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Abstract. This article investigates the Fokker-Planck equations that arise

from the application of quantum stochastic calculus to the modelling of illiq-
uid financial markets, using asymptotic methods. We present a power series

solution for quantum stochastic processes with a non-zero conservation pro-

cess. Whilst the series in question are in general divergent, we show they
can be used to approximate solutions for longer time frames, and provide

estimates for the relative error on the higher order terms.

1. Introduction

The analysis in [1] shows how to apply the methods of quantum stochastic
calculus developed in [2], to derive a general form for a Quantum Black Scholes
equation.

The article [3] provides an example of where the underlying quantum stochastic
process incorporates a non-zero conservation process in addition to the creation
& annihilation processes. The resulting random motion of the underlying traded
asset price shows non-Gaussian moments, and the associated Fokker-Planck equa-
tion is a linear partial differential equation with an infinite number of terms (see
also [4]).

In this article we investigate ways in which we can generate asymptotic solutions
to the models developed in [3]. The resulting solutions, in connection with the
discussion in [3], can be used in the study of the dynamics of illiquid stocks with
a non-zero bid-offer spread.

We start in section 2 by giving an overview of the theoretical background, before
deriving the asymptotic solution in section 3. In section 4, we prove key results
regarding the convergence of the solution, and finally investigate some numerical
examples in section 5.

2. Theoretical Background

In this section, we summarise the analysis presented in [3] in order to provide the
necessary context for the modelling problem that we address using the asymptotic
series in section 3.
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2 WILL HICKS

This specific problem provides an example where modelling using a non-zero
conservation process, and by extension the asymptotic methods presented in this
article, can be useful.

Note, this section is intended as an overview of the background regarding the
final partial differential equation:

∂p

∂t
= σ2

∑
k≥1

ε(2k−2)

(2k)!

∂2kp

∂x2k
+ σ2η

∑
k≥2

(−ε)(2k−3)

(2k − 1)!

∂(2k−1)p

∂x(2k−1)
(2.1)

Readers interested only in the asymptotic methods used to derive a solution to
equation 2.1, can skip to section 3. Alternatively, for more detail see [3].

2.1. Hilbert Space Representation of the Financial Market: Many models
of the financial market consider a single market price for each tradable asset as the
random variable of interest. Furthermore, if one wishes to apply the methods of
quantum probability, one could consider an observable X, acting on H ∈ L2(R):

(Xψ)(x) = xψ(x), for ψ(x) ∈ L2(R)

In this article, we consider instead a market made up of a number of buyers who
would like to buy at the lower bid price, and sellers who would like to sell at the
higher offer price.

Therefore, we consider the case where there are 2 state variables. One coordi-
nate: x, that represents the mid-price for the traded asset, and a second coordinate:
ε that represents the width of the bid-offer spread.

We assume that the state of the market for potential buyers (and sellers) is
determined by wave functions in the Hilbert space of complex valued square inte-
grable functions on R2:

ψo(x, ε) ∈ L2(R2,C) (2.2)

ψb(x, ε) ∈ L2(R2,C)

The overall market state is defined by the direct sum:

ψ = ψo ⊕ ψb (2.3)

ψo(x, ε), ψb(x, ε) ∈ L2(R2)

For φ = φ1 ⊕ φ2 and ψ = ψ1 ⊕ ψ2, we have:

〈φ|ψ〉 = 〈φ1|ψ1〉+ 〈φ2|ψ2〉
So it follows that the normalisation condition becomes:

||ψ0 ⊕ ψb||2 = ||ψo||2 + ||ψb||2

= 1 (2.4)

For example, we may have an even balance of buyers & sellers, in which case:

||ψo||2 = ||ψb||2 = 1/2

In general, as long as the normalization condition, given by equation 2.4, is met
then we can have:

• More buyers than sellers: ||ψb||2 > ||ψo||2.
• More sellers than buyers: ||ψo||2 > ||ψb||2.
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Remark 2.1. Going forward, we make use of matrix notation, so that for ψ ∈
S(R)⊕ S(R) we write:

|ψ〉 =

(
ψ0

ψb

)
Aψ =

(
A11 A12

A21 A22

)(
ψ0

ψb

)
Note that, we also apply the following abuse of notation, by writing:

〈ψ| =
(
ψo ψb

)
So that we write:

