] for t ≤ T1 ≤ T2 ≤ T ∗ say. In order to account for the delivery period, we use the

standard method, as, e.g. described in [17] and [22, Chapter 6], and model the (instantaneous)

futures price F(t, T ), where T ∈ [T1, T2] is interpreted as the (instantaneous) time of delivery.

The corresponding model for the futures price with delivery period [T1, T2] is then found to be

Ft (T1, T2) = 1

T2 − T1

∫ T2

T1

F(t, T ) dT . (3.3)

That is, we simply average the model for the instantaneous futures price over the delivery period

in order to have the futures price for a contract with delivery period.

In the following, we will focus on modelling the (instantaneous) futures price F(t, T ) and

(3.3) can then be used to derive the futures price for a given delivery period.

3.3. Modelling the instantaneous futures price

Let t ≥ 0 denote the current time, let T ∈ [t, T ∗] be the time of delivery, and let x = T − t

be the time to delivery of the (instantaneous) futures contract. Let us introduce our modelling

assumptions next.

(A1) L is a homogeneous, square-integrable Lévy basis on R2, which has zero mean; its

characteristic quadruplet is denoted by (a, b, ν, leb). Let Q denote the covariance

measure associated with L satisfying Q(dξ, ds) = (b +
∫

R
z2ν(dz)) dξ ds. To simplify

the exposition, we assume throughout the paper that Q is standardised and given by

Q(dξ, ds) = dξ ds.

https://doi.org/10.1239/aap/1409319557 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319557


Modelling electricity futures by ambit fields 725

(A2) Let {Ft }t∈[−T ∗,T ∗] denote a filtration satisfying the usual conditions such that, for fixed

A ∈ Bb([0, T ∗]), the process (L(A, t))t∈[−T ∗,T ∗] is a martingale with respect to that

filtration.

(A3) The positive random field σ = σ(ξ, s) : � × R2 → (0, ∞) denotes the so-called

stochastic volatility field and is assumed to be independent of the Lévy basis L.

(A4) The function k : [0, T ∗] × [0, T ∗] × [−T ∗, T ∗] → [0, ∞) denotes the so-called weight
function.

(A5) For each T ∈ [0, T ∗], the random field (σ (ξ, s))(ξ,s)∈[0,T ∗]×[−T ∗,T ∗] is assumed to be

predictable and the following integrability condition needs to hold:

E

[∫

[0,T ∗]×[−T ∗,T ∗]
k2(T ; ξ, s)σ 2(ξ, s) dξ ds

]
< ∞.

(A6) We call the set

At = [0, T ∗]×[−T ∗, t] = {(ξ, s) : 0 ≤ ξ ≤ T ∗, −T ∗ ≤ s ≤ t} ⊆ [0, T ∗]×[−T ∗, T ∗]

the ambit set.

(A7) The deterministic integrable function � : [0, T ∗] → (0, ∞) denotes a seasonality and

trend function.

Definition 3.2. Let 0 ≤ t ≤ T ≤ T ∗. Under assumptions (A1)–(A7), the futures price under

the risk-neutral probability measure is defined as the ambit field given by

F(t, T ) = �(T ) +
∫

At

k(T ; ξ, s)σ (ξ, s)L(dξ, ds).

Often we work with the Musiela parametrisation with x = T −t , and define ft (x) = F(t, x+t).

Then

ft (x) = �(t + x) +
∫

At

k(x + t; ξ, s)σ (ξ, s)L(dξ, ds). (3.4)

Note that the stochastic integral with respect to the Lévy basis L is well defined in the sense

of Walsh [66], which extends classical Itô integration with respect to martingales to integration

with respect to martingale measures. A detailed review of this integration concept in the context

of ambit fields is given in [14] and [15].

Remark 3.3. Let us give a justification for the choice of the ambit set as At = [0, T ∗] ×
[−T ∗, t], which is depicted in Figure 1. As already mentioned, we consider a market with

finite time horizon T ∗, i.e. all futures contracts expire before that time point. We are interested

in modelling the futures market from today, i.e. t = 0, up to T ∗. We assume that today’s

observations are realisations of a random field which is obtained by integrating over the past, i.e.

F(0, T ) =
∫

A0

k(T ; ξ, s)σ (ξ, s)L(dξ, ds).

Without loss of generality, we assume here that the boundary of the time horizon in the past is

given by −T ∗ (rather than by a different parameter, e.g. −T ∗∗), which simplifies the exposition.

Since we follow a modelling approach based on a random field, our model permits consistency

with the initial term structure F(0, T ) and does not need to be recalibrated multiple times; see,

e.g. [43] for a discussion of this aspect.
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s

Time to delivery ξ 

T*

T*t Time0� T*

Figure 1: The ambit set At = [0, T ∗] × [−T ∗, t].

Remark 3.4. Note that the term ambit originates from the Latin words ambire and ambitus
where the latter means border, boundary, or sphere of influence. Hence, ambit sets are the

regions of influence in the past. We use the term ambit field to highlight that such random

fields are constructed by integrating over ambit sets, which can be considered as describing

the temporal past and the spatial neighbouring regions which are relevant for the object under

investigation.

Our first result is that futures prices as defined in Definition 3.2 are martingales under the

risk-neutral probability measure Q.

Proposition 3.1. For T ∈ [0, T ∗], the stochastic process (F (t, T ))0≤t≤T is a martingale with
respect to the filtration {Ft }t∈[0,T ].

Proof. The measurability and integrability are straightforward to show. Furthermore, for

0 ≤ t̃ ≤ t , we have At̃ ⊆ At . Using the independence property of σ and L and the fact that L

is a zero-mean process, we find that

E[F(t, T ) | Ft̃ ]

= �(T ) + E

[∫

At̃

k(T ; ξ, s)σ (ξ, s)L(dξ, ds)+
∫

At\At̃

k(T ; ξ, s)σ (ξ, s)L(dξ, ds)

∣∣∣∣ Ft̃

]

= �(T ) +
∫

At̃

k(T ; s, ξ)σ (ξ, s)L(dξ, ds)

= F(t̃, T ).

Alternatively, we could have argued as follows. The integrand in F(t, T ) does not depend

on t and satisfies the [66]-integrability conditions. Hence, the integral is itself a martingale

measure, and, in addition, �(T ) does not depend on t , which implies that (F (t, T ))0≤t≤T is a

martingale.

Remark 3.5. Note that necessary and sufficient conditions for a more general ambit field to

be a martingale are discussed in Appendix A.

The important implication of Proposition 3.1 is that our modelling framework is free of

arbitrage in the sense that there is no free lunch with vanishing risk as defined in [34].

