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Abstract. A numerical model to simulate moisture flow through unsaturated
zones is developed using the finite element method, and is validated by comparing
the model results with those available in the literature. The sensitivities of different
processes such as gravity drainage and infiltration to the variations in the unsaturated
soil properties are studied by varying the unsaturated parametersα andn over a
wide range. The model is also applied to predict moisture contents during a field
internal drainage test.

Keywords. Unsaturated zone; capillary fringe; finite element method.

1. Introduction

Moisture flow in the unsaturated zone is an important topic in several branches of hydrology,
soil science and agricultural engineering dealing with subsurface flow and transport processes.
Water movement through the unsaturated zone is commonly analysed by solving Richard’s
equation (Richard 1931). Analytical and simplified solutions of Richard’s equation (Phillip
1969; Parlange 1972; Broadbridge & White 1988; Warricket al 1991) provide useful tools
for studying simple unsaturated flow systems with relatively simple initial and boundary
conditions. The solutions of these models are based on the following assumptions: (i) the soil
is homogeneous, (ii) the initial moisture content is uniform throughout the soil profile, and (iii)
the moisture content at the soil surface is constant and near saturation or rainfall or irrigation
rate is constant. In addition, models give accurate results only for a particular type of soil. Fort
example, Green-Ampt Model which is based on the assumption of saturated plug flow fails
in situations where a coarse textured soil with high hydraulic conductivity underlies a fine
textured soil with low hydraulic conductivity (Chow 1988; Chowet al1988). In the field, soils
are seldom homogeneous, initial moisture content is seldom uniformly distributed and in most
field situations during rainfall or irrigation, the soil surface is rarely at constant saturation. For
accurate prediction of moisture movement under realistic boundary conditions in field soils,
one has to resort to numerical models which are versatile in handling the nonhomogeneity and
different kinds of boundary conditions. Accurate prediction of moisture movement is very
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essential in studies concerning transport of hazardous materials such as pesticides, fertilizers
and radioactive wastes.

Several numerical models have been developed for simulating water movement in unsat-
urated porous media using finite difference, finite element, and integrated finite difference
methods (Neuman 1973; Narasimhan & Witherspoon 1977; Cooley 1983; Huyakornet al
1986; Hillset al1989; Gottardi & Venutelli 1992). Most of the numerical models considered
focus their attention either on improving the existing methods or on concentrating on one
process such as infiltration, gravity drainage or evaporation. However, very few attempts have
been made to study the sensitivity of different processes with respect to the unsaturated soil
parameters. The objective of the present study is to develop a numerical model to simulate
water flow through unsaturated zones and study the effect of unsaturated soil parameters on
water movement during different processes such as gravity drainage and infiltration.

2. Modelling Richards equation for vertical unsaturated flow

For one-dimensional vertical flow in unsaturated soil, the pressure-head based Richards equa-
tion is

∂

∂z

[
K(ψ)

(
∂ψ

∂z
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)]
= C(ψ)

∂ψ

∂t
, (1)

whereχ is the pressure head,z the vertical co-ordinate taken positive upwards,t time,K the
hydraulic conductivity,C(= du/dc) the soil moisture capacity andν the volumetric moisture
content. In order to solve (1), constitutive relationships between the dependent variable c and
the nonlinear termsK andC have to be specified. In this study, the following constitutive
relationships proposed by van Genuchten (1980) are used which are as follows.

θ–ψ Relationship

Se = [
1/(1+ |αψ |n)]m , (2)

whereα andn are unsaturated soil parameters withm = 1 − (1/n) andSe is the effective
saturation defined as

Se = (θ − θr)/(θs − θr), (3)

whereθs and θr are saturated moisture content and residual moisture content of the soil
respectively.

K–θ Relationship

K = KsS
1/2
e
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, (4)

whereKs is the saturated hydraulic conductivity.

3. Numerical scheme

To solve (1), Galerkin finite element discretisation in space and finite difference discretisation
in time is used.
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3.1 Spatial discretisation

The solution domain is discretised intoM−1 elements, each of length1z, definingM global
nodes and the pressure headψ is approximated as,

ψ(z, t) = ψ̂(z, t) =
M∑
m=1

ψm(t)Nm(z), (5)

whereψm(t) are unknown global nodal values ofψ andNm(z), the corresponding linear
Lagrangian basis functions. The method of weighted residuals is used to solve for the unknown
nodal values ofψ . The Galerkin formulation applied to (1) yields the system of ordinary
differential equations

A(Ψ )Ψ + F(Ψ )
dΨ

dt
+ b(ψ)− q(t) = 0, (6)

whereΨ is the vector of unknown coefficients corresponding to the values of pressure head
at each node,q contains the specified flux boundary conditions at lower and upper boundary
andA,F andb are given over local sub-domain elementΩ (e) as
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∫
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∫

Ω
(e)

K(e) ∂N
(e)
1

∂z
dz.