Eψ[A] = 〈ψ|A|ψ〉

=
(
ψo ψb

)(A11 A12

A21 A22

)(
ψ0

ψb

)
= 〈ψo|A11|ψo〉+ 〈ψo|A12|ψb〉+ 〈ψb|(A21|ψo〉+ 〈ψb|A22|ψb〉

We define the price operator:

X =

(
x+ ε/2 0

0 x− ε/2

)
(2.5)

so that if we have:

|ψ〉 =

(
ψo(x, ε)

0

)
(2.6)

We get:

Eψ[X] =
(
ψo(x, ε) 0

)(x+ ε/2 0
0 x− ε/2

)(
ψ0(x, ε)

0

)
=

∫
R2

(x+ ε/2)||ψo(x, ε)||2dxdε

= xo

Similarly, if we have:

|ψ〉 =

(
0

ψb(x, ε)

)
(2.7)

We get:

Eψ[X] =
(
0 ψb(x, ε)

)(x+ ε/2 0
0 x− ε/2

)(
0

ψb(x, ε)

)
=

∫
R2

(x− ε/2)||ψo(x, ε)||2dxdε

= xb
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- dA†t dΛt dAt dt

dA†t 0 0 0 0

dΛt dA†t dΛt 0 0
dAt dt dAt 0 0
dt 0 0 0 0

Table 1. Ito multiplication operators for the basic operators of
quantum stochastic calculus.

2.2. Introducing a Quantum Stochastic Process: We introduce randomness
to 2.5 using the approach outlined in [1] (see also [2]), we take the tensor product
of H with the symmetric Fock space: H ⊗ Γ(L2(R+;C)), and use a unitary time
evolution operator to build the price operator at t = T .

If the price operator at t = 0 is written: X ⊗ I, then the operator at t = T is
given by: jT (X) = U∗T (X ⊗ I)UT . Ut is defined by the process (see [2] proposition
7.1):

dUt = −
((

iH +
L∗L

2

)
⊗ dt+ L∗S ⊗ dAt − L⊗ dA†t + (I− S)⊗ dΛt

)
Ut (2.8)

Whereby H,L, and S act on H, and dAt, dA
†
t , and dΛt act on the Fock space. By

writing out (see [2] Theorem 4.5):

djt(X) = d(U∗t (X ⊗ I)Ut)
= dU∗t (X ⊗ I)Ut + U∗t (X ⊗ I)dUt + dU∗t (X ⊗ I)dUt

and using Itô multiplication: Table 1 (see [2]), we can define a stochastic process
for djt(X), and djt(Xt)

k, k ≥ 2:

djt(X) = jt(α
†)dA†t + jt(α)dAt + jt(λ)dΛt + jt(θ)dt (2.9)

k ≥ 2 : djt(X)k = jt(λ
k−1α†)dA†t + jt(αλ

k−1)dAt + jt(λ
k)dΛt + jt(αλ

k−2α†)dt

θ = i[H,X]− 1

2

(
L∗LX +XL∗L− 2L∗XL

)
α = [L∗, X]S

α† = S∗[X,L]

λ = S∗XS −X

In order to proceed we first set the system Hamiltonian H = 0, so that the time
evolution of the operator: X arises only from the random noise introduced into
the symmetric Fock space. If we then set:

L =

(
−iσ∂x 0

0 −iσ∂x

)
(2.10)

S = I
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Then we end up with a Gaussian process for jt(X):

djt(X) =

(
0 iσ
−iσ 0

)
dAt +

(
0 iσ
−iσ 0

)
dA†t (2.11)

djt(X)2 =

((
σ2 0
0 σ2

))
dt

djt(X)k = 0, k ≥ 3

By setting instead:

S(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, with θ = π/2 (2.12)

We get:

λ = S∗XS −X

=

(
x+ cos(π)ε/2 − sin(π)ε/2
− sin(π)ε/2 x− cos(π)ε/2

)
−
(
x+ ε/2 0

0 x− ε/2

)
=

(
x− ε/2 0

0 x+ ε/2

)
−
(
x+ ε/2 0

0 x− ε/2

)
=

(
−ε 0
0 ε

)
Which in turn leads to:

djt(X) =

(
0 iσ
−iσ 0

)
dAt +

(
0 iσ
−iσ 0

)
dA†t + jt

(
−ε 0
0 ε

)
dΛt (2.13)

djt(X)k =

((
σ2 0
0 σ2

)
jt

(
−ε 0
0 ε

)k−2)
dt+

((
0 iσ
−iσ 0

)
jt

(
−ε 0
0 ε

)k−1)
dAt

+

(
jt

(
−ε 0
0 ε

)k−1(
0 iσ
−iσ 0

))
dA†t +

(
jt

(
−ε 0
0 ε

))k
dΛt

We model the derivative price as an operator valued function of jt(X): V (jt(X), t),
and expand as a power series. Then applying the Ito relations from table 1, with
2.13, we get:

dV =

(
∂V

∂t
+
∑
k≥2

1

k!

