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Abstract

In this paper we propose two extensions of the Exponential model to
describe income distributions. The Exponential ArcTan (EAT) and
the composite EAT–Lognormal models discussed in this paper pre-
serve key properties of the Exponential model including its capacity
to model distributions with zero incomes. This is an important feature
as the presence of zeros conditions the modelling of income distribu-
tions as it rules out the possibility of using many parametric models
commonly used in the literature. Many researchers opt for exclud-
ing the zeros from the analysis, however, this may not be a sensible
approach especially when the number of zeros is large or if one is in-
terested in accurately describing the lower part of the distribution.
We apply the EAT and the EAT–Lognormal models to study the dis-
tribution of incomes in Australia for the period 2001–2012. We find
that these models in general outperform the Gamma and Exponential
models while preserving the capacity of the latter to model zeros.

Key Words: Income distribution; Australia; Mixture model; Exponential
distribution; Lognormal distribution; Zero Income.
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1 Introduction

The parametric analysis of income distributions has received considerably
attention in the economics and econophysics literature. Following the pio-
neering work of Vilfredo Pareto (1897), many functional forms have been
proposed in the literature to study income distributions 1. The statistical
performance of these models will depend on the features of the data and
the capacity of the model to capture those characteristics. In particular,
the choice of the parametric model is highly influenced by the presence of
observations with zero incomes. Largely overlooked in the income distribu-
tion literature, the presence of zeros rules out the possibility of using models
which have been proven to give a good fit to income data like the Lognormal,
Gamma or GB2 as these models do not include the zero in their domains.
Many researchers overcome this problem by excluding the observations with
zero incomes from the analysis and assuming that the density at zero equals
zero. This approach, however, is likely to be invalid, especially when the
number of zeros is large and the analyst is interested in describing the bot-
tom part of the income distribution for the study of poverty, inequality or
the polarization of incomes.

An alternative approach is to analyse income distributions using paramet-
ric models that can accommodate the zeros when fitting the model to the
empirical data. This a more sensible approach as the analyst ought to make
the best use of the information from the data including those observations
with zero income. The Exponential model is particularly suitable option as
it has positive density at zero. In fact, As Banerjee et al. (2006) show us-
ing Australian data, the Exponential distribution gives a good description of
most of the income distribution although it fails to capture some features of
the upper part of the distribution.

This paper contributes to the existing the literature by proposing two
simple extensions of the Exponential model to describe income distribu-
tions: the Exponential ArcTan (EAT) distribution which is achieved by us-
ing the methodology derived in Gómez–Déniz and Caldeŕın–Ojeda (2015a)
or in Gómez–Déniz and Caldeŕın–Ojeda (2015b) and the composite EAT–
Lognormal model which is derived following the procedure given in Caldeŕın–

1This includes the Lognormal distribution, the Exponential law, as well as more com-
plex models with more parameters such as the Singh–Maddala, the Gamma, and the
Generalized Beta of the Second Kind. For a detailed discussion of these models and its
application to the analysis of income distributions see Kleiber and Kotz (2003).

2



Ojeda and Kwok (2015). Thus this paper adds to the limited research on
modelling distributions with null or negative values. This includes the so-
called Dagum Type–II distribution proposed by Dagum (1977) which is a
four-parameter model with positive density at zero. Clementi et al. (2009)
propose the κ–generalized statistical distribution, a three-parameter model
with positive density at zero, to analyse the income distribution in the U.S.
They found that this model in general outperforms models like the Singh–
Maddala and Dagum type I2. We illustrate the suitability of the new models
using income data for Australia for the period from 2001 to 2012. We fit the
models to the distributions of household disposable income which include a
non–trivial number of zeros. Our empirical results show that the EAT and
EAT–Lognormal provide in general a better fit to the data than the Gamma
and the Exponential models. Importantly, this is achieved without signifi-
cantly increasing the number of parameters of the model which makes these
models particularly attractive to model income distributions in the presence
of zeros.