We have chosen to model the futures price in (3.4) as an arithmetic model, which is in line

with many recent developments in the literature. For example, Bernhardt et al. [23] and García
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et al. [39] proposed and argued statistically for an arithmetic spot price model for Singapore

electricity data. An arithmetic spot model will naturally lead to arithmetic dynamics for the

futures price. Benth et al. [21] proposed an arithmetic model for spot electricity, and derived

arithmetic futures price dynamics. In [20] arithmetic spot and futures price models are used to

investigate the risk premium theoretically and empirically for the German EEX market. See

also [64] and [65] for recent work on arithmetic models for electricity spot and futures.

In addition, we will give a description of the corresponding geometric framework based on

ambit fields in Section 5.

3.4. Important properties of the new modelling framework

The ambit field specification is highly analytically tractable. In particular, we can easily

derive the (conditional) cumulant function.

Proposition 3.2. Let Gt = σ {σ(ξ, s), (ξ, s) ∈ At }. The conditional cumulant function of the
futures price—given the σ -algebra generated by the stochastic volatility field—is given by

Cσ (ζ, ft (x)) := log(E[exp(iζft (x)) | Gt ])

= iζ�(t + x) +
∫

At

C(ζ k(x + t; ξ, s)σ (ξ, s), L′) dξ ds, (3.5)

where L′ is the Lévy seed associated with L with cumulant function given by (3.2).

The proof of the above result is straightforward and given in, e.g. [15].

Example 3.1. If L is a homogeneous Gaussian Lévy basis then we have

C(ζ k(x + t; ξ, s)σ (ξ, s), L′) = iζ�(t + x) − 1
2
ζ 2k2(x + t; ξ, s)σ 2(ξ, s).

While models based on random fields have been previously studied in the literature, see [1],

[43], [50], [51], [53], and [59], we stress that our model has an important property which

most models previously proposed in the literature lack: it allows for stochastic volatility in an

analytically tractable form. Note that Barndorff-Nielsen et al. [16], Benth [18], and Hikspoors

and Jaimungal [46] provided empirical evidence that spot and futures prices are influenced by a

stochastic volatility field σ . Here we assume that σ describes the volatility of the futures market

as a whole. The stochastic volatility is incorporated as a factor in the stochastic integrand, i.e. as

the random field σ(ξ, s). We typically use the quadratic variation to measure the accumulated

‘stochastic volatility’ over a certain time period. In our modelling context, we can deduce

from [66, Theorem 2.5] that the quadratic variation of the futures price ft (x) is given by
∫

At

k2(x + t; ξ, s)σ 2(ξ, s) dξ ds.

Moreover, it is important to note that our new model does not only model one particular

futures contract, but it models the entire futures curve at once. Hence, it is interesting to study

the correlation structure for various futures contracts implied by our new modelling framework.

For the particular model defined in (3.4), for 0 ≤ t ≤ t +h ≤ T ∗ and 0 ≤ x, x′ ≤ T ∗, we have

At ∩ At+h = At and

cor(ft (x), ft+h(x
′))

=
∫
At

k(x + t, ξ, s)k(x′ + t + h, ξ, s)E[σ 2(ξ, s)] dξ ds
√∫

At
k2(x + t, ξ, s)E[σ 2(ξ, s)] dξ ds

∫
At+h

k2(x′ + t + h, ξ, s)E[σ 2(ξ, s)] dξ ds
.
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Hence, we see that the correlation structure is determined by three factors: the intersection of

the corresponding ambit sets (here we have At ∩ At+h = At ), the weight function, and the

second moment of the stochastic volatility field. Furthermore, one could think of modelling

various commodity forward or futures contracts, such as electricity and natural gas futures,

simultaneously. In such a situation it becomes even more clear how flexible the ambit setup is.

We can specify different ambit sets, weight functions, stochastic volatility fields, and Lévy bases,

and obtain a rather flexible correlation structure. The details of these multivariate extensions

can be found in [15].

3.5. Examples of model specifications

In order to construct a fully parametric model for the futures price, we need to specify the

weight function k, the stochastic volatility field σ(ξ, s), and the Lévy basis L. The choice of

the model components will be based on stylised features, market intuition, and considerations

of mathematical/statistical tractability. Also, we will need to impose parameter restrictions,

which will ensure that the specific model parameters are indeed identifiable.

Since a futures model based on an ambit field has a very general structure, we would like

to point out some concrete model specifications which might be useful in practice and are

motivated from empirical work in [3], [16], and [25]. Clearly, in any particular application, the

concrete specification should be determined in a data-relevant fashion.

3.5.1. Specification of the Lévy basis. Recall that we have defined our model based on a Lévy

basis, which is square integrable and has zero mean. Extensions to allow for a nonzero mean

are straightforward and, hence, omitted. In principle, we can choose any infinitely divisible

distribution satisfying these two assumptions. A very natural starting point would be the

Gaussian Lévy basis. Alternative interesting choices in the context of modelling financial

data include the normal inverse gaussian (NIG) Lévy basis and the tempered stable Lévy basis.

3.5.2. Specification of the weight function. Next we present relevant specifications of the weight

function k. Note that the weight function k plays a key role for two reasons. First, it determines

the tempospatial autocorrelation structure of our ambit field. Second, it characterises the

Samuelson effect as we will see in Proposition 4.3 below.

Let us now study some relevant examples which are motivated by the recent literature. Note

that many traditional models for futures prices are based on stochastic processes rather than

on random fields and, hence, the corresponding weight function does not allow for a spatial

parameter. In order to incorporate such models in our modelling framework, we could think of

working under the following factorisation assumption for the weight function.

Assumption F. It holds that

k(x + t; ξ, s) = �(ξ)	(x + t, s)

for suitable functions 	 and �.

In the case that � ≡ 1 (and that there is no stochastic volatility component) we would almost

be back in the classical framework, as we will see in the following example.

Example 3.2. The traditional way to model the futures dynamics, using the Musiela parametri-

sation with x = T − t in the [45] models, is given by

dft (x) = ∂ft

∂x
(x) dt + h(x, t) dWt ,
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where, for simplicity, we disregard any spatial dependency in the Gaussian field W so that it

is indeed a Brownian motion. Under appropriate (weak) conditions, the mild solution of this

stochastic partial differential equation (SPDE) is given by

ft (x) = Stf0(x) +
∫ t

0

St−sh(x, s) dWs,

where St is the right-shift operator, Stg(x) = g(x + t); see [28] and [33] for more details.

Hence,

ft (x) = f0(x + t) +
∫ t

0

h(s, (t + x) − s) dWs = ft (T − t) = f0(T ) +
∫ t

0

h(s, T − s) dWs .