∂kV

∂xk

(
σ2 0
0 σ2

)(
−ε 0
0 ε

)k−2)
dt

+

(∑
k≥1

∂kV

∂xk

(
0 iσ
−iσ 0

)(
−ε 0
0 ε

)k−1)
dAt

−
(∑
k≥1

∂kV

∂xk

(
−ε 0
0 ε

)k−1(
0 iσ 0
−iσ 0

))
dA†t

+

(∑
k≥1

∂kV

∂xk

(
0 iσ
−iσ 0

)(
−ε 0
0 ε

)k (
0 iσ
−iσ 0

))
dΛt
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Taking expectations over the tensor product of the system quantum state vector:
ψ, and the symmetric Fock space vector: ε, before equating to zero, we find that:

E(ψ⊗ε)
[
∂V

∂t
+
∑
k≥2

1

k!

∂kV

∂xk

(
σ2 0
0 σ2

)(
(−ε)k−2 0

0 εk−2

)]
= 0

Setting:

|ψ〉 =

(
ψ0

ψb

)
We get:

∂V

∂t
+
σ2

2

∂2V

∂x2
+ σ2

∑
k≥2

ε(2k−2)

(2k)!

∂2kV

∂x2k
(2.14)

+ σ2(||ψb||2 − ||ψo||2)
∑
k≥2

(−ε)(2k−3)

(2k − 1)!

∂(2k−1)V

∂x(2k−1)
= 0

In [3], it is shown that the Fokker-Planck equation associated to the Quantum
Black-Scholes equation: 2.14, is given by:

∂p

∂t
= σ2

∑
k≥1

ε(2k−2)

(2k)!

∂2kp

∂x2k
+ σ2η

∑
k≥2

(−ε)(2k−3)

(2k − 1)!

∂(2k−1)p

∂x(2k−1)
(2.15)

η =
(
||ψo||2 − ||ψb||2

)
3. Power Series Solution

To find a solution to 2.15, we use a trial function:

p(x, t) =
a00√
t

+
∑
n≥1

2n∑
m=2

anm√
t

(
xm

tn

)
(3.1)

We substitute 3.1 into 2.15, and attempt to match the right & left hand side,
thereby generating a sequence relation for the coefficients: anm.

Proposition 3.1. Subject to convergence of the infinite series, equation 3.1 is a
solution to 2.15, if the coefficients ank are given by:

a12 = − a00
2σ2(

1

2
− n

)
a(n−1)m = σ2

b 2n−m
2 c∑
l=1

(
m+ 2l

2l

)
ε2l−2an(m+2l)

− σ2η

b 2n+1−m
2 c∑
l=2

(
m+ 2l − 1

2l − 1

)
ε2l−3an(m+2l−1)

Proof. Inserting 3.1 into the left hand side of 2.15, gives:

∂p

∂t
=
∑
n≥0

(
− 1

2
− n

)
1√
t

2n∑
m=0

anm

(
xm

tn+1

)
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Similarly, inserting 3.1 into the right hand side of 2.15, gives:

σ2
∑
k≥1

ε(2k−2)

(2k)!

∂2kp

∂x2k
=
∑
n≥0

σ2

√
t

2n∑
m=2

bm/2c∑
l=1

(
m

2l

)
ε(2l−2)anm

(
x(m−2l)

tn

)

σ2η
∑
k≥2

(−ε)(2k−3)

(2k − 1)!

