
Modelling Flexible Processes with Business Objects

Guy Redding∗, Marlon Dumas†∗, Arthur H. M. ter Hofstede∗ and Adrian Iordachescu‡

∗Queensland University of Technology, Brisbane, Australia
Email: {g.redding, a.terhofstede}@qut.edu.au

†University of Tartu, Tartu, Estonia
Email: marlon.dumas@ut.ee

‡FlowConnect Pty Ltd, Sydney, Australia
Email: adrian@sws.com.au

Abstract

Mainstream business process modelling techniques pro-
mote a design paradigm wherein the activities that may
be performed within a case, together with their usual
execution order, form the backbone on top of which other
aspects are anchored. This Fordist paradigm, while ef-
fective in standardised and production-oriented domains,
breaks when confronted with processes in which case-by-
case variations and exceptions are the norm. We contend
that the effective design of flexible processes calls for a
substantially different modelling paradigm: one where pro-
cesses are organized as interacting business objects rather
than as chains of activities. This paper presents a meta-
model for business process modelling based on business
objects. The paper also presents a real-life case study
in which a number of human service delivery processes
were designed using the presented meta-model. The case
study demonstrates that the meta-model addresses three
key flexibility requirements encountered in this domain.

I. Introduction

Process-Aware Information Systems, such as traditional
Workflow Management Systems, have difficulties support-
ing dynamic business processes because they rely on
modelling paradigms that tend to impose a given execution
order between activities and decision points. This fact has

This research was supported by an Australian Research Council
Linkage Project (LP0562363) co-funded by FlowConnect Pty Ltd.

been discussed in the literature for some time leading to
many flexible workflow models (e.g. [1], [2], [3], [4]).

In this paper we present an approach to capture flexible
business processes by centralising the role of objects in
process models, in line with recent work on artifact-centric
process models [5] and data-driven process modeling [6].
The proposed approach is inspired by, but arguably not
limited to, the delivery of human and social services.
Modelling and executing processes in this domain tends
to be challenging when compared to more standardised
domains such as insurance and banking. A key feature
of delivering human and social services is that the type,
number and order of tasks and sub-processes needed to
address a case are often not known until runtime. Also,
in these processes, variations on a case-by-case basis and
exceptions are the norm. In addition, an attempt to impose
a standardised way of delivering social services is usually
met with resistance by the stakeholders involved in the
process – from both providers and consumers.

As a motivating scenario, we consider a possible situa-
tion that faces a charity organisation.1 A recently homeless
family makes an application for assistance to a charity.
During management of the homelessness case it is discov-
ered that there are other alcoholism and gambling issues
that individual family members require assistance with.
While each issue can be mapped to a social service that
the charity offers, the occurrence of these extra issues is
unplanned. Unplanned situations are particularly challeng-
ing to handle using traditional process modelling notations.
They require process models to incorporate several types

1This work is inspired by a project involving the fourth author.



of flexibility, empowering actors with a certain degree of
freedom, while enforcing constraints where necessary.

We first present flexibility requirements that were en-
countered in the context of the above human services case
study (Section II). Next, we present a meta-model for
capturing flexible processes (Section III). This meta-model
is embodied in a tool that allows designers to capture
flexible process models and to export these models in a for-
mat suitable for simulation and analysis, namely Coloured
Petri nets. Next, we show how the proposed meta-model
addresses the flexibility requirements (Section IV). The
resulting models have been used to realise a system to
support these processes in a pilot environment. Finally we
compare the proposal with related work (Section V) before
concluding and outlining future work (Section VI).

II. Patterns of Flexibility

During the analysis and design of human service de-
livery processes, we identified recurrent requirements that
we grouped into three patterns of flexibility. A pattern of
flexibility is a recurrent problem wherein a designer needs
to account for the fact that a variety of circumstances could
be encountered during the execution of a process model,
yet the scope of these circumstances needs to be captured
at design-time to achieve uniformity or to enforce certain
constraints. We call these patterns of flexibility PoF1-PoF3.

PoF1: Creation Flexibility

Creation flexibility is the ability of a user to trigger
the creation of one or more task instances (jobs) during
execution of a process. This pattern of flexibility allows the
set of task types to be instantiated as well as the ordering of
instantiations to be loosely specified at design-time. At the
same time, it is sometimes necessary to define constraints
regarding the number of task instances and the state(s)
in a process from where task instances can be created.
Generally speaking, a task instance is created in either
a planned or an unplanned manner. A planned task is
created as-specified by process model logic. An unplanned
task presents additional concerns since it is created on-
demand, i.e. if and when the task is required. For example,
a Health Assessment task may require additional tasks that
correspond to subtypes of Treatment, but the additional
treatments are difficult to completely plan at design-time
because the treatment(s) depend on the assessment.