In local co-ordinate space,−1 ≤ ε ≤ 1, the two element basis functionsN(e)
l andN(e)

m are
given by

N
(e)
1 = 1

2
(1 − ε),

N(e)
m = 1

2
(1 + ε), (8)

with

ε = 2
(
z− z(e)c

)
/1z(e),

wherez is the co-ordinate of any point in the sub-domain elementω(e), z(e)c and1z(e) being
the coordinate of the mid-point and the length of the elementΩ (e) respectively. The nonlinear
integrals in (7) are evaluated using second-order Gaussian quadrature. For linear Lagrangian
basis functions,A andF have banded structures with a band width of three.

3.2 Time differencing

Introducing a backward finite difference discretisation of the time derivative term, (6) can be
written as

A
(
Ψ k+λt )Ψ k+λt + F

(
Ψ k+λt )(Ψ k+1 − Ψ k

)
/1t + b

(
Ψ k+λt ) − q

(
Ψ k+λt ) = 0, (9)
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where

Ψ k+λt = λtΨ
k+1 + (

1 − λt
)
Ψ k, with 0 ≤ λt ≤ 1. (10)

In (9), superscriptk denotes the time level,1t denotes the time step andλt denotes the time
weighting or relaxation parameter.

Equations (9) are nonlinear inΨ k+1, except whenλt = 0. Some iterative or linearisation
strategy is required to solve such equations. Paniconiet al (1991) evaluated the performance
of various iterative and non-iterative methods for the solution of (9) . In this study the Picard
iterative scheme is used .

3.3 Picard scheme

The Picard scheme is implemented on (9), by iterating with all nonlinear terms evaluated at
the previous iteration level,p, i.e,

λtAk+λt ,p + 1/1t Fk+λt ,p
 Ψ k+1,p+1

= qk+λt ,p−bk+λt ,p−(1 − λt)A
k+λt ,pΨ k+1/1tFk+λt ,pΨ k. (11)

Equation (11) can be written in the form

λtAk+λt ,p + 1/1tFk+λt ,p
1Ψ k+1,p+1 = −f (

Ψ k+1,p
)
, (12)

where

1Ψ k+1,p+1 = Ψ k+1,p+1 − Ψ k+1,p, (13)

and

f
(
Ψ k+1,p

) = λtA
k+λt ,pΨ k+1,p + (

1 − λt
)
Ak+λt ,p +

Fk+λt ,p
(Ψ k+1,p − Ψ k)/1t

 + bk+λt ,p − qk+λt ,p. (14)

Equation (12) is applicable in the same form while considering Neumann type (specified
flux) boundary conditions. However modifications to (12) are necessary for considering a
Dirichlet type (specified pressure head) condition. In such situations, the coefficient matrix
and the right hand side of (12) should be suitably modified. The diagonal term of the row
corresponding to the Dirichlet node in the coefficient matrix of (12) is set to unity while the
off-diagonal terms of the row corresponding to the Dirichlet node are set to zero. In the right
hand vector, the elements corresponding to the Dirichlet node are also set to zero. The system
of (12) is tridiagonal in nature and which can be solved conveniently by a direct decomposition
method called double sweep method or Thomas algorithm (Remsonet al1971). Convergence
in the iterative scheme is monitored by computing the maximum error norm

∣∣1Ψ k+1,p+1
∣∣
∞.

Convergence is achieved when norm falls below some specified tolerance level .
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Figure 1. Comparison of results – Celia’s
problem.

4. Model validation

The finite element model is validated by comparing the model results with a problem chosen
from the literature. The problem considers infiltration of a homogeneous soil column which
is initially dry (Celia et al 1990). The soil parameters areα = 3.35 m−1, n = 2,Ks =
9.22× 10−5 m/s, θs = 0.368 andθr = 0.102. The length(L) of the soil sample is 1 m.

The initial and boundary conditions are:

t = 0; Ψ = −10 m, 0≤ z ≤ 1 m,
t > 0; Ψ = −10 m, z = 0.
t > 0; Ψ = −0.75, z = 1 m.

