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Abstract
Powerline communication (PLC) is an emerging technology that has an important role in smart grid systems. Due to making
use of existing transmission lines for communication purposes, PLC systems are subject to various noise effects. Among
those, the most challenging one is the impulsive noise compared to the background and narrowband noise. In this paper, we
present a comparative study on modelling the impulsive noise amplitude in indoor PLC systems by utilising several impulsive
distributions. In particular, as candidate distributions, we use the symmetric α-Stable (SαS), generalised Gaussian, Bernoulli
Gaussian and Student’s t distribution families as well as the Middleton Class A distribution, which dominates the literature as
the impulsive noise model for PLC systems. Real indoor PLC system noise measurements are investigated for the simulation
studies, which show that the SαS distribution achieves the best modelling success when compared to the other families in
terms of the statistical error criteria, especially for the tail characteristics of the measured data sets.

1 Introduction

Smart grid technology, which is regarded as the next gener-
ation electric power infrastructure, is being developed day
by day in order to provide a more efficient and safe power
system. The ability to control this complex system automat-
ically (or remotely) also makes it necessary to use advanced
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communication technologies [1]. Powerline communication
(PLC) systems use power lines to carry telecommunica-
tion data. In PLC systems, a communication speed can be
achieved up to 2Gbps with a good quality of service. PLC
systems have important potential in applications, namely
remote metering, distribution automation and internet access
through home networking [2]. Moreover, PLC can also pro-
vide a physical environment for closed multimedia data
traffic without additional cables. Despite all these compe-
tencies, the most challenging problem of PLC systems is
the transmission of data in an environment designed for
electricity distribution. For this reason, in PLC systems, a
more complicated noise environment arises when compared
to conventional communication systems.

A PLC system has various types of noise arising from
electrical devices connected to power line as well as external
effects via electromagnetic radiation. These noise sequences
are generally non-Gaussian and are classified into three
groups, namely i) impulsive noise, ii) narrowband noise and
iii) background noise [3]. Impulsive noise in PLC systems is
the most common cause of communication errors compared
to other types of noise due to its high amplitudes which can
exceed 50 dBs [4,5].

In the literature, Middleton Class A distribution [6] is the
most common choice in modelling impulsive noise in PLC
systems [4,7]. This statistical model is a mixture of a large
number of Gaussian random variables with different vari-
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ances. Middleton Class A distribution has had a widespread
usage in PLC systems due to the simplicity of its probability
density function (pdf). α-Stable distributions have emerged
as an important alternative to Middleton model in modelling
impulse noise in recent years, mainly due to the fact that
Middleton Class A and Bernoulli-Gaussian (BG) distribu-
tions cannot model noise tail characteristics well. α-Stable
distributions have been proposed to model PLC impulsive
noise in [8]. Furthermore, in [9] a mixture model of BG and
symmetric α-Stable (SαS) distributions has been proposed
for impulsive noise modelling of the narrowband PLC sys-
tems. In [10], Middleton Class A and α-Stable distributions
are used to model impulsive noises in China and Italy, and it
has been stated that PLC systems including high impulsive
character can be modelled better with α-Stable distributions.
Lastly, in [11], the suitability of Middleton Class A distribu-
tion has been evaluated under various conditions, and it has
been shown that theMiddleton Class A distribution has quite
limited usage in PLC systems, due to failure in modelling the
tail characteristics if the impulsive noise.

For the PLC system applications, there remains the ques-
tion what the most suitable distribution for impulsive noise
modelling is, as none of the above-mentioned studies have
provided a comparison that covers all frequently used impul-
sive distributions in the literature.

In this paper, we contribute to the literature with:

1. a comparison study among various impulsive distribu-
tion families instead of focusing on a single distribution.
Candidate distributions are namely the Middleton Class
A, BG, SαS, Student’s t and generalised Gaussian (GG).

2. an investigation on four different indoor PLC noise mea-
surements of various indoor locations of namely a house,
a room at university and two laboratories [12].