PoF2: Delegation Flexibility

Delegation flexibility is the ability of a user to trigger
the transfer of context and data from an executing task
to a different task. This pattern of flexibility provides

support for circumstances that may change over time (i.e.
if a problem appears during a client interaction, delegate
the interaction to a task that can support the problem).
To support such situations, a new task (delegatee) takes
over execution of a previous task (delegator). For the
purposes of control-flow, a delegatee replaces a delegator,
meaning that when a delegatee completes, the completion
is treated as if the delegator had completed. From a
data-flow perspective, a delegatee is a delegator subtype,
meaning that the delegatee receives as input data collected
by the delegator and produces as output at least the same
data as the delegator. Delegation is transitive, meaning that
a delegatee may also delegate. This feature, along with the
fact that data is transferred from a delegator to a delegatee,
distinguishes delegation flexibility from creation flexibility.

PoF3: Nesting Flexibility

Nesting flexibility is the ability of a user to instantiate
nested sub-processes as they are needed. For example,
during execution of a homelessness process a social worker
may discover an additional major issue with the client
concerning a drug-related issue which is well beyond the
scope of the process that supports homelessness issues.
Similar to (task) creation flexibility, nesting flexibility is
sometimes only allowed under certain constraints (e.g. the
number of sub-processes can be bounded or unbounded
and the type of sub-processes can only be created in
designated states of a process). However, nesting flexibility
deals with creating sub-processes rather than creating tasks
– we call this situation a referral. This pattern of flexibility
enables the creation of as many ad-hoc sub-process layers
as needed to manage issues as they arise, while maintaining
sub-process modularity and retaining process control.

III. Flexible Process Meta-Model

We propose to achieve process flexibility via a meta-
model, namely FlexConnect, that consists of three abstract
types of business objects, namely Coordination Object,
Job Object and Referral Object (see Figure 1). Concrete
business object types inherit from these abstract types.

A Coordination Object (COROB) is an object that
coordinates a process. The COROB is inspired by the
recognition that to capture flexible processes, separation
must exist between the coordination of tasks and the types
of tasks supported by a process. As such, a COROB is
responsible for coordination on two levels: (i) creating and
synchronising the tasks needed to complete a process; and
(ii) referring out-of-scope work to other COROBs.

A Job Object (JOB) is an object that represents a
job. A JOB manages the execution of tasks involved in
a job and reports job completion to its parent object. For



Fig. 1. Abstract Types and Concrete Types

example, two JOBs in the social services process model
are the Report Collection and Client Visit that have the
Client Intake COROB as their parent.

A Referral Object (ROB) is an object that allows a
COROB to refer a situation which is outside of its scope to
another COROB. For example, if several unplanned major
issues appear during the execution of a Homelessness
COROB such as an Alcoholism or Drug Dependency issue,
a ROB is created that operates under the guidance of a user
to create the necessary COROB instance.

A Flexconnect process model consists of a set of
object types (COROB, JOB and ROB subtypes) and their
relations. A meta-model of the object types is shown in
Figure 2 as a UML Class Diagram. An object lifecycle is
captured as a finite state machine consisting of states and
transitions. Each state machine has one initial state and
one final state. A transition may have an optional event,
condition and/or timeout. A gateway is a sub-state of a
state that can send and/or receive signals either at the pre-
gateway (before a state is entered) or at the post-gateway
(after a state is exited). Every state has a pre-gateway and
a post-gateway. A creation region is a collection of one
or more states in a state machine from within which it
is possible to create object instances from a set of object
types. A state can belong to more than one creation region,
but those states must belong to the same state machine.

The objects of the proposed framework are represented
graphically using the notation in Figure 3. Every object
type specified in a model is a subtype of one of the three
base object types: COROB, JOB or ROB. For example, a
“Homelessness Coordination Object” is a COROB subtype
and a “Client Appointment” is a JOB subtype.

Communications between objects are modelled using
signals. A signal has a label and has a lower-bound and
an upper-bound to specify the signal multiplicity, i.e. the
minimum and maximum number of times that the signal
is sent, where the upper-bound is greater than or equal to

the lower-bound. There are two signal subtypes: a static
signal and a dynamic signal.