In our new modelling framework, however, we are interested in nontrivial choices of � and

	. When working with a factorisation as in Assumption F, we could base our choice of the

temporal weight function 	 on weight functions which have proven to be suitable in the case of

modelling futures prices as a times series. Let us give some important examples in that context.

Example 3.3. Motivated by standard Ornstein–Uhlenbeck (OU) models, we could choose

	(x + t, s) = exp(−α(x + t − s))

for some α > 0. The choice of 	 can also be motivated from continuous-time ARMA

(CARMA) processes; see [26] and [27]. Specifically, for αi > 0, i = 1, . . . , p, p ∈ N,

introduce the matrix

A =
[

0 Ip−1

−αp −αp−1 − · · · − α1

]
,

where In denotes the n × n identity matrix. For 0 < p < q, define the p-dimensional vector

b
⊤ = (b0, b1, . . . , bp−1), where bq = 1 and bj = 0 for q < j < p, and introduce

	(x + t − s) = b
⊤ exp(A(x + t − s))ep,

with ek being the kth canonical unit vector in Rp.

Another interesting example which does not belong to the class of linear models is given as

follows.

Example 3.4. Motivated by a model introduced in [25], we could choose

	(x + t, s) = a

x + t − s + b

for a, b > 0.

We will come back to the latter example later on, when we focus in more detail on the

Samuelson effect. Bjerksund et al. [25] suggested such a weight function since they found that

it mimics the empirical Samuelson effect rather well.

Example 3.5. An important example is motivated by the model introduced in [3]. In addition

to the choice 	(x + t, s) = exp(−α(x + t − s)) for α > 0, we could define �(ξ) = exp(−βξ)

for β > 0.

An extension of the above example would be to work with weights induced by linear CARMA

models for the spatial component � also.
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Remark 3.6. It should be noted that our modelling framework allows for weight functions k

which are not separable in the s and ξ components, i.e. when Assumption F is not satisfied.

This feature makes it possible to allow for much more sophisticated correlation structures than

those used in classical models which are not based on random fields.

3.5.3. Specification of the stochastic volatility field. Let us briefly sketch possibilities of mod-

elling the stochastic volatility field. First, there is the trivial choice of setting σ ≡ 1. However,

given the empirical evidence of volatility clusters (at least in the time domain), it is unlikely

that such a model will be suitable for an application to real data.

A natural starting point to construct a nontrivial stochastic volatility field would be to work

with traditional stochastic volatility models which do not exhibit a spatial component. There

are at least two reasons which would justify such a choice. First, from a practical point of view,

we typically have very frequent data in the temporal dimension, but rather sparse data in the

spatial dimension. This would suggest that, from a modelling point of view, we might want to

focus on models which are not too complex in the spatial component. For example, it has been

pointed out in the literature, see, e.g. [59], that we are often interested in very smooth models

in the spatial component.

In Section 7 we will study a concrete example of a truly tempospatial volatility field. From a

theoretical point of view, there are various ways to construct tempospatial stochastic volatility

fields and we refer the reader to [15] for more results on this topic.

3.6. Remark on how to include length of delivery in the model

As mentioned before, the futures price corresponding to a delivery period [T1, T2] is modelled

by Ft (T1, T2) = (T2 − T1)
−1

∫ T2

T1
ft (u − t) du. Hence, given an ambit model of ft (x), we

simply average it over the delivery period in order to have the futures price for a contract with

delivery period.

Alternatively, we could think of modelling Ft (T1, T2) directly—by an ambit field. The main

idea here is to include the length of the delivery period τ := T2 − T1 as an additional spatial

component. For example, we could think of using

∫

A∗
t

k(x + t, τ ; ξ, χ, s)σs(ξ, χ)L(dξ, dχ, ds),

as a building block for Ft (T1, T2), where A∗
t is a suitably extended ambit set and where we

assume that the corresponding integrability conditions hold, which ensure that the ambit field is

well defined. The main obstacle in building such models is the noarbitrage condition between

contracts with overlapping delivery periods. In fact, any model for Ft (T1, T2) must satisfy

(see [22])

Ft (T1, T2) = 1

T2 − T1

∫ T2

T1

Ft (τ, τ ) dτ,

which puts serious restrictions on the degrees of freedom in modelling. It will be interesting to

study the analytical properties of such models in more detail in future research.

4. Constructing the spot model from the futures price

After having studied the new model for the futures price, we investigate in detail the nature

of the spot price model implied by our new modelling framework for the futures price. Recall

that we are modelling under the risk-neutral measure.
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4.1. The implied spot price

By the noarbitrage assumption, the futures price for a contract which matures in zero time,

x = 0, has to be equal to the spot price, that is, ft (0) = St . Thus,

St = �(t) +
∫

At

k(t; ξ, s)σ (ξ, s)L(dξ, ds). (4.1)

More precisely, we have the following result.

Proposition 4.1. Suppose that ft (0) = St and that

lim
x↓0

∫

At

(k(x + t; ξ, s) − k(t; ξ, s))2E[σ 2(ξ, s)] dξ ds = 0.

Then ft (x) → St in L2(Q) as the time to maturity x tends to 0.

Proof. This follows readily by appealing to the Itô-type isometry for Walsh integrals.

The proposition shows us that the futures price will tend continuously in variance to the spot

price as the time to maturity decreases to 0.

We observe that the spot price process implied by our ambit field based futures price model

is driven by a (tempospatial) Lévy basis and not just by a Brownian motion or a Lévy process.

Barndorff-Nielsen et al. [16] proposed modelling energy spot prices by volatility modulated

Volterra processes, and we observe that our implied spot price St is in fact a superposition of

such spot models, in the same sense as one has superpositions of OU processes. That is, we do

not just integrate out the time parameter s, but we have an additional parameter ξ , which appears

both in the weight function and in the stochastic volatility component and can be viewed as

being randomised through the Lévy basis L.

Similarly to the result for the futures price, see Proposition 3.2, we can derive the conditional

cumulant function for the implied spot price.

Proposition 4.2. Let L be a homogeneous Lévy basis. Then, for St as defined by (4.1), the
conditional cumulant function is given by

Cσ (ζ, St ) = log(E[exp(iζSt ) | Gt ]) = iζ�(t) +
∫

At

C(ζ k(t; ξ, s)σ (ξ, s), L′) dξ ds,

where L′ is the Lévy seed associated with L.

A case of some special interest is the situation where the driving Lévy basis of the ambit

field is a homogeneous Gaussian Lévy basis. Then we obtain the following result.