∂(2k−1)p

∂x(2k−1)
=
∑
n≥0

σ2η√
t

2n∑
m=2

m∑
l=1

(
m

2l − 1

)
ε(2l−3)anm

(
x(m−2l+1)

tn

)
Combining the two, we get:

∑
n≥0

(
− 1

2
− n

) 1√
t

n∑
m=0

anm

( xm
tn+1

)
=
∑
n≥0

σ2

√
t

2n∑
m=2

bm/2c∑
l=1

(
m

2l

)
ε(2l−2)anm

(x(m−2l)
tn

)

+
∑
n≥0

σ2η√
t

2n∑
m=2

b(m+1)/2c∑
l=2

(
m

2l − 1

)
ε(2l−3)ank

(
x(m−2l+1)

tn

)
(3.2)

In order to derive a series to calculate the coefficients anm we compare coefficients
of:x

m

tn on each side of 3.2. From the left hand side we have:(
1

2
− n

)
a(n−1)m√

t

(
xm

tn

)
Similarly, from the right hand side we have:

σ2

√
t

b 2n−m
2 c∑
l=1

(
m+ 2l

2l

)
ε2l−2an(m+2l)

(
xm

tn

)

− σ2η√
t

b 2n+1−m
2 c∑
l=2

(
m+ 2l − 1

2l − 1

)
ε2l−3an(m+2l−1)

(
xm

tn

)
Therefore, equating the coefficients for both sides, we find:(

1

2
− n

)
a(n−1)m = σ2

b 2n−m
2 c∑
l=1

(
m+ 2l

2l

)
ε2l−2an(m+2l) (3.3)

− σ2η

b 2n+1−m
2 c∑
l=2

(
m+ 2l − 1

2l − 1

)
ε2l−3an(m+2l−1)

Finally, we can solve for the coefficients: ank in escalating powers of t. For n = 0
we have:

−a00
2

= σ2a12

We assume a11, a10 = 0, and that we know the coefficients for aim for all m,
for i ≤ (n − 1), and start with the equation involving: a(n−1)(2n−2). We have

m = 2n− 2. Therefore, 2n−m
2 = 1, and we have only one term on the right hand
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side of 3.3: (
1

2
− n

)
a(n−1)(2n−2) = σ2

(
2n

2

)
an(2n)

Therefore, from the value of a(n−1)(2n−2) we can calculate the value of an(2n).
Now assume, as well as knowing all the coefficients aij with i ≤ (n − 1), we

know those with i = n and j = 2n down to j = m+4. Then in equation 3.3, there
is only one unknown coefficient: an(m+2).

Thus by the second induction, we can calculate the rest of the coefficients anj
for all j, and by the first induction, we can calculate all coefficients: aij , with
i ≥ n. �

4. Convergence Properties

In order to apply proposition 3.1, we investigate the solution to the truncated
partial differential equation. For example, with zero skew (number of buyers &
sellers is balanced) we would have:

∂pK
∂t

= σ2
K∑
k=1

ε(2k−2)

(2k)!

∂2kpK
∂x2k

(4.1)

Proposition 4.1. The power series pK(x, t), given by:

pK(x, t) =
a00√
t

+
∑
n≥1

2n∑
m=2(n−K+1)

anm√
t

(
xm

tn

)
(4.2)

is a solution to the truncated partial differential equation: 4.1, where the coeffi-
cients are given by:(

1

2
− n

)
a(n−1)m = σ2

min(b 2n−m
2 c,K)∑

l=1

(
m+ 2l

2l

)
ε2l−2an(m+2l) (4.3)

Proof. Each term on the right hand side of 3.3, derives from a partial derivative:
∂2l/∂x2l. Equation 4.3, follows by restricting l ≤ K.

As described in the proof to proposition 3.1, we can proceed as follows:

• By setting n = 0,m = 0, we can calculate the value for a12. Since 2n−m
2 =

1, then this is the only non-zero term for n = 1.
• For n = 2, we first calculate the value for a24 by setting m = 2.
• If ε = 0, then equations 3.3 and 4.3 are the same. The only nonzero terms

are of the form: an(2n), and the resulting series is the Taylor expansion for
the normal distribution probability density.
• At each value for n, we start by setting, m = 2n− 2. This yields the value

for an(2n). Then proceeding as described, the known value for a(n−1)m
determines the value for an(m+2).
• The left hand side of 4.3 gives K equations: a(n−1)(2n−2), a(n−1)(2n−4), etc

down to a(n−1)(2n−4−2K).
• From these, we determine in turn the non-zero values for an(2n) down to
an(2n−2K−2), as shown in the proof of proposition 3.1.