Fig. 3. Modelling Elements

A static signal allows a process designer to model
interactions that will occur when an object reaches a
certain state. The number of times that a signal of a
static type can be sent is determined by an expression
given at design-time. There are three static signal types:
a spawn signal to create new object instances, a finish
signal o indicate object completion, and a message signal
for object communication following creation and prior to
completion. When an object enters a state, it waits for a
number of signals attached to its pre-gateway, depending
on the gateway mode (wait for all, wait for one, or wait
until a condition if fulfilled). The object then sits on the
state until the activities attached to that state have been
completed, and then moves into the post-gateway, where
it can produce a number of signals. Thereafter, one of
the outgoing transitions is taken based on the conditions
attached to these transitions. A state can also be exited
“forcefully” if an event attached to one of its outgoing
transitions occurs (e.g. a timeout).

In contrast, a dynamic signal allows a process designer
to model object communications that may occur, i.e. users
have the possibility of triggering a dynamic signal, but they
may or may not do so. The source of a dynamic signal is a
creation region and the target is an object type. If the state
of a source object is within the creation region, users are
offered the possibility to trigger the dynamic signal. When
the dynamic signal is triggered, an instance of the target
object type (or one of its subtypes) is created. The target
object type depends on a selection strategy associated to
the dynamic signal and input given by the user when
triggering the dynamic signal. This approach follows the
principle of the Strategy Pattern [7].

There are four dynamic signal subtypes: the delegation,
creation, referral and nesting signal. A delegation signal



Fig. 2. The FlexConnect Process Meta-Model

allows delegation from a creation region within a delegator
JOB to a delegatee JOB. A delegator may delegate to more
than one type of delegatee, which must be a subtype of the
delegator, but to only one delegatee instance. A creation
signal enables instances of a JOB to be created from a
creation region. The difference between delegation and
creation is hereby identified. When a delegation signal is
triggered, the source object ceases to exist and is replaced
by the target object. Meanwhile, in the case of a creation
signal, a new target object is created and the source
object continues to exist. A parent-child relationship is
then established between the source object and the newly
created object by the creation signal.

Creation and delegation signals serve to transfer control
to a JOB. On the other hand, referral and nesting signals
serve to transfer control to a COROB. A user may trigger
a referral signal to create a ROB if an unexpected major
issue arises during the execution of a COROB that is
outside the scope of the COROB. During the execution
of a ROB, a user (not necessarily the same who created

the ROB) may then trigger a nesting signal, resulting in
the creation of a new COROB. The purpose of the ROB
is to assist a user in finding a suitable COROB type to
address the issue in question.

IV. Achieving Flexibility

In this section we demonstrate how the framework
elements can be used to design a flexible process. For
purposes of illustration we refer to a social service pro-
cess from the charity domain that has been modelled in
our object-oriented approach, presented in Figure 5. The
model consists of a Client Intake COROB that oversees
the process of accepting and evaluating new clients who
have contacted the charity for assistance. This COROB is
responsible for creating and coordinating the tasks and sub-
processes involved in new client intake such as completing
a risk assessment, visiting the client and collecting reports
from social workers, whilst also coordinating distribution



Fig. 4. Patterns of Flexibility

of major issues (if they occur) to other COROBs. To
counter the possibility of exceptional circumstances arising
at runtime the model has been designed to capture the
creation, delegation and nesting patterns of flexibility.

The rest of the section presents extracts from the OO
social services process model to show how the patterns of
flexibility are supported.

A. Creation Flexibility (PoF1)

Creation flexibility is achieved by specifying the set
of JOBs that can be created on-demand by defining a
creation region within a COROB then linking the creation
region to those JOBs with the creation signal, as shown
in Figure 6. In this example a social worker tailors a
plan for a client to resolve the issue(s) that the client
is faced with. Since the plan is tailored to the unique
circumstances of an individual, the plan for each client
is almost always different. To operationalise the plan the
social worker requires access to different tasks offered by
the charity (represented by the JOBs). Creation flexibility
gives the social worker the ability to create instances of
a task when needed (i.e. from the states: “Wait for new
plan”, “Review plan complete”, “Wait for new version”
and “Review recorded”), rather than when it is planned.

When the Client Intake COROB is in a state contained
in the Case Management Region, 1..n instances of the
Client Interaction JOB, 0..n instances of the Child Support
JOB and 0..1 instances of the Rental Assistance JOB can
be created. This means at least one Client Interaction
JOB will be created before exiting the Case Management
Region, but more instances may be created. Any number of
Child Support JOBs along with a maximum of one Rental
Assistance JOB may be created.