Corollary 4.1. In the Gaussian case, where C(ζ, L′) = − 1
2
ζ 2,

Cσ (ζ, St ) = iζ�(t) − 1

2
ζ 2

∫

At

k2(t; s, ξ)σ 2
s (ξ) dξ ds.

If k factorises as in Assumption F then

Cσ (ζ, St ) = iζ�(t) − 1

2
ζ 2

∫ t

−T ∗
	2(t; s)ω2

s ds, where ω2
s =

∫ T ∗

0

�2(ξ)σ 2
s (ξ) dξ.
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This implies that

St
law=

∫ t

−T ∗
	(t; s)ωs dWs,

where W is a Brownian motion. The latter is indeed a volatility modulated Volterra process

which is driven by a Brownian motion. Such processes have been used as a model for energy

spot prices in [16].

Remark 4.1. So far, we have assumed that T ∗ < ∞. Suppose for now that 	(t, s) = 	(t−s),

and consider the case in which T ∗ → ∞. Then, provided the limit exists, the spot price is given

by a Lévy semistationary process. This is indeed an interesting case since it includes many of

the traditional models for electricity spot prices.

Note that it is well known that there is no convergence of electricity futures prices to the

spot as time to start of delivery approaches. That is, if the delivery period is [T1, T2], T1 < T2,

then the futures price Ft (T1, T2) at time t does not converge to the spot price as t → T1. We

say that we observe a risk premium; see, e.g. [64] for some recent work on this aspect. One

could mimic such a behaviour with the model class we study here, by choosing the ‘delivery

time’ T as the midpoint, say, in the delivery interval [T1, T2], T = (T1 + T2)/2. Then we can

still associate a spot price to the futures dynamics ft (x), but we will never actually observe

the convergence in the market since at the start of delivery we have x = (T2 − T1)/2. On the

other hand, we will obtain a model where there is an explicit connection between the futures at

‘maturity’ t = T1 and the spot ST1 . This allows for modelling spot and futures jointly, taking

into account their dependency structure.

4.2. Relation to the Samuelson effect

Recall that the Samuelson effect describes the empirical fact that the volatility of the futures

price increases when the time to delivery approaches 0. In that case, from noarbitrage arguments,

we also expect that (at least theoretically) the volatility of the futures converges to the volatility

of the spot price. This finding is in fact naturally included in our modelling framework, which

we will show in the following.

Recall that the weight function k plays the role of a damping function and is therefore

nonincreasing in the first variable. In particular, this means that the function x �→ k(x + t; ξ, s)

is monotonically nonincreasing in x ≥ 0 for every (ξ, s) ∈ [0, T ∗]× [−T ∗, T ∗]. Equivalently,

we could say that x �→ k(x + t; ξ, s) is monotonically nondecreasing as x ↓ 0.

Proposition 4.3. Assume that the function x �→ k(x + t; ξ, s) is monotonically nonincreasing
in 0 ≤ x for every (ξ, s) ∈ [0, T ∗] × [−T ∗, T ∗]. Let c = var(L′), and assume that

sup
(ξ,s)∈[0,T ∗]×[−T ∗,T ∗]

E[σ 2(ξ, s)] ≤ K for a constant K > 0.

Then the variance of the futures price ft (x), given by

υt (x) := var(ft (x)) = c

∫

At

k2(x + t; ξ, s)E[σ 2(ξ, s)] dξ ds,

is monotonically nondecreasing as x ↓ 0. Furthermore, under the conditions of Proposition 4.1,
the variance of the futures converges to the variance of the implied spot price.

Proof. Let 0 ≤ x ≤ x′. Then

k2(x′ + t; ξ, s) − k2(x + t; ξ, s) ≤ 0.
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Hence,

υt (x
′) − υt (x) =

∫

At

(k2(x′ + t; ξ, s) − k2(x + t; ξ, s))E[σ 2(ξ, s)] dξ ds ≤ 0,

due to the fact that k(x + t; ξ, s) is nonincreasing in x.

Note that the variance of the spot is given by υt (0), and it follows from Proposition 4.1 that

vt (x) ≤ vt (0) for x ≥ 0. As x ↓ 0, vt (x) is a monotonically nondecreasing sequence which

is furthermore bounded by vt (0). Thus, there exists a limit limx↓0 vt (x) ≤ vt (0). Under the

condition of Proposition 4.1, this limit will be υt (0), the spot price variance. That is, we have

a Samuelson effect.

Example 4.1. Let us study the Samuelson effect in more detail in the absence of stochastic

volatility and under the assumption that the weight function factorises as in Assumption F (and

each component satisfies suitable integrability conditions). Then the variance of the futures

price is given by

υt (x) = c′
∫ t

−T ∗
	2(x + t, s) ds, where c′ = c

∫ T ∗

0

�2(ξ) dξ.

This implies that, in the context of Example 3.3 where we worked with an exponential weight,

we obtain

vt (x) = c′ 1

2α
(e−2αx − e−2α(x+t+T ∗)),

and, in the context of the [25] model, see Example 3.4, we have

vt (x) = c′a2

(
1

x + b
− 1

x + t + T ∗ + b

)
.

While in the first case the convergence to the spot volatility is determined by the exponential

function, the ratio function determines the convergence in the second case.

Example 4.2. We now consider the limiting case of the example above when T ∗ → ∞
(assuming that the corresponding integrals exists). Let us focus on the case of the model

motivated by Bjerksund et al. [25], where we have

k(x + t; ξ, s) = �(ξ)
a

x + t − s + b
, a, b > 0.

Then the variance of the futures price satisfies vt (x) = c′a2/(x + b), where we take T ∗ → ∞
in the definition of c′. Also, for the correlation between futures with different times to maturity,

we obtain, for h > 0,

cor(ft (x), ft (x + h)) = log(1 + r)

√
1 + r

r
for r = h

x + b
.

We observe that the correlation tends to 1 as r ↓ 0, which corresponds to either h ↓ 0,

i.e. when we consider futures with the same time to maturity, or x → ∞, i.e. futures in the

long end are perfectly correlated. Also, the correlation tends to 0 as r → ∞, corresponding to

h → ∞, meaning futures far apart from each other in terms of time of maturity are uncorrelated.

Finally, we remark that the correlation is monotonically decreasing with r , or, equivalently, the

correlation is increasing with time to maturity. This means that we have more idiosyncratic

risk in the short end than in the long end of the market.
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5. A geometric modelling framework

So far, we have worked with an arithmetic model for the futures price since this is a very

natural model choice and is in line with the traditional random field based models where the

futures are directly modelled by, e.g. a Gaussian random field.