Celiaet al (1990) obtain finite element as well as finite difference solutions using coarse
and fine grid approximations . The problem is simulated using the present model with fine
grid approximation(1z = 1 cm and1t = 1 s). The pressure heads after one day simu-
lation are compared with the fine grid solution of Celiaet al (1990). It can be seen from
figure 1 that both the results match well, indicating the validity of the model. The mass
balance error is less than 1%. The minor deviation observed in figure 1 between the two
model results may be due to the error in presenting the simulated results from Celiaet al
(1990).

5. Sensitivity analysis

The parameterα is a measure of capillary fringe thickness, whilen is the pore size distribution
of the soil. Both these parameters have significant influence on moisture movement through
unsaturated zones. To study the sensitivity of gravity drainage and infiltration to variations in
α andn, these are varied over a wide range to cover most of the field soils ranging from sand
to clay. Sensitivity analysis is carried out by considering a soil column of 2m thickness.

In the case of gravity drainage (case A), the entire soil profile is initially taken to be fully
saturated. Water is allowed to drain due to gravity at the bottom boundary while no flux is
allowed at the top boundary. The initial and boundary conditions for gravity drainage are
written as
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t = 0; θ = θs , 0 ≤ z ≤ 2 m,
t > 0; q0 = −K, z = 0,

qL = 0, z = 2 m,

whereq0 andqL are Darcy fluxes at the bottom and top boundaries respectively.
For simulating infiltration (case B), the entire soil profile is initially considered to be in

very dry condition with a pressure head equal toΨ 0. A zero pressure head(Ψ = 0) is applied
at the top and boundary conditions for infiltration are as follows.

t = 0; Ψ = Ψ 0 0 ≤ z ≤ 2 m,
t > 0; Ψ = Ψ 0 z = 0,

Ψ = 0 z = 2 m.

5.1 Effect of parameterα

The effect of parameter a is studied by varyingα from 0.1 m−1 to 0.3 m−1 . The range of
a considered here covers most of the field soils. The parametersn,Ks, θs andθr are kept
constant at 2, 0.5 m/day, 0.45 and 0.05 respectively. The values ofα considered here are: 0.1,
1, and 3 m−1. Figures 2 and 3 showθ vsψ andK vsψ for theα values considered in this
study.

Case A – Gravity drainage: Figure 4 shows the moisture content profiles at varies time for
different values ofα. The parameterα is a measure of capillary fringe thickness of the soil.
It can seen from figure 2 that a soil with low a has large capillary fringe thickness. As the
value of a increases, thickness of the capillary fringe decreases. Soils with low a values retain
considerable amounts of water in the unsaturated zones due to capillary forces. It is observed
from figure 4 that at any instant of time, the moisture content is greater for lower valuesα,
than for higher values for the major portion of the column. Moisture content gradients are
uniform over the entire soil column for low values ofα. Asα increases, the gradients tend to
become non-uniform at early time with steeper gradients occurring near the soil surface. It is
observed that low a values are characterized by lesser gravity drainage and high values with
greater drainage.

Figure 2. Moisture content–pressure-head
relation for differentα.
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Figure 3. Hydraulic conductivity–pressure
head relation for differentα.

Case B – Infiltration: Figure 5 shows the pressure head profiles at various times for different
values ofα. It is seen that as the value of a increases, the wetting front moves at slower rates,
since the hydraulic conductivity decreases with increase inα (figure 3) . It is seen from this
figure that the wetting front has moved to a greater depth whenα is 1 m−1 compared to when
α is 3 m−1 for one day simulation even though the initial pressure heads are chosen such
that the initial hydraulic conductivity for both cases is the same. This should be expected as
when the soil gets wetted the increase in hydraulic conductivity is higher for lowα values. It
is of interest to note that the dependence ofK on α during the infiltration process plays an
important role on the movement of the wetting front.

5.2 Effect of the parametern

The effect of the parametern is studied by varyingn from 1.5 to 4. The range ofn considered
here covers most of the field soils. The parametersα,Ks, θs and θr are kept constant at

Figure 4. Moisture content profiles – effect
of α.
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Figure 5. Pressure head distribution–effect of
α.

1 m−1, 0.5 m/day, 0.45 and 0.05 respectively. The values ofn considered are,n = 1.5,3 and
4. Figures 6 and 7 presentθ vsψ andK vsψ for then values considered in this study.