�
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For K = 1, from 4.1, we get:

p1(x, t) =
∑
n≥0

an(2n)√
t

(
x2n

tn

)
an(2n) = −

a(n−1)(2n−2)

(2n)σ2

which, modulo a normalising constant, is the Taylor series expansion (about x = 0)
for the standard Gaussian probability density.

When one moves from K = 1 to K = 2, one includes an additional series:

φ2(x, t) =
∑
n≥2

an(2n−2)√
t

(
x(2n−2)

tn

)
Similarly, when moving from K = 2 to K = 3 we add a third term:

φ3(x, t) =
∑
n≥3

an(2n−4)√
t

(
x(2n−4)

tn

)
Now, consider the power series 4.2 as a function of the variable y = 1/t:

p(x, y) = a00
√
y +

∑
j≥1

φj(x, y) (4.4)

pK(x, y) = a00
√
y +

K∑
j=1

φj(x, y)

φj(x, y) =
∑
n≥j

an(2n−2j+2)(x
(2n−2j+2))yn+0.5

Proposition 4.2. The series from proposition 4.1 is a divergent asymptotic ex-
pansion for the solution to equation 2.15, with η = 0.

Remark 4.3. In this proposition, we show that the series from proposition 4.1 is
an asymptotic expansion in the sense of definition 10.1.1 from [6]. That is we show
that in equation 4.4, we have:

φj(x, y) = o(φj−1(x, y)), as y → 0

Thus, for a fixed (and arbitrarily high) value for K, the truncation error (from
ignoring φj(x, y) for j ≥ K + 1) tends to zero for y → 0. In other words, the
approximation becomes more and more accurate for higher values of t.

However, for a fixed value of x and t, the series diverges as K →∞. In section
5, we show that in practical applications it will be sufficient to include a small
number of terms in approximating the solution.

Proposition 4.6 is then crucial in the sense that this enables us to calculate a
cut-off time (dependent on x), in order to ensure the approximation error remains
below a specified level. The solution should then only be applied for times above
this cutoff time.
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Proof of Proposition 4.2. We have from equation 3.3, that:(1

2
− n

)
a(n−1)2 = σ2

n−1∑
l=1

(
2l + 2

2l

)
ε2l−2an(2+2l) (4.5)

If
∑
j≥1 φj(x, y) is a convergent series, then we must have:

∑
j≥1 φj(1, 1) is also

a convergent series. Therefore, we have that:
∑
j≥1

∑2j
k=0 ajk also converges. Let

us write the series by ordering the ajk first by j and then by k. We write:

SN =

N∑
n=1

bn

Where b1 = a00, b2 = a10, b3 = a11, b4 = a12, etc. Since we assume that SN
converges, we must have that bn → 0 as n→∞. Therefore, we can choose N such
that: |bm| < |bn|, for n > N and m > n.

Therefore, we can choose n > N , such that:

max(k≤n)an(2k) = an,max (4.6)

< a(n−1)2

Now we have:

σ2
n−1∑
l=1

(
2l + 2

2l

)
ε2l−2an(2+2l) =

σ2

ε4

n−1∑
l=1

(
2l + 2

2l

)
ε2l+2an(2+2l)

≤ σ2

ε4

n−1∑
l=1

∣∣∣(2l + 2

2l

)
ε2l+2an(2+2l)

∣∣∣
≤ an,maxσ

2

ε4

n−1∑
l=1

∣∣∣(2l + 2

2l

)
ε2l+2

∣∣∣
Now the series:

Rn(ε) =

n−1∑
l=1

∣∣∣(2l + 2

2l

)
ε2l+2

∣∣∣
is a convergent series for |ε| < 1, by the ratio test. Therefore, we have for n > N+1:

an,max ≥
(ε4(n− 1

2

)
σ2R∞(ε)

)
a(n−1)2 (4.7)

However, for large enough n, we have that equation 4.7 contradicts equation 4.6.

Therefore the series:
∑
j≥1

∑2j
k=0 ajk is not convergent.