An alternative approach, which ensures that futures prices are always positive, would be to

work with geometric models, i.e. we model the futures price as the exponential of an ambit

field. Most of the results we derived before can be directly carried over to the geometric setup.

For example, when we study the link between the futures price and the spot price, this has to

be interpreted as the link between the logarithmic futures price and the logarithmic spot price.

Likewise, when looking at probabilistic properties such as the moments and cumulants of the

processes, they can be regarded as the moments/cumulants of the logarithmic futures price.

The only result, which indeed needs some adjustment, is in fact the martingale property.

There will be an additional drift condition compared to the arithmetic case.

Before we formulate the martingale property, we specify an additional integrability assump-

tion.

Assumption I. Suppose that the assumptions (A1)–(A7) are satisfied. In addition, we assume
that

E

[
exp

(∫

At

C(−ik(T ; ξ, s)σ (ξ, s), L′) dξ ds

)]
< ∞ for all t ∈ [0, T ∗].

Now we show that a suitable specification of a geometric model based on ambit fields is a

martingale.

Proposition 5.1. We assume that Assumption I is satisfied. Then the futures price at time t ≥ 0

with delivery at time T ∈ [t, T ∗], denoted by (G(t, T ))t∈[0,T ] with

G(t, T )

= exp

(
�(T ) +

∫

At

k(T ; ξ, s)σ (ξ, s)L(dξ, ds) −
∫

At

C(−ik(T ; ξ, s)σ (ξ, s), L′) dξ ds

)
,

is a martingale with respect to {Ft }t∈[0,T ].

Proof. This results follows immediately from the results corresponding to the Esscher

transform for semimartingales, see [49], and from our integrability condition, Assumption I.

Example 5.1. In the special case where L = W is a standardised, homogeneous Gaussian

Lévy basis and Assumption I is satisfied, (G(t, T ))t∈[0,T ] with

G(t, T ) = exp

(
�(T ) +

∫

At

k(T ; ξ, s)σ (ξ, s)W(dξ, ds) − 1

2

∫

At

k2(T ; ξ, s)σ 2(ξ, s) dξ ds

)

is a martingale with respect to {Ft }t∈[0,T ].

6. Option pricing

Next we describe how to price options based on futures contracts with price dynamics given

by an ambit field. Recall that the futures price at time t ≥ 0 of a contract maturing at time

T ∈ [t, T ∗] is—in the arithmetic model—given by

ft (T − t) = �(T ) +
∫

At

k(T ; ξ, s)σ (ξ, s)L(dξ, ds),
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which is a martingale in t . Given a measurable function g : R �→ R, consider the problem of

pricing a European option which pays g(fτ (T −τ)) at exercise time τ ≤ T . From the arbitrage

theory, we find that the price of this option at time t ≤ τ is

C(t) = e−r(τ−t)E[g(fτ (T − τ)) | Ft ].

Here the constant r > 0 is the risk-free interest rate. For C to be well defined, we must suppose

that g(fτ (T − τ)) is integrable.

Since the cumulant function of the ambit field is available (see (3.5)), the Fourier-based

pricing method is an attractive approach (see [29]). If g, ĝ ∈ L1(R), with ĝ being the Fourier

transform of g, we can express the price of the option as

C(t) = 1

2π

∫

R

ĝ(z)E[eizfτ (T −τ) | Ft ] dz.

Here we make use of the integral representation of the inverse Fourier transform; see [37].

Thus, to find C(t), we must compute the conditional cumulant function of Y . First, we split

the ambit field to obtain

fτ (T − τ) = �(T ) +
∫

At

k(T ; s, ξ)σs(ξ)L(dξ, ds) +
∫

Aτ \At

k(T ; s, ξ)σs(ξ)L(dξ, ds).

The first integral on the right-hand side is Ft -measurable. Hence,

E[eizfτ (T −τ) | Ft ] = exp

(
iz�(T ) + iz

∫

At

k(T ; s, ξ)σs(ξ)L(dξ, ds)

)

× E

[
exp

(
iz

∫

Aτ \At

k(T ; s, ξ)σs(ξ)L(dξ, ds)

) ∣∣∣∣ Ft

]
.

The conditional expectation can be expressed analogously as in (3.5). Note that the option price

will not depend explicitly on ft (T − t).

Many relevant payoff functions g will not be in L1(R). For example, the payoff of a call

option g(x) = max(x − K, 0) will fail to satisfy this condition. In such circumstances, one

can dampen the payoff function by some exponential, and use the same procedure as above

(see [29] for more details, including examples). In the case of geometric futures price models,

we apply the machinery above to the payoff function h(x) = g(exp(x)).

7. Simulation study

In this section we will describe how to simulate an ambit field of the form

Yt (x) :=
∫

[0,T ∗]×[−T ∗,t]
k(x + t; ξ, s)σ (ξ, s)L(dξ, ds),

where we will assume that the volatility field is given by

σ 2(ξ, s) = V

(∫

[0,T ∗]×[−T ∗,s]
j (ξ, s; v, u)Lσ (dv, du)

)
, (7.1)

where V is a positive function, Lσ is a Lévy basis which is independent of L, and the positive

weight function j is such that the integral in (7.1) is well defined.

In order to obtain our model for the futures price, we will later add a seasonality component.
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7.1. Simulation algorithm

We begin by constructing a grid for the interval [0, T ∗]×[−T ∗, T ∗] by dividing the temporal

dimension [−T ∗, T ∗] into n − 1 equidistant intervals of length �t = 2T ∗/n, where we write

−T ∗ = t1 < t2 < · · · < tn = T ∗, and by dividing the spatial dimension [0, T ∗] into m − 1

equidistant intervals of length �x = T ∗/m, where we write 0 = x1 < x2 < · · · < xm = T ∗

for n, m ∈ N.

1. Simulate the stochastic volatility field on the grid points (xj , ti) for i = 1, . . . , n and

j = 1, . . . , m. We obtain the values σ(xj , ti). In the absence of stochastic volatility, we

set σ(xj , ti) = 1 for all i, j .

2. Set � := �x�t and simulate n(m − 1) independent random variables Z1,J
d= L(�x)

and ZI,J
d= L(�) for I = 2, . . . , n and J = 1, . . . , m − 1.

3. For j = 1, . . . , m, we set

Ŷt1(xj ) =
m−1∑

J=1

k(xj + t1; xJ , t1)σ (xJ , t1)Z1,J .

4. For i = 2, . . . , n and j = 1, . . . , m, we set

Ŷti (xj ) :=
i−1∑

I=1

m−1∑

J=1

k(xj + ti; xJ , tI , )σ (xJ , tI )ZI,J .