The rest of the paper is organised as follows. In Section 2 we present
the new models and their most relevant properties. Section 3 discusses the
application of the new models to study changes in the distribution of house-
hold disposable income in Australia for the period 2001–2012. In the first
part of this section we describe the data sources used for the analysis. We
then present the main results derived from the empirical application and we
discuss the advantages of the models introduced in this paper with respect
to other parametric models widely used for the analysis of income distribu-
tions. Finally, Section 4 includes the conclusions and some issues for further
research.

2 Parametric models

2.1 The Exponential ArcTan distribution

Let us initially consider the half–Cauchy distribution (see Jacob and Jayaku-
mar (2012)) truncated at α > 0 with probability density function (pdf) given

2Clementi et al. (2012) use the same model to study the distribution of wealth in the
US. For a review of the parametric models that have been proposed for the analysis of
wealth distributions see Clementi and Gallegati (2016, Ch.4).
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by

f(y) =
1

tan−1 α

1

1 + y2
, 0 < y < α. (1)

Now, let F̄ (x) be the survival function of a random variable X with support
in [a, b], where a and b can be finite or non–finite and consider also the
transformation y = αF̄ (x). Then, the corresponding pdf of the random
variable X obtained from (1) results

f(x;α) =
1

tan−1 α

αf(x)

1 + [αF̄ (x)]2
, (2)

for a ≤ x ≤ b and α > 0. The survival function of X, derived from (2) by
integration, is provided by

F̄ (x;α) =
tan−1(αF̄ (x))

tan−1 α
. (3)

Besides, (2) and (3) are appropriate density and survival functions, respec-
tively when the support of the parameter α is extended to (−∞,∞) − {0},
satisfying that F̄ (x;α) = F̄ (x;−α). Additionally, by taking in (3) limit when
α approaches to zero and applying L’Hospital’s rule, it is simple to derive
that the parent survival function, F̄ (x), is obtained as a limiting case. In
particular, when F̄ (x) is replaced by the survival function of the exponential
distribution, the Exponential ArcTan (EAT) distribution is obtained. The
family of survival functions in (3) has been recently applied recently to the
classical Pareto distribution showing an outstanding performance in three
different scenarios, to model claim size data (Gómez–Déniz and Caldeŕın–
Ojeda (2015a)), to describe city size data (Gómez–Déniz and Caldeŕın–Ojeda
(2015b)) and finally to derive a parametric family of Lorenz curves (Gómez–
Déniz (2015)).

The survival function and pdf of the EAT distribution are provided by

F̄ (x;α) =
tan−1(α e−θ x)

tan−1 α
, x ≥ 0 and (4)

f(x;α) =
1

tan−1 α

α θ e−θ x

1 + α2 e−2θ x
, x ≥ 0. (5)

4



respectively, where θ > 0 and α ∈ (−∞,∞)− {0}.
Alternatively the approximation of the tan−1 function by means of second

and third–order polynomials and simple rational functions (see Rajan et al.
(2006) for details)

tan−1 z ≈ zπ

2(1 + z)
, z > 0, (6)

can be used to approximate the survival function given in (3),

F̄ (x;α) ≈ (1 + α)F̄ (x)

1 + αF̄ (x)
, for α > 0. (7)

Note that the latter expression is related to the family of distributions pro-
posed by Marshall and Olkin (1997). Then, the probabilistic family of dis-
tributions introduced in (3) is geometric–minimum stable (see Marshall and
Olkin (1997)). In this particular, a simple interpretation of the EAT distribu-
tion is described as follows. Let us suppose that {Xi}ni=1 are independent and
identically distributed random variables with cumulative distribution func-
tion F (x), where n is random and it follows the probability mass function

Pr(N = n) =
1

1 + α

(

α

1 + α

)n−1

, n = 1, 2, . . . (8)

(i.e. the geometric distribution); then it is easy to show that the marginal
survival function of X = min {X1, X2, . . . , Xn} is given by (7). Thus, the new
distribution is approximately the maximum order statistics derived from a
sample obtained from geometric distribution.