3. a statistical significance test among said distribution fam-
ilies on modelling the real noise measurements in terms
of statistical error measures of Kolmogorov–Smirnov
(KS) statistics, Kullback–Leibler (KL) divergence and
Hellinger distance (HD).

4. an experimental verification to the studies [8,13] which
propose utilising the SαS distribution for modelling PLC
impulsive noise under the lights of the simulation results.

5. an alternative distribution family, namely the Student’s
t , which would be applicable in PLC impulsive noise
modelling with its considerable modelling performance
and simpler mathematical expression compared to the
SαS distribution.

In this paper, we only focus on the amplitude of noise
measurements. Thus, please note that the other important
characteristics of the impulsive noise such as inter-arrival
times, widths and frequencies are out of the scope of this
study and left as future work.

The rest of the paper is organised as follows: candidate
probability distributions, parameter estimation method and
error measures are presented in Sect. 2. The details of the
data sets and the experimental analysis results are discussed
in Sect. 3. Section 4 provides the conclusions of the paper.

2 Methodology

2.1 Probability distributions

As mentioned in Sect. 1, we investigate five different dis-
tribution families in modelling the impulsive noise of PLC
systems in this study. The correspondingfive candidate distri-
bution families are Middleton Class A, BG, SαS, Student’s
t and GG. A brief information about these distributions is
given in the sequel.

2.1.1 Middleton Class Amodel

Middleton Class A distribution can be defined as a Gaus-
sian mixture distribution, weights of which are Poisson
random variables. The pdf of the Middleton Class A model
is expressed as

f (x) =
∞∑

m=0

PmN
(
x |0, σ 2

m

)
(1)

where σ 2
m is the variance and Pm refers to the weight of the

mth Gaussian. Both of these parameters are given as

σ 2
m = σ 2

⎛

⎜⎝

m

A
+ γ

1 + γ

⎞

⎟⎠ and Pm = e−A Am

m! , (2)

where σ 2 represents the variance of the background noise
(generally assumed to be 1), whilst A refers to the shape
parameter and γ is the scale parameter.

In previous studies [11,14], it has been shown that the
Middleton Class A distribution can be simplified into a sum-
mation up to a finite scalar M , instead of performing the
infinite summation in (1). In this study, we assume that M
is 10, and the weight vector, Pm in (1), is replaced with

P
′
m = Pm∑10

i=0 Pm
. For details, please see [6].

2.1.2 Bernoulli-Gaussian distribution

The BG distribution is another important statistical model
for PLC noise modelling. It is a two-component Gaussian
mixture model and also a special case of Middleton Class A
pdf with first two components (i.e. for m = 0, 1 in (1)) [11].
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The BG model has various usage areas, especially in com-
munication applications such as PLC [15,16], multicarrier
QAM [17] and orthogonal frequency division multiplexing
(OFDM) systems [18].

The pdf expression of the BG distribution is given as [16]

f (x) = 1 − p√
2πσ 2

B

exp

(
−x2

2σ 2
B

)

+ p√
2π(σ 2

B + σ 2
I )

exp

(
−x2

2(σ 2
B + σ 2

I )

)
(3)

where p ∈ [0, 1] refers to the impulsive probability, σ 2
B is

the standard deviation of the background noise amplitude and
σ 2
I represents the standard deviation of the impulsive noise

amplitude.

2.1.3 Symmetric˛-stable distribution

α-Stable distribution is a commonly used impulsive distribu-
tion with various applications such as near optimal receiver
design [19] and diversity combining schemes for a single-
user communication [20]. (Please see [21] and references
therein for detailed applications.)

SαS distribution has no closed form pdf expression except
for the special members the Cauchy (α = 1) and the Gaus-
sian (α = 2). However, its characteristic function can be
expressed explicitly as:

ϕ(x) = exp( jδx − γ |x |α) (4)

where 0 < α ≤ 2 refers to the shape parameter (or namely the
characteristic exponent), which controls the impulsiveness
of the distribution. −∞ < δ < ∞ is the location parameter,
whilst γ > 0 is the scale parameter (or namely the disper-
sion) and can be expressed as a measure of the spread of the
distribution around δ.