Steps 3 and 4 of the simulation algorithm make use of the definition of the stochastic integral

in the sense of [66] for simple processes. This allows us to represent the stochastic integral of

Yt (x) as Ŷt (x) in a discretised form, ensuring convergence when � goes to 0.

In the presence of stochastic volatility, we can use the same procedure as described above

for simulating the stochastic volatility field first.

Remark 7.1. Note that � = leb([xj , xj+1] × [ti, ti+1]). In the case that L = W is a Gaussian

homogeneous Lévy basis, with characteristic quadruplet (μ, c2, 0, leb), we simulate ZI,J ∼
independent and identically distributed N(μ�, c2�).

7.2. A recursive scheme for an exponential weight function

With this general simulation algorithm at hand, let us consider a specific example, where we

can derive a recursive scheme which allows us to simulate the ambit field much more quickly.

Let At = [0, T ∗] × [−T ∗, t], and suppose that the weight function k is a weighted sum of

two exponential functions, i.e.

k(x + t; ξ, s) = w exp(−λ1(x + t − s + ξ)) + (1 − w) exp(−λ2(x + t − s + ξ))

for w ∈ [0, 1] and λ1, λ2 > 0. This choice of weight function is motivated by the empirical

studies in [16], where such a specification was shown to fit spot price data collected from

the German power exchange EEX. In addition, suppose that σ(ξ, s) ≡ 1 for all (ξ, s) ∈
[0, T ∗] × [−T ∗, T ∗]. Owing to the specification of the weight function, we can split the ambit

field into two parts, i.e.

Yt (x) = wY
(1)
t (x) + (1 − w)Y

(2)
t (x),
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where

Y
(i)
t (x) =

∫

At

e−λi (x+t−s+ξ) L(dξ, ds) = e−λi (t+x)

∫

At

e−λi (ξ−s) L(dξ, ds)

for i = 1, 2. We immediately see that, for �t > 0,

Y
(i)
t+�t

(x) = e−λi�t Y
(i)
t (x) + e−λi�t e−λi (t+x)

∫ t+�t

t

∫ T ∗

0

e−λi (ξ−s) L(dξ, ds).

For small �t , the last integral can be approximated by

∫ t+�t

t

∫ T ∗

0

e−λi (ξ−s) L(dξ, ds) ≈ eλi t

∫ T ∗

0

e−λiξ L(dξ × �t ),

to obtain the iterative Euler-like time-stepping scheme

Y
(i)
t+�t

(x) ≈ e−λi�t Y
(i)
t (x) + e−λi (x+�t )

∫ T ∗

0

e−λiξ L(dξ × �t ). (7.2)

The integral over ξ can be computed numerically using a Riemann-like approximation as in the

general case above. We note that we can iterate numerically over space as well, since, for �x ,

we have the equality

Y
(i)
t (x + �x) = e−λi�x Y

(i)
t (x). (7.3)

We make use of (7.2) and (7.3) to implement efficient numerical schemes for the simulation of

the whole field Yt (x).

7.3. Examples

First, we illustrate the effect of the choice of the weight function. We simulate a Gaussian

ambit field and compare four choices of the kernel function.

1. An exponential weight function, i.e. k(x + t; ξ, s) = exp(−λ1(x + t − s + ξ)) with

λ1 = 0.226; see Figure 2(a).

2. A sum of two exponentials, i.e. k(x + t; ξ, s) = (1 − w) exp(−λ1(x + t − s + ξ)) +
w exp(−λ2(x+ t −s+ξ)) with λ1 = 0.226, λ2 = 0.012, and w = 0.07; see Figure 2(b).

3. A Bjerksund et al. [25]-type weight function, i.e. k(x + t; ξ, s) = 1/(t + x − s + b + ξ)

with b = 0.01; see Figure 2(c).

4. A gamma-type weight function, i.e. k(x+ t; ξ, s) = (x+ t −s+b+ξ)ν−1exp(− 1
2
α(T −

s + b + ξ)) with b = 0.01, α = 0.055, and ν = 0.672; see Figure 2(d).

In Figure 2 we present the corresponding ambit fields, which do not involve stochastic

volatility and where the seasonality component is set to 0 for now. One can clearly see the

differences between the four random fields. While Figure 2(a) decays rather quickly to 0 as

x → T ∗, we see that this is not the case any more when we add a more slowly decaying second

exponential weight function in Figure 2(b). The choice of the kernel function in Figure 2(c)

is motivated by the work of Bjerksund et al. [25], who suggested that their weight function

mimics the empirical Samuelson effect better than the exponential function. We observe that

such a weight function can be considered as a special case of a gamma-type kernel, and show a
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(a) Exponential weight function (b) Sum of two exponential weight functions

(c) Bjerksund et al.-type weight function (d) Gamma-type weight function
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Figure 2: Gaussian ambit field with four different choices for the kernel function.

realisation of such an ambit field in Figure 2(d). While the underlying Gaussian Lévy basis is

the same in all four cases, we see very clearly that the choice of the weight function plays a key

role in practice. In addition, we see that our model easily incorporates wide fluctuations in the

short end and, in particular, in the implied spot price when x = 0. At the same time, choosing

a weight function which damps down the random noise as x → T ∗ leads to a rather smooth

long end of the futures curve.

Let us now make our example more practically relevant by adding stochastic volatility as

well as a seasonal component; see Figure 3. In the following, we choose only one weight

function, namely the sum of two exponential functions with the same parameter choices as

before. A realisation of such a field is depicted in Figure 3(a). Next we simulate a stochastic

volatility field, where we suppose that Lσ is an inverse Gaussian (IG) Lévy basis with mean ̟

and variance ̟ 3ϕ, where we chose ̟ = 2 and ϕ = ̟−3. Furthermore, V being the identity

function and j being the exponential function, we have j (s − u; ξ, v) = exp(−λσ (ξ + s −
u + v)) for λσ > 0. Since the weight function j is of exponential type, we can use the same

considerations as above to obtain a time and space iterative scheme for simulation of σ(x, t).