Fig. 6. Creation Pattern of Flexibility

B. Delegation Flexibility (PoF2)

Delegation flexibility is achieved by linking a creation
region in a JOB to one or more tasks using the delegation
signal. In Figure 7, we demonstrate delegation using the
Client Interaction delegator JOB. This JOB contains four
states (“Appointment made”, “See client”, “Assessment”
and “Action approved”) and a creation region (named “As-
sessment Region”) that contains the “Assessment” state.
This creation region imposes two restrictions on the Client
Interaction JOB. Firstly, delegation from a Client Interac-
tion can only be performed when it is in the Assessment
Region. Secondly, the set of allowable delegatees from this
creation region are the Skin Treatment, Eye Treatment and
Mental Health Assessment JOBs which are subtypes of the
Client Interaction JOB.

Fig. 7. Delegation Pattern of Flexibility

Delegation is an optional action – a user will make the
choice at runtime of whether or not delegation is performed
because the multiplicity of each delegation signal is 0..1.
If a delegator has more than one delegatee then a choice
is made by the user to select which JOB will become the
delegatee. Delegation is not allowed if the upper bound is
greater than 1 because this implies cloning the delegator.



Fig. 5. Object-Oriented Social Services Delivery Model

If multiple instances of a delegator are needed they are
firstly created and then permitted to delegate as required. If
a delegator does not delegate, then it completes as normal.

C. Nesting Flexibility (PoF3)

Nesting flexibility is motivated by the need to create
sub-processes in an ad-hoc fashion. This is achieved by
linking a creation region in a COROB to a ROB using the
referral signal, then linking a creation region in the ROB
to one or more COROBs using the nesting signal. If a
parent COROB invoke the referral signal an instance of a
ROB is created. The ROB may invoke a nesting signal to
create an instance of a child COROB to manage the newly
discovered real-world issue. The type of child COROB to
create is determined by a user. The ROB creates two levels
of indirection between a parent and child COROB, giving
the framework two advantages: (i) COROBs are decoupled,
establishing modularity between COROBs, and (ii) the
ROB provides the opportunity for human intervention in a
referral, since referring major issues in this manner often
needs an approval from a third party (e.g. a manager).

In Figure 8 we see the number of referral signals that
may be sent from the Case Management Region to a ROB
is unbounded (0..n) and the ROB is connected to three
COROB types. If a social worker discovers an alcoholism

Fig. 8. Nesting Pattern of Flexibility

issue with a client, a ROB will be created that (given
management approval) will create an Alcoholism COROB
instance. Alternatively, if an alcoholism and gambling
issue are discovered with a client, two ROBs are created.
One ROB creates an Alcoholism COROB and the other
creates a Gambling Issue COROB.

The framework places no restrictions on the levels of



nesting, allowing any number of major issues to be handled
and related sub-processes to be created as needed. In
the Case Management region an issue resolution plan is
prepared for an unemployed client and this unemployment
issue is referred through a ROB to a nested Work Search
COROB. However, during execution of the Work Search
COROB the client unexpectedly falls into serious trouble
with the police. The Work Search COROB supports this
new problem by referring it to a ROB, which creates a
nested Legal Support COROB to manage legal assistance.

D. Putting it all together

Using the examples in this section we have demon-
strated how an OO process model coordinates unplanned
tasks and issues. The modelling syntax is based on a meta-
model that has been designed to approach exceptional cir-
cumstances as they occur by engaging creation, delegation
and nesting flexibility. The ability to handle work in the
ways that it may appear is the point of distinction which
allows several flexibility requirements that were identified
in Section II to be supported, while granting a process
model designer the ability to express that flexibility is
required at particular points and is not required at others.

A modelling tool named FlexConnect2 has been de-
veloped that allows us to design OO process models as
described in this paper. In separate work a formal execution
semantics for the proposed meta-model has been defined
in terms of a Coloured Petri Net (CPN) [8]. The modelling
tool has an export capability to generate a CPN Tools
input file that provides an initial marking for the CPN. In
addition to providing a formal grounding to the proposal,
the CPN provides tool support for analysis of FlexConnect
process models. The modelling tool, export function and
the generated CPNs have been tested with 20 FlexConnect
process models of varying sizes.