Case A – Gravity drainage: Figure 8 presents the moisture content profiles at various times
for different values ofn. From figure 6 it is seen that theθ–ψ relationship (SMC) for alln
values resembles the pore size distribution of a soil. The parametern characterizes the width
of the pore size distribution. It is observed from figure 6 that as the value ofn decreases the
width of the pore size distribution increases. Hence with lown values, the relative abundance
of small pores increases. These are difficult to drain due to their large viscous effects. This
results in slower rate of gravity drainage for lown values as compared to soils with highn
values as can be seen from figure 8. It is also observed that the moisture content gradients are
non-uniform over the entire soil column for all values ofn with steeper gradients occurring
near the soil surface. At any instant of time, an increase inn results in a steeper moisture
gradient over the soil column.

Figure 6. Moisture content–pressure head
relation for differentn.



Modelling flow through unsaturated zones 525

Figure 7. Hydraulic conductivity–pressure
head relation for differentn.

Case B – Infiltration: Figure 7 shows that asn increases, hydraulic conductivity decreases
for all pressure heads less than the value represented by point ’P’ in figure 7. Beyond this
point the hydraulic conductivity increases withn. Accordingly, the movement of the wetting
front during the infiltration process depends on the initial pressure head of the soil column,
change in hydraulic conductivity as the soil gets wetted and the pressure head applied at the
soil surface. To analyse the effect ofn the following cases are considered.

Case B1: Both the initial pressure head for the soil column and the pressure head applied
at the soil surface are considered lower than the pressure head at point ’P’.

Case B2: Both the initial pressure head for the soil column and pressure head applied at the
soil surface are considered higher than the pressure head at point ’P’.

Figure 8. Moisture content profiles – effect
of n.
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Case B3: The initial pressure head for the soil column is considered lower, while the pressure
head applied at the soil surface is considered higher than the value of the pressure head at
point ’P’.

Figure 9 shows the ‘wetting front’ depth for case B1 for different values ofn after one
day simulation. It is observed in this case that asn increases, the wetting front moves slower.
Figure 9 also shows the ‘wetting front’ depths for differentn values for case B2 for 0.1 day
simulation. It is observed qualitatively that asn increases the ‘wetting front’ moves faster in
contrast to case B1. However, the changes in wetting front depth for different values ofn in
figure 9 are small since the changes in hydraulic conductivity for differentn are not significant
in the pressure head range considered for case B2. Figure 10 shows the pressure head profiles
for different values ofn for case B3. It can be seen that the wetting front moves at a faster
rate as the value ofn increases. It is interesting to note that the effect ofn on the infiltration
process is quite complex from the study of cases B1, B2 and B3 due to the various reasons
mentioned above.

6. Application to a field internal drainage test

The model is applied to a field internal drainage test conducted at Adde Viswanathapura near
Bangalore in the state of Karnataka in India (Lakshman 1993). The field internal drainage
test performed is the same as the gravity drainage problem discussed in sensitivity analysis.
The test involves gravity drainage for 20 days from a homogeneous soil wich is initially at
near saturation. Based on the studies of Lakshman (1993), the soil parameters at the field site
used in the present analysis are:α = 4.16 m−1, n = 1.42,Ks = 0.15 m/day, θs = 0.41 and
θr = 0.11. Figure 11 presents the field measured moisture contentss using neutron probes at
different depths in the soil at different time periods. For simulating the field test, the initial
moisture content values for the entire soil depth are obtained using linear interpolation of the
measured initial moisture contents at different depths. The field test is simulated using the
present model and the computed moisture contents at different depths at various times are
also presented in figure 11. It can be seen from figure 11 that a reasonably good fit is obtained
between the simulated and the measured moisture contents.

Figure 9. Pressure-head profiles – effect ofn
– cases B1 and B2.
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Figure 10. Pressure-head profiles – effect of
n – case B3.

7. Conclusions

A numerical flow model is developed for analysing flow moisture through unsaturated zones
using the Galerkin fintite element method. The model is validated by comparing the model
results with a problem chosen from the literature. Sensitivity analysis is performed to analyse
the sensitivity of gravity drainage and infiltration processes to variations in unsaturated soil
parametersα andn. It is observed that gravity drainage is slower for lowα values as the
capillary fringe thickness increases with decreasing values ofα, thus storing more water in
the unsaturated zones due to capillary forces. During infiltration, as the value ofα increases,
the wetting front moves at a slower rate since unsaturated hydraulic conductivity decreases
with increase inα. As the value ofn decreases, the gravity drainage becomes slower, since
the relative abundance of small pores, which are difficult to drain, increases. The effect ofn

on infiltration is complex since the movement of the wetting front depends upon the intial
pressure head and the head applied at the top.

Figure 11. Model fit with field data.
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