A realisation of the volatility field is shown in Figure 3(b), where we have chosen the decay rate

λσ = 0.5 as an example. Note that this stochastic volatility process is a spatial generalisation
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(a) Ambit field without stochastic volatility (b) Stochastic volatility field

(c) Ambit field with stochastic volatility (d) Seasonality field

(f) Futures price with stochastic volatility(e) Futures price without stochastic volatility
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Figure 3: Building an arithmetic model for the futures prices from a Gaussian ambit field by accounting

for seasonality and stochastic volatility.
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of a so-called Barndorff-Nielsen and Shephard (BNS) model, see [12], for the volatility process

σ 2
t , defined as the stationary solution of an IG Lévy process driven OU dynamics. The choice

of speed of mean reversion equal to 0.5 will in that context yield a half-life of ln 2/0.5 ≈ 1.4,

meaning that the volatility is fast mean reverting. This is in accordance with the empirical

results found in [16]. The corresponding volatility modulated ambit field is then depicted in

Figure 3(c). As we observe, the stochastic volatility case generates higher variation in the spot

prices and the short end of the futures curve. This is due to the integration over the volatility

in space that creates a higher variation than the Gaussian ambit field model. Also, since the

stochastic volatility is chosen to be fast decaying to 0 as x → T ∗, in the long end the volatility

smoothes the field compared to the ambit field without stochastic volatility in Figure 3(a).

Clearly, different choices of the volatility field would be possible. Next, we would like to

include seasonality in the futures curve, and add the seasonality field

�(t + x) = 50 + 3 sin

(
2π(t + x)

250

)
+ 0.25 sin

(
2π(t + x)

5

)
,

which accounts for yearly and weekly effects. Adding the seasonality field to the original

ambit fields depicted in Figures 3(a) and 3(c) leads to our simulated futures curves depicted in

Figures 3(e) and 3(f), where the former does not account for stochastic volatility whereas the

latter does.

In our simulation study we have illustrated graphically that the class of ambit fields is very

flexible and allows us to account for the specific stylised facts of electricity futures. We clearly

see the influence of the seasonality function in the spot (i.e. for x = 0), whereas in the long end

it is essentially only the seasonality function that gives variations in the price. It should be noted

that our simulation shows the instantaneous futures curve. Integrating over the corresponding

delivery periods will smooth the field further in the x direction and will then result in a curve

reflecting the futures contracts with various delivery periods. This means that when considering

delivery periods, the averaging will smoothen out much of the seasonality, at least for contracts

with longer delivery periods. Typically, in the long end of the futures market we have yearly

contracts, where the seasonality will be completely averaged out.

8. Change of measure

Since our futures price model is formulated under a risk-neutral pricing measure, it is of

interest to understand how to get back to the physical measure in order to have a model which can

be used for risk management purposes. We will introduce an Esscher transform to accommodate

this.

Proposition 8.1. Define the process

Mθ
t = exp

(∫

At

θ(ξ, s) L(dξ, ds) −
∫

At

C(−iθ(ξ, s), L′) dξ ds

)
.

The deterministic function θ : [0, T ∗] × [−T ∗, T ∗] �→ R is supposed to be integrable with
respect to the Lévy basis L in the sense of [66]. Assume that

E

[
exp

(∫

At

C(−iθ(s, ξ), L′) dξ ds

)]
< ∞ for all t ∈ RT ∗ .

Then Mθ
t is a martingale with respect to Ft with E[Mθ

0 ] = 1.
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The proof of the previous proposition is straightforward and, hence, omitted. We use that

result now in order to define an equivalent probability P by

dP

dQ

∣∣∣∣
Ft

= Mθ
t

for t ≥ 0. Hence, we have a change of measure from the risk-neutral probability Q under

which the futures price is defined to a real-world probability P. In effect, the function θ is an

additional parameter to be modelled and estimated, and it will play the role as the market price
of risk, as it models the difference between the risk-neutral and objective price dynamics.

We compute the characteristic exponent of an integral of L under P.

Proposition 8.2. For any v ∈ R, and Walsh-integrable function g with respect to L, it holds
that

CP

(
v,

∫

At

g(ξ, s)L(dξ, ds)

)

= logEP

[
exp

(
iv

∫

At

g(ξ, s)L(dξ, ds)

)]

= logE

[
exp

(∫

At

(ivg(ξ, s) + θ(ξ, s)) L(dξ, ds)

)]
exp

(
−

∫

At

C(−iθ(ξ, s), L′) dξ ds

)

=
∫

At

(C(vg(ξ, s) − iθ(ξ, s), L′) − C(−iθ(ξ, s), L′)) dξ ds.

Note that the transform above is a simple generalisation of the Esscher transform of Lévy

processes; see [13], [22], and [62] for more details on this aspect.

9. Conclusion

In this paper we presented a new modelling framework for electricity futures prices which

followed the HJM methodology by modelling futures directly. We proposed using ambit fields,

which are special types of random field, as the building block for the new modelling class.

Ambit fields are constructed by stochastic integration with respect to Lévy bases using the

integration concept of [66]. This ensured that the futures price was a martingale under the

risk-neutral measure and, hence, we obtained a model free of arbitrage. We discussed relevant

examples of model specifications within the new modelling framework and related them to

the traditional modelling concepts. We showed that our new modelling framework accounts

for the key stylised facts observed in electricity futures. Furthermore, we showed that futures

and spot prices can be linked to each other within the ambit field framework. In addition, we

discussed how a change of measure between the risk-neutral and physical probability measure

can be carried out, so that our model can be used both for option pricing purposes as well as

for applications in risk management under the physical probability measure.

A natural next step to take is to test our new model empirically and to study statistical aspects

related to our ambit field models, such as model estimation and model specification tests.

Appendix A. Martingale condition

Recall that we have formulated the model for the futures price such that the price is a

martingale. In the following, we formulate a martingale condition for more general ambit

fields.
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Theorem A.1. Let At = B × [−T ∗, t] for a bounded interval B ⊂ R and T ∗ > 0, and define

Yt (T − t) =
∫

At

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

for a deterministic weight function h, a nonnegative random field σ , and a homogeneous,
square-integrable Lévy basis L with zero mean. Here we assume that the integrand satisfies
the [66]-integrability conditions, and that σ and L are independent.

For every T , the necessary and sufficient condition for (Yt (T − t))t≤T to be a continuous
L2-martingale with respect to the filtration defined in (A2) is that there exists a null set N ∈ R2

such that t �→ h(T − t, t; ξ, s) is a constant for all (ξ, s) �∈ N .

Proof. The sufficiency of the condition is an immediate consequence of the definition of

the [66]-integral. Hence, we focus on proving that the condition is also necessary. Suppose

that (Yt (T − t))t≤T is a continuous L2-martingale. This implies in particular that

E[Yt (T − t) | Ft̃ ] = Yt̃ (T − t̃ ) for all t̃ ≤ t.