V. Related Work

There is a significant amount of research related to flexi-
ble process management. Research in this field has focused
on dealing with runtime deviations with respect to the
expected execution of a process model (dynamic change).
A framework comprising five criteria for characterizing
dynamic change [9] shed some light into shortcomings
of conventional process management systems, and enabled
comparative evaluation of the change-handling capabilities
of process management systems. Weber et al [3] built
on top of this work by defining 17 change patterns. The
authors advocate that there should be alignment between
computerised and real-world processes, a position shared

2FlexConnect is available at http://code.google.com/p/flexconnect/

by work done on ADEPTflex [10] and also our proposed
meta-model, where work is allowed to be freely created
and delegated by actors, within certain bounds.

A comparison may be drawn between FlexConnect and
artifact-centric process modelling [5]. An artifact-centric
model explicitly recognises the relationship between data
and control flow in a process, and advocates a modular-
isation of processes around artifacts (essentially business
objects). In effect, FlexConnect extends the idea of artifact-
centric process modelling to cater for flexible processes.

DECLARE [2] is an example of a Constraint-Based
Workflow Modelling tool that describes loosely-structured
processes using a declarative approach that allows a pro-
cess designer to focus on the ‘what’ rather than the ‘how’.
The strength of this approach is that model constraints
can be added or relaxed where needed. Our framework
goes beyond the capabilities of DECLARE by including
the definition of creation regions in which object types (or
subtypes) can be created within cardinality restrictions.

A taxonomy of process flexibility by Schonenberg et
al [11] identified and defined four types of flexibility:
flexibility by design, flexibility by change, flexibility by
deviation and flexibility by underspecification. Using this
taxonomy it may be observed that our framework supports
a spectrum of flexibility types. For example, delegation is
flexibility by design, creation is flexibility by deviation and
nesting is flexibility by underspecification.

The “Flexibility as a Service” (FAAS) proposal [12]
is a structured approach inspired by the taxonomy of
flexibility that enables a process designer to combine the
flexibility aspects of three process modelling approaches,
namely YAWL [13], DECLARE [2] and WORKLETS [14].
In this paper we have shown how to design flexible process
models using OO modelling techniques as an alternative
to combining process modelling languages.

Klingemann [15] identified three types of flexible ele-
ments in process models: alternative activities, non-vital
activities and optional execution order. This framework
essentially focuses on flexibility by design. Our framework
extends this classification to cater for additional mecha-
nisms such as task delegation and creation regions.

Other object-based process modelling approaches have
been proposed by Küster et al [16] and Wirtz et al [17].
However, these latter proposals are not motivated specif-
ically by flexibility requirements. For instance, the work
of Küster et al is instead motivated by compliance man-
agement. An alternative paradigm to process modelling is
case handling [18]. Here, the focus is on the data sup-
porting a system rather than purely on capturing control-
flow behaviour. The reasoning behind case handling is
that shifting focus away from control-flow leads to less
restrictive systems. This view is also supported by Hull et
al. [19], Weske et al [1] and Müller et al [6] who have



proposed process modelling approaches driven by objects
and data. Hull et al. and Müller et al also examine the issue
of dynamic changes in data-driven process models. Unlike
our approach, the approach of Müller et al corresponds to
“flexibility by change”, meaning that the process model is
adapted at runtime to deal with unforeseen cases.

Some parallels can be drawn between the concept of
a COROB, and the “multiple instance without a priori
runtime knowledge” workflow pattern [20]. Parallels may
also be observed between the concept of a ROB and
proposals such as WORKLETS that provide users with a
method of dynamically responding to change by taking
action not originally envisaged as part of the control-
flow behaviour. Our proposal combines these concepts and
incorporates them into a process meta-model.

VI. Conclusions and Future Work

In this paper we demonstrated how the FlexConnect
meta-model supports the design of processes consisting
largely of unplanned activities. We showed in particular
how the three basic business object types of FlexConnect
can be combined to capture different patterns of flexibility.
The key principle is that business objects specify “what
can happen during a case”, rather than “how it should
happen”. Any constraints regarding which objects can be
created and when, are overlaid on top of the business
object model. This is in contrast with mainstream process
modelling paradigms based on flowchart-like notations, in
which the activities to be performed and their control-
flow relations form the backbone of a process model. Of
course, while flexibility is essential in domains such as
human services there are situations where this flexibility
should be constrained. The proposed framework supports
the definition of ‘thresholds’ to constrain the number of
JOB and ROB objects that can be started by a COROB.