To show that pK(x, y) is asymptotic to p(x, y) in equation 4.4, as y → 0, note
that for all j ≥ 1 we have:

φj(x, y) = O(yj+0.5), as j → 0

yj = O(φj−1(x, y)), as j → 0



MODELLING ILLIQUID STOCKS: ASYMPTOTIC METHODS 11

Therefore as y → 0 we have:

φj(x, y) ≤ K1y
j+0.5, for some constant K1

yj ≤ K2φj−1(x, y), for some constant K2

So:

φj(x, y) ≤ K1K2y
0.5φj−1(x, y)

Which in turn implies:

φj(x, y) = o(φj−1(x, y)), as y → 0

�

Remark 4.4. Note that, since ε4 = O(R∞(ε)) as ε → 1, the contradiction given
by equation 4.7 is met at smaller values for n as ε increases, and gets closer to 1.
Thus we expect more rapid divergence as ε gets larger (increases from ε = 0), and
that the series will get closer to the Gaussian solution as ε→ 0.

We now show that, whilst the series given by equation 4.4:

SK(x, y) =

K∑
j=1

φj(x, y)

is divergent for large x, and y (small t), each individual term: φj(x, y) does con-
verge for all x, and y.

Proposition 4.5. The series defined by:

φj(x, y) =
∑
n≥j

an(2n−2j+2)(x
(2n−2j+2))yn+0.5

converges for all x and y.

Proof. We write:

bkn = an(2n−k)

Note that:

b0n = − 1

(2σ2)nn!

So that it is clear that the sequence: b0n converges with O(en/n!) as n → ∞. We
now assume that this also applies for bjn for all j ≤ (k − 1).

Now, from equation 3.3, we have:

bkn =

[(1

2
− n

)
bkn−1 − σ2

k+1∑
l=2

(
2n− 2k − 2 + 2l

2l

)
ε2l−2bk+1−l

n

](
σ2

(
2n− 2

2

))−1
In the summation, we have k − 1 individual terms, which by assumption, each
converge at least to O(en/n!). For the first term, we have:(

1
2 − n

)
bkn−1

σ2
(
2n−2

2

) = − (2n− 1)

σ2(2n− 2)(2n− 3)
bkn−1
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From which it follows that the bkn term also converges with O(en/n!). Since we
have:

∞∑
n=1

ynxk
en

n!

converges for all x, y, it follows that the series:

√
y

∞∑
n=1

bknx
kyn

converges, and that therefore: φj(x, y) converges in n for all x, y, j. �

As mentioned in remark 4.3, we now apply propositions 4.2 and 4.5, to show
how to calculate upper bounds for y, based on the value for K, to ensure the series
is convergent and the relative error remains small.

Proposition 4.6. For the series defined in proposition 4.1, we have:

φj(x, y)

φj−1(x, y)
≈ c1y + c2x

2y2 +O(y3) (4.8)

c1 = aj2/a(j−1)2

c2 =

(
a(j+1)4 − (aj2/a(j−1)2)aj4

)
a(j−1)2

Therefore, to ensure that: |φj(x, y)| < ε|φj−1(x, y)|, we must have:

|c1y + c2y
2x2| < ε (4.9)

c1 = aj2/a(j−1)2

c2 =

(
a(j+1)4 − (aj2/a(j−1)2)aj4

)
a(j−1)2

Proof. We first write out the ratio of subsequent terms in the series:

φj(x, y)/φj−1(x, y)

and invert the Padé approximation technique outlined in [5] section 8.3. We first
write:

φj(x, y)

φj−1(x, y)
=

∑∞
n=j an(2n−2j+2)y

n+0.5x(2n−2j+2)∑∞
n=j−1 an(2n−2j+4yn+0.5x(2n−2j+4)

=
aj2y

j+0.5x2 + a(j+1)4y
j+1.5x4 + . . .

a(j−1)2yj−0.5x2 + aj4yj+0.5x4 + . . .

We first divide through top & bottom by yj−0.5 to get:

φj(x, y)

φj−1(x, y)
=

∑∞
k=1Ak(x)yk∑∞
l=0Bl(x)yl

(4.10)

Ak(x) = a(j+k−1)(2k)x
2k

Bl(x) = a(j+l−1)(2l+2)x
2l+2
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We now equate the quotient 4.10, to a power series in y:

∞∑
i=1

ci(x)yi =

∑∞
k=1Ak(x)yk∑∞
l=0Bl(x)yl

We can calculate the coefficients: ai by equating powers of y. We have:( ∞∑
i=1

ci(x)yi
)( ∞∑

l=0

Bl(x)yl
)

=

∞∑
k=1

Ak(x)yk

So that:

c1(x)B0(x) = A1(x)

c2(x)B0(x) + c1(x)B1(x) = A2(x)