2.1.4 Student’s t distribution

Student’s t distribution is an alternative to Gaussian distribu-
tion, especially for small populations where the validity of
central limit theorem is questionable. Student’s t distribution
has various application areas, to name a few: interference
modelling in cognitive radio network [22] and analysis of
enhanced noise after zero-forcing frequency domain equali-
sation [23].

The univariate symmetric Student’s t distribution is
defined with three parameters: (i) the shape parameter α > 0
(namely the number of degrees of freedom), (i) the location
parameter−∞ < δ < ∞ and (iii) the scale parameterγ > 0.
As in the SαS case, the Cauchy and Gauss distributions are

the special members of the Student’s t distribution, which are
obtained for shape parameter values of α = 1 and α = ∞,
respectively.

The pdf expression for the Student’s t distribution is given
as

f (x) =
�

(
α + 1

2

)

�(α/2)γ
√

πα

(
1 + 1

α

(
x − δ

γ

)2
)−((α+1)/2)

,

(5)

where �(·) represents the gamma function.

2.1.5 Generalised Gaussian distribution

GG distribution has generally been used in applications such
as performance analysis studies in multihop wireless net-
works [24] and M-PAM/M-QAM systems [25]. The pdf
expression for the univariate GG distribution is given as

f (x) = α

2γ�(1/α)
exp

(
−

( |x − δ|
γ

)α)
(6)

where α > 0 is the shape parameter, −∞ < δ < ∞ refers
to the location parameter and the γ > 0 is the scale param-
eter. The Laplace, Gaussian and uniform distributions are
special members of the GG family for α values of 1, 2 and
∞, respectively.

2.2 Parameter estimationmethod

In this study, in order to estimate parameters for all the
candidate distributions, we use a minimax methodology as
suggested in [11]. In particular, we utilise the cumulative
density function (CDF) in the loss function of the minimax
problem, inasmuch as the CDF contains all the information
for a distribution of a random variable.

Given data x , and the empirical CDF F(x) is readily
obtained. The parameter vector 	 of any distribution which
gives the best fit to the given data x is then subsequently
estimated via [11]:

	̂CDF = argmin
	

max
x

∣∣∣F(x) − F̂(x;	)

∣∣∣ (7)

where 	̂CDF refers to the parameter vector estimate which
minimises the maximum distance between the empirical and
the estimated CDFs. Here, please note that location param-
eters for Student’s t and GG distributions are assumed to be
0, since all other statistical models are symmetric around 0.

In order to solve (7), we employ an interior-point opti-
misation method which approaches the optimum solution
from the interior of the feasible set. Particularly, it is a con-
strained optimisation method and the constraints are defined
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for each of the shapes and the scale parameters, the upper and
lower bounds of which are given in Sect. 2 for each distribu-
tion. The maximum number of iterations is selected as 100
which is experimentally set. We repeat solving the minimax
problem in (7) 50 times for randomly selected initial points
(	0 = [α0, γ0]).

2.3 Statistical error measures

In order to demonstrate a statistical significance test among
all distribution families for all the utilised data sets, we use
three different statistical measures, which are the KS statis-
tics, the KL divergence and the HD.

The two-sample KS statistics is a nonparametric test
which can be used to test equality of continuous distribu-
tions by comparing two samples from two reference CDFs
P(·) and G(·) and is expressed as [26]

DKS = max {|P(x) − G(x)|} . (8)

KL divergence provides a non-symmetric measure (not a
distance) of the difference between information contents of
two probability distributions. KL divergence is also known
as the relative entropy and is calculated as [27]

DKL =
k∑

i=1

p(xi ) log

(
p(xi )

g(xi )

)
. (9)

HD is a symmetric distance metric between two pdfs
which measures how two distributions overlap. On the other
hand, HD is strongly related to Bhattacharyya distance and
also probabilistic analogous of Euclidean distance. HD is
calculated as [28]

DHD = 1√
2

∥∥∥
√
p(x) − √

g(x)
∥∥∥
2
. (10)

When evaluating the results for all these statistical error
measures, note that the smaller the statistical test value is, the
higher the estimation performance is.