In addition, one may need to define more sophisticated
constraints. For example, we have encountered situations
that require the definition of “creation regions”, that es-
tablish when instances of a given JOB or ROB type can
be created – e.g. a ROB corresponding to “Work Search”
COROB should only be started after the “Health Treat-
ment” tasks have completed. Also, we have encountered
situations where one needs to constrain the number and
type of JOBs or ROBs that need to complete before a
COROB moves to a completion state – e.g., a COROB to
handle a case for a homeless family will not complete until
the range of tasks created to deal with their situation have
closed. The definition of such synchronization constraints
within the proposed framework is ongoing work.

References

[1] M. Weske, “Formal Foundation and Conceptual Design of Dynamic
Adaptations in a Workflow Management System,” in 34th Annual

Hawaii International Conference on System Sciences (HICSS-34),
Maui, Hawaii, January 3-6 2001.

[2] M. Pesic, M. Schonenberg, N. Sidorova, and W. van der Aalst,
“Constraint-Based Workflow Models: Change Made Easy,” in On
the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA and IS, 2007, pp. 77–94.

[3] B. Weber, S. Rinderle, and M. Reichert, “Change Patterns and
Change Support Features in Process-Aware Information Systems,”
in 19th International Conference on Advanced Information Systems
Engineering, Trondheim, Norway, June 11-15 2007, pp. 574–588.

[4] P. Dadam, M. Reichert, S. Rinderle, M. Jurisch, H. Acker, K. Göser,
U. Kreher, and M. Lauer, “Towards Truly Flexible and Adaptive
Process-Aware Information Systems,” in Information Systems and
e-Business Technologies, 2nd International United Information Sys-
tems Conference, Klagenfurt, Austria, April 22-25 2008, pp. 72–83.

[5] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su, “Towards
Formal Analysis of Artifact-Centric Business Process Models,”
in Business Process Management, 5th International Conference,
Brisbane, Australia, September 24-28 2007, pp. 288–304.

[6] D. Müller, M. Reichert, and J. Herbst, “Data-Driven Modeling
and Coordination of Large Process Structures,” in On the Move to
Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA
and IS, 2007, pp. 131–149.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley, 1995.

[8] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use. Volume 1. Springer-Verlag, 1997.

[9] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria
for dynamic changes in workflow systems - a survey,” Data and
Knowledge Engineering, vol. 50, no. 1, pp. 9–34, 2004.

[10] M. Reichert and P. Dadam, “ADEPTflex-Supporting Dynamic
Changes of Workflows Without Losing Control,” Journal of Intel-
ligent Information Systems (JIIS), vol. 10, no. 2, pp. 93–129, 1998.

[11] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. van der
Aalst, “Towards a Taxonomy of Process Flexibility,” in Proceedings
of the CAiSE’08 Forum, Montpellier, France, 2008, pp. 81–84.

[12] W. van der Aalst, M. Adams, A. ter Hofstede, M. Pesic, , and
H. Schonenberg, “Flexibility as a Service,” BPMcenter.org, Tech.
Rep. BPM-08-09, 2008.

[13] W. van der Aalst and A. ter Hofstede, “YAWL: Yet Another
Workflow Language.” Information Systems, vol. 30, no. 4, pp. 245–
275, 2005.

[14] M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst,
“Worklets: A Service-Oriented Implementation of Dynamic Flex-
ibility in Workflows,” in On the Move to Meaningful Internet
Systems: CoopIS, DOA, GADA and ODBASE, Montpellier, France,
October 2006, pp. 291–308.

[15] J. Klingemann, “Controlled Flexibility in Workflow Management,”
in Proceedings of the 12th International Conference on Advanced
Information Systems Engineering (CAiSE), Stockholm, Sweden,
June 5-9 2000, pp. 126–141.

[16] J. Küster, K. Ryndina, and H. Gall, “Generation of Business Process
Models for Object Life Cycle Compliance,” in Proceedings of the
5th International Conference on Business Process Management
(BPM), Brisbane, Australia, September 24-28 2007, pp. 165–181.

[17] G. Wirtz, M. Weske, and H. Giese, “The OCoN Approach to Work-
flow Modeling in Object-Oriented Systems.” Information Systems
Frontiers, vol. 3, no. 3, pp. 357–376, 2001.

[18] W. van der Aalst, M. Weske, and D. Grünbauer, “Case handling: a
new paradigm for business process support,” Data and Knowledge
Engineering, vol. 53, no. 2, pp. 129–162, 2005.

[19] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and
G. Zhou, “Declarative workflows that support easy modification
and dynamic browsing,” in Proceedings of the international joint
conference on Work Activities Coordination and Collaboration, San
Francisco, California, USA, February 1999, pp. 69–78.

[20] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow Patterns,” Distributed and Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.