From this we get:

c1(x) = aj2/a(j−1)2

c2(x) =

(
a(j+1)4 − (aj2/a(j−1)2)aj4

)
x4

a(j−1)2x2

So that for small y we get:

φj(x, y)

φj−1(x, y)
≈ c1y + c2x

2y2 +O(y3)

c1 = aj2/a(j−1)2, c2 =

(
a(j+1)4 − (aj2/a(j−1)2)aj4

)
a(j−1)2

�

5. Numerical Simulations

5.1. First Results with η = 0: In this section, we truncate the trial solution
power series to a maximum number of terms in n, as well as truncating the partial
differential equation:

p(x, t) =
a00√
t

+

N∑
n=1

2n∑
m=2(n−K+1)

anm√
t

(
xm

tn

)
(5.1)

Starting, with a value N = 100, we plot the solutions for K = 1 to K = 5 (terms
up to and including ε8).

First, figure 1 shows the 1 day solutions (t = 0.004), with σ = 10%, ε = 0.005.
Next, figure 2 shows the same solutions for after 1 month has elapsed.

5.2. Convergence in N:. Figure 3 shows the convergence in the tail, for K = 3.
This shows the series has converged for k ≥ 70. Similarly, figure 4 shows the
convergence in the tail, for K = 5. We note that, in this case, the power series
has converged for N ≥ 75. However, there is instability in tail for K = 5, and
above. As K increases, the power-series coefficients get larger and larger, the final
solution involves subtracting very large numbers from each other.
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Figure 1. Approximate solutions for N = 100, K = 1 to K = 5,
t=0.004. The first chart shows the full distribution, the next chart
focuses on the left tail.

This is reflected in table 2 below, which shows the maximum value of the con-
tributing monomials, and the ratio of the final sum to the maximum contributing
monomial.

The values are taken at 6 standard deviations, and so the final sum of all
monomials should be near zero. However, for K = 7, this involves subtracting
monomials with a value of O

(
10+16

)
from each other.

As the size of the individual monomials increases, the number of digits required
to capture accuracy to O

(
10−16

)
, increases. Thus, eventually the limitations of

floating point arithmetic restrict the accuracy of the final result.

5.3. Divergence in K:. The analysis above shows that for fixed K, pending suf-
ficient data retention in the floating point arithmetic used, one can use proposition
3.1 to calculate solutions.
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Figure 2. Approximate solutions for N = 100, K = 1 to K = 5, t=0.08

k (x = 6σ, t = 0.004) Max Monomial Final Sum/Max Monomial
1 (Gaussian) 9.72e+7 2.46e−15

2 3.54e+9 2.18e−15
3 8.87e+10 1.10e−15
4 2.00e+12 −1.37e−16
5 4.19e+13 5.49e−16
6 8.31e+14 3.71e−16
7 1.70e+16 2.66e−16

Table 2. Table showing the maximum monimial size at value of
x within ±6 std deviations, and the ratio of final sum to the max
monomial size.
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Figure 3. Convergence of the tail probabilities, t=0.004, ep-
silon=0.005, K = 3

Figure 4. Convergence of the tail probabilities, t=0.004, ep-
silon=0.005, K = 5

In this section, we show however that these series diverge for fixed N , as K →
∞. This effect is exacerbated for large ε. We show the results in figure 5 below,
for the mid-tail probabilities. We set ε = 0.005, t = 0.004 (1 day), and N = 100.
Figure 6 shows the same model after a time frame of 1M has ellapsed. As time
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Figure 5. Divergence of the mid-tail probabilities, t=0.004, ε = 0.005

Figure 6. Mid-tail probabilities, t=0.08, ε = 0.005

increases, the relative of impact of ε versus the total variance: σ2t reduces, and the
probability distribution gets closer and closer to the Gaussian distribution. For
t = 0.08, the divergence seen in figure 5 is no longer apparent.
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Figure 7. Approximate solutions for N = 100, K = 7, t=0.004,
ε = 0.005, σ = 0.1, η = 0 to η = −0.5.