3 Experimental analysis

3.1 Data sets

In this study, four different indoor PLC noise measure-
ments are investigated, all of which have been measured
during a project (PTDC/EEA-TEL/67979/2006) conducted
by INESC/IST, Portugal [12]. There are four different mea-
surement locations, which are namely a house, a university
room and two laboratories (Lab1 and Lab2). Particularly,
House, Room (a university room) and Lab2 measurements

Table 1 Estimated parameters for each family and data set

House Lab1 Room Lab2

SαS

α̂ 1.1743 1.2239 1.2285 1.1465

γ̂ 2.5848 2.6167 2.6194 2.5866

Student’s t

α̂ 1.3765 1.5233 1.5239 1.3066

γ̂ 2.8551 2.9632 2.9672 2.8164

GG

α̂ 0.7242 0.7737 0.7855 0.7005

γ̂ 2.5960 2.7740 2.9739 2.4882

Middleton

Â 0.0201 0.0251 0.0229 0.0182

�̂ 0.0047 0.0210 0.0056 0.0027

BG

p 0.2294 0.2710 0.8129 0.4012

σB 2.8937 2.7728 0.8501 4.6115

σI 19.6419 15.0280 6.4391 97.7838

Table 2 Computed statistical error measures for all the data sets

SαS Student’s t GG Middleton BG

House

KS 0.0031 0.0035 0.0062 0.0093 0.0025

KL 0.0020 0.0027 0.0105 0.0960 0.0059

HD 0.0339 0.0384 0.0755 0.1128 0.0451

Lab1

KS 0.0026 0.0032 0.0060 0.0089 0.0035

KL 0.0018 0.0028 0.0275 0.1015 0.0068

HD 0.0310 0.0376 0.0745 0.1028 0.0539

Room

KS 0.0025 0.0031 0.0057 0.0083 0.0144

KL 0.0018 0.0028 0.0283 0.0993 0.0209

HD 0.0308 0.0373 0.0739 0.1042 0.0994

Lab2

KS 0.0034 0.0037 0.0064 0.0098 0.0529

KL 0.0024 0.0029 0.0212 0.1022 0.0298

HD 0.0369 0.0405 0.0797 0.1180 0.1345

Values with bold face refer to the best statistical measure values for each
data sets and statistical measures

have been taken with the same type of amplifier, whereas
Lab1 measurement has been taken with another amplifier
with lower gain. Measurements were taken on December
2017. The sampling rate was 200Msamples/s and measure-
ments lasted for 5ms resulting 1million samples for each.
For measurement set-up and further details of the data sets,
please see [29].
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Fig. 1 Fitted probability density functions in logarithmic scale

3.2 Simulation results

In order to study the performance of the candidate distribu-
tions for each of the four PLC noise data sets, the required
parameters were estimated using the method given in Sect.
2.2. The fitted distributions were calculated using the esti-
mated parameters via their pdf expressions given in the above
sections. PLC noise measurements are usually symmetrical
around zero, and since all of the other candidate models are
symmetrical distributions, for a fair comparison symmetri-
cal sub-class of α-Stable distribution family was chosen as a
candidate distribution family (β = δ = 0).

In Table 1, estimated parameters are shown for all distribu-
tions and data sets. Examining the estimated shape parameter
values, e.g. for the SαS in Table 1, we can state that Lab2 and
House measurements follow more impulsive characteristics
compared to other two measurements. Additionally, Lab1

and Room data sets have the highest shape parameter esti-
mates among the data sets and this corresponds to the least
impulsiveness.