Note that, for t̃ ≤ t , we have At̃ ⊆ At . Using the independence property of σ and L, and the

fact that L is a zero-mean process, we find that

E[Yt (T − t) | Ft̃ ] = E

[∫

At̃

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

+
∫

At\At̃

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

∣∣∣∣ Ft̃

]

=
∫

At̃

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

= Yt̃ (T − t̃ ) + It̃ (T − t̃ ),

where

It̃ (T − t̃ ) =
∫

At̃

{h(T − t, t; ξ, s) − h(T − t̃ , t̃; ξ, s)}σ(ξ, s)L(dξ, ds).

Without loss of generality, we assume that var(L′) = 1. Since L is a Lévy basis with zero

mean, we know that E(It̃ (T − t̃ )) = 0, and from the Itô isometry we therefore obtain

var(It̃ (T − t̃ )) =
∫

At̃

{h(T − t, t; ξ, s) − h(T − t̃ , t̃; ξ, s)}2E(σ 2(ξ, s)) dξ ds.

Thus, It̃ (T − t̃ ) ≡ 0 implies that var(It̃ (T − t̃ )) ≡ 0. Hence, we can deduce that

h(T − t, t; ξ, s) = h(T − t̃ , t̃; ξ, s)

for almost every ξ and s. Finally, we can conclude that there exists a null set N ∈ R2 such that

t �→ h(T − t, t; ξ, s) is a constant for all (ξ, s) �∈ N .

Remark A.1. We see that the martingale condition for general ambit fields essentially suggests

a model structure like the one we have chosen in this paper if one wants to model by a martingale.
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[22] Benth, F. E., Šaltytė Benth, J. and Koekebakker, S. (2008). Stochastic Modelling of Electricity and
Related Markets (Adv. Ser. Statist. Sci. Appl. Prob. 11). World Scientific, Hackensack, NJ.

[23] Bernhardt, C., Klüppelberg, C. and Meyer-Brandis, T. (2008). Estimating high quantiles for electricity

prices by stable linear models. J. Energy Markets 1, 3–19.

[24] Bichteler, K. (2002). Stochastic Integration with Jumps (Encyclopedia Math.Appl. 89). Cambridge University

Press.

[25] Bjerksund, P., Rasmussen, H. and Stensland, G. (2010). Valuation and risk management in the Norwegian

electricity market. In Energy, Natural Resources and Environmental Economics, eds E. Bjørndal, et al. Springer,

Berlin, pp. 167–185.

[26] Brockwell, P. J. (2001). Continuous-time ARMA processes. In Stochastic Processes: Theory and Methods
(Handbook Statist. 19), North-Holland, Amsterdam, pp. 249–276.

[27] Brockwell, P. J. (2001). Lévy-driven CARMA processes. Ann. Ins. Statist. Math. 53, 113–124.

[28] Carmona, R. A. and Tehranchi, M. R. (2006). Interest Rate Models: An Infinite Dimensional Stochastic
Analysis Perspective. Springer, Berlin.

[29] Carr, P. and Madan, D. (1998). Option valuation using the fast Fourier transform. J. Computational Finance
2, 61–73.

[30] Cartea, A. and Figueroa, M. G. (2005). Pricing in electricity markets: a mean reverting jump diffusion model

with seasonality. Appl. Math. Finance 12, 313–335.

[31] Chung, K. L. (2001). A Course in Probability Theory, 3rd edn. Academic Press, San Diego, CA.

[32] Clewlow, L. and Strickland, C. (2000). Energy Derivatives: Pricing and Risk Management. Lacima,

Houston, TX.

[33] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cambridge University

Press.

[34] Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing.

Math. Ann. 300, 463–520.

[35] Diko, P., Lawford, S. and Limpens, V. (2006). Risk premia in electricity forward prices. Studies Nonlinear
Dynamics Econometrics 10, Article 7.

[36] Eydeland, A. and Wolyniec, K. (2003). Energy and Power Risk Management. John Wiley, Hoboken, NJ.

[37] Folland, G. B. (1984). Real Analysis. Modern Techniques and their Applications. John Wiley, New York.

[38] Frestad, D., Benth, F. E. and Koekebakker, S. (2010). Modeling term structure dynamics in the Nordic

electricity swap market. Energy J. 31, 53–86.

[39] García, I., Klüppelberg, C. and Müller, G. (2011). Estimation of stable CARMA models with an application

to electricity spot prices. Statist. Modelling 11, 447–470.

[40] Geman, H. (2005). Commodities and Commodity Derivatives. John Wiley, Chichester.

[41] Geman, H. and Roncoroni, A. (2006). Understanding the fine structure of electricity prices. J. Business 79,

1225–1261.

[42] Geman, H. and Vasicek, O. (2001). Forwards and futures on non-storable commodities: the case of electricity.

RISK , August, 2001.

[43] Goldstein, R. S. (2000). The term structure of interest rates as a random field. Rev. Financial Studies 13,

365–384.

[44] Hambly, B., Howison, S. and Kluge, T. (2009). Modelling spikes and pricing swing options in electricity

markets. Quant. Finance 9, 937–949.

[45] Heath, D., Jarrow, R. and Morton, A. (1992). Bond pricing and the term structure of interest rates: a new

methodology for contingent claims valuation. Econometrica 60, 77–105.

[46] Hikspoors, S. and Jaimungal, S. (2008). Asymptotic pricing of commodity derivatives using stochastic

volatility spot models. Appl. Math. Finance 15, 449–477.

[47] Hinz, J., von Grafenstein, L., Verschuere, M. and Wilhelm, M. (2005). Pricing electricity risk by interest

rate methods. Quant. Finance 5, 49–60.

[48] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.

[49] Kallsen, J. and Shiryaev, A. N. (2002). The cumulant process and Esscher’s change of measure. Finance
Stoch. 6, 397–428.

[50] Kennedy, D. P. (1994). The term structure of interest rates as a Gaussian random field. Math. Finance 4,

247–258.

[51] Kennedy, D. P. (1997). Characterizing Gaussian models of the term structure of interest rates. Math. Finance
7, 107–118.

[52] Kiesel, R., Schindlmayr, G. and Börger, R. H. (2009). A two-factor model for the electricity forward market.

Quant. Finance 9, 279–287.

[53] Kimmel, R. L. (2004). Modeling the term structure of interest rates: a new approach. J. Financial Econom. 72,

143–183.

https://doi.org/10.1239/aap/1409319557 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319557


Modelling electricity futures by ambit fields 745

[54] Koekebakker, S. and Ollmar, F. (2005). Forward curve dynamics in the Nordic electricity market. Managerial
Finance 31, 73–94.

[55] Lucia, J. J. and Schwartz, E. S. (2002). Electricity prices and power derivatives: evidence from the Nordic

power exchange. Rev. Derivatives Res. 5, 5–50.
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