5.4. Results with η 6= 0: In figure 7, we show the 1 day simulation from figure
1: σ = 0.1, ε = 0.005) with η = 0 to η = −0.5. The negative skew parameter
of η = −0.5, reflects the situation whereby the volume of sellers represented by
||ψo||2, is greater than the volume of buyers. We have:

||ψo||2 + ||ψb||2 = 1

||ψo||2 − ||ψb||2 = −0.5

6. Application to the Modelling of Illiquid Stocks:

6.1. Modelling with ‘Fat Tails’. First of all, we note that the solutions con-
verge to the Gaussian distribution for small ε, and/or long time frames t. In [3], it
is shown that the second, third & fourth central moments for the solution to the
Fokker-Planck equation: 2.1, are given by:

µ2 = σ2t

µ3 = σ2tεη

µ4 = 3(σ2t)2 + σ2tε

Therefore, as ε/t → 0 the ratio of the kurtosis to the Gaussian kurtosis for a
distribution with the same variance, tends to 1:

3(σ2t)2 + σ2tε

3(σ2t)2
→ 1, as

ε

t
→ 0

Thus we can see that where the bid-offer spread disappears, and there are a number
of buyers & sellers willing to transact at the same price, the model yields a Gaussian
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solution. However, after the onset of illiquidity, represented by the fact that market
sellers wish to charge a higher price than buyers are willing to pay, the result is
higher kurtosis (ie ‘fat tails’).

With this in mind, table 3 shows the percentiles for x values in excess of 3, and
4 standard deviations. The table shows that with ε = 0.005, the probability of a
1 day move in excess of 4 standard deviations is increased by a factor of 8. Ie, 1
day every 17 years, rather than 1 day every 134 years.

By contrast, the probability of a 1 month return in excess of 4 standard devia-
tions is impacted to a much lower degree. In other words, as we look further and
further into the future, the current market liquidity, reflected in the width of the
bid-offer spread, impacts the likely distribution less.

Tail Event ε σ t K = 0 (Gaussian) K = 4
−3sd 0.005 0.1 0.004 (1 day) 0.1374% 0.2758%
−4sd 0.005 0.1 0.004 (1 day) 0.0030% 0.0240%
−3sd 0.005 0.1 0.08 (1M) 0.1417% 0.1577%
−4sd 0.005 0.1 0.08 (1M) 0.0031% 0.0042%

Table 3. The table shows that with K = 4, t = 1day, the proba-
bility of a 3 standard deviation event is 8 times that of the Gauss-
ian distribution.

6.2. Model Inaccuracy for Short Time Frames: Before applying the solu-
tion given by equations 3.1, and proposition 3.1, it must be considered that, whilst
this proposition may well represent a solution to the truncated partial differen-
tial equation, there is no guarantee that it will not differ substantially from the
true solution, or even that it represents a valid probability density function for a
stochastic process.

In fact, we can use proposition 4.6, to estimate the minimum time frame for
which we can apply the truncated series. For example, if we use a maximum of
K terms in the sequence, then in order to ensure |φK+1(x, y)| < ε|φK(x, y)| we at
least require:

|c1y + c2y
2x2| < ε

c1 = a(K+1)2/aK2

c2 =

(
a(K+2)4 − (a(K+1)2/aK2)a(K+1)4

)
aK2

Thus by fixing the error tolerance (ε), we can calculate the maximum value of y
(where y = 1/t) for which the model can be applied.

Alternatively, given a set time frame over which we wish to model, we can use
proposition 4.6 to calculate how many terms it is safe to include.

With this in mind table 4 shows the values of c1 and c2 under different values
for K and ε.
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K ε c1 c2 Minimum t, ε = 5%
1 0.005 0.0006 −0.0365 0.0125
2 0.005 0.0017 −0.1163 0.0333
3 0.005 0.0028 −0.2100 0.0562
4 0.005 0.0040 −0.3086 0.08
5 0.005 0.0052 −0.4093 0.1042
1 0.002 0.0001 −0.0058 0.0020
2 0.002 0.0003 −0.0186 0.0053
3 0.002 0.0005 −0.0336 0.0090
4 0.002 0.0006 −0.0494 0.0128
5 0.002 0.0010 −0.0655 0.0167

Table 4. The table shows an estimate for the minimum time
over which we can model, assuming a relative error tolerance for
higher order terms of 5%

For small x (ie we take x ≈ 0), ε = 0.005, and ε = 5%, we find with K = 4,
the minimum modelling time is 0.08, which equates to roughly 1 month. With
ε = 0.002, we find with K = 4, the minimum modelling time is 0.0128, which
equates to roughly 3 days.
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