In Table 2, the performance comparison results are shown
in terms of KS, KL and HD statistical tests. The most impor-
tant result that can be clearly seen from the table is the
remarkable success of the SαS for all four data sets. Particu-
larly, it has been observed that in all cases, SαS distribution
has provided a better model in terms of visual comparison as
well as KL, KS and HD except the single case of KS test for
House data set. Even for this case, the visual comparisons of
pdfs show the superior fit of SαS. These results are due to
characteristics of the KS test which gives equal importance
to all amplitude values and gives the maximum deviation
between the two CDFs. A %1 deviation between the main
peaks of the distributions might contribute the same amount
with%50 deviation in the tails. KL distance on the other hand
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provides an information theoretic measure which scales the
contribution to error according to the probabilities.

Furthermore, for all data sets Student’s t distribution
achieves the second best performance after SαS. BG, GG
and Middleton models fall short of modelling PLC noise
measurements, especially for tail modelling, and this result
also provides a comparative evidence to the results presented
in [11] for Middleton Class A distributions.

In Fig. 1, probability density functions of the estimated
distributions for all data sets and all candidate distributions
are depicted in logarithmic scale in order to evaluate the tail
characteristics of the fitted distributions. Additionally, in all
the sub-figures, the data value range between -30 and 30mVs
is plotted with a zoomed view, to show the performance of
the distributions around zero mVs. Examining all the sub-
figures in Fig. 1, superior performance of the SαSdistribution
can be clearly seen in all the sub-figures. For noise ampli-
tudes around 0, all five estimated distributions approximately
coincide; however, for the tails, estimates for BG, GG and
Middleton distributions are very poor compared to SαS and
Student’s t . Specifically, the BG distribution tries to model
the tail behaviour (especially visible for Lab2 data) thanks to
its independentGaussian parameters. Nonetheless, this effort
is not successful as described by the performance measures
given in Table 2. The performance of SαS and Student’s t
are very close for Lab2; however, for the rest of the measure-
ments, SαS provides the best fit among all distributions.

4 Conclusions

In this paper, we performed a comparison study in mod-
elling the impulsive noise for indoor PLC systems among
five candidate statistical models. The results demonstrated
the superior performance of SαS distribution among the oth-
ers and subsequently exhibited evidence on the suitability of
SαS distribution in modelling PLC impulsive noise.

In the literature, there are studies which model the impul-
sive noise in PLC systems by α-stable distributions. Partic-
ularly, these studies provide a direct modelling scheme via
α-stable distribution, whereas the study in this paper decided
the best model among five impulsive distribution families
in terms of statistical error measures. The results presented
in this study contribute to the literature with an experimen-
tal verification to [8,13] by demonstrating the importance of
SαSdistributions in PLC impulsive noisemodelling. Thus, in
applications such as emulator software and noise cancellers
which mainly assume a Middleton Class A distribution (or a
BG model), we clearly demonstrated the need for using SαS
distributions.

Despite its common usage, the results presented in this
study conclude that the Middleton Class A model is not the
most suitable choice and has a limited capacity to model

impulsiveness in indoor PLC measurements by experimen-
tally verifying [11]. Even though it is a simplified version
of the Middleton Class A with two Gaussian components,
the BG model further outperformed Middleton Class A for
indoor PLC noise measurements, as in the outdoor cases
reported in [11].

It is interesting to note that all the considered models are
scale mixtures of Gaussian distributions [30–32]. In particu-
lar,MiddletonClassAmodel has Poissonmixing distribution
[11]. Recent work by Lemke et al. [33] also shows how the α-
stable random variables can be expressed in terms of Poisson
random variables providing a very interesting link between
Middleton Class A and α-stable distributions. Besides, α-
stable distributions have a natural strength to model noise
processes in any system with additive nature and any level
of impulsiveness, since they satisfy the generalised central
limit theorem [19]. They were proven also analytically to be
natural noise models in communication systems in an earlier
study [34].

Moreover, we conclude that the Student’s t distribution
exhibits a considerable modelling performance as being the
second best model after SαS. Considering that the Student’s
t distribution has never been used in PLC noise modelling,
we believe that the results in this study make it an easier-to-
implement an alternativemodel to SαS distributions in future
studies.
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