2.2 Basic properties

Some computations yield the Laplace transform of the EAT distribution in
terms of the hypergeometric function, 2F1. This results

LX(t) = E(e−tX) =
αθ

(t+ θ) tan−1 α
2F1

({

1,
t+ θ

2θ

}

;
1

2

(

3 +
t

θ

)

;−α2

)

,

from which the moments of the distribution are obtained. In particular, the
kth order moment about the origin of the EAT distribution is
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E(Xk) =
k!α

2k+1 θk tan−1 α
Φ(−α2, k + 1, 1/2), (9)

where Φ(z, s, a) =
∑∞

j=0
zj

(a+j)s
is the Lerch transcendent function.

Additionally, the quantile function can be easily derived and is given by

xu = −1

θ
log

[

1

α
tan

(

(1− u) tan−1 α
)

]

, 0 < u < 1. (10)

Proposition 1. The EAT distribution is log–concave.

Proof. This is easily verified by computing

d2

dx2
(− log f(x;α)) =

(

2αθeθx

α2 + e2θx

)2

> 0.

As a consequence of this result we have that the EAT distribution is uni-
modal and its convolution with any unimodal density is again unimodal (see
Ibragimov, 1956). Besides, as compared with the exponential distribution,
the EAT model is more flexible since it allows for unimodality when α > 1
and zeromodality when α ≤ 1. For the former case the modal value is

xm =
1

θ
logα, α > 0. (11)

Another result derived from log-concavity property is that the hazard
rate function

h(x;α) =
f(x;α)

F̄ (x;α)
=

αθe−θx

(1 + α2e−2θx) tan−1(αe−θx)
,

is non–decreasing for all α. Furthermore, due to the log-concavity, the EAT
distribution has an exponential tail, i.e., f(x;α) = o(exp(−µx)) for some
µ > 0 as x → ∞.

The following result establishes stochastic order ≼st between random vari-
ables following the EAT distribution.
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Proposition 2. Let X and Y two random variables following the EAT dis-
tribution. Then, it is verified that,

X ≽st Y : F̄ (x;α) ≼st F̄ (y;α), ∀α.

Proof. It is straightforward.
Finally, next result establishes ordering with respect to the parameter α.

Proposition 3. Let X a random variable following the EAT distribution
with parameters α ̸= 0 and θ > 0. Then, it is verified that,

α1 < α2 : F̄ (x;α1) < F̄ (x;α2), ∀x > 0,

α1 > α2 : F̄ (x;α1) > F̄ (x;α2), ∀x > 0.

Proof. After differentiating (4) with respect to α, it is simple to see that the
sign of this derivative depends on the sign of

Φ(α) = e−θx(1 + α2) tan−1 α− (1 + α2e−2θx) tan−1(αe−θx).

Now, having into account that Φ(0) = 0, Φ(∞) = ∞ and that

Φ′(α) = 2αe−2θx
[

eθx tan−1 α− tan−1(αe−θx)
]

> 0,

we conclude that Φ(α) > 0, for all α and the result hence.
To end this section, we present the following result which is shown without

proof.

Proposition 4. The conditional survival function of the EAT distribution
satisfies

Pr(X > x+ t|X > t) ≤ Pr(X > x), ∀α,

where the equality only holds when α tends to zero, i.e. the memoryless
(forgetfulness) property which characterizes the Exponential distribution.

2.3 Composite EAT–Lognormal distribution

In situations where the mode of the empirical distribution is greater than
zero, composite models based on the methodology proposed in Caldeŕın–
Ojeda and Kwok (2015) can be simply obtained. In this sense, as the Log-
normal distribution has been widely discussed to describe income data, the
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composite EAT–Lognormal model can straightforwardly derived by using
this approach. Certainly, similar composite models based on the EAT dis-
tribution can be simply obtained if other distributions with a closed–form
expression for the modal value are used as second component of the spliced
model.

The key idea behind this procedure consists of using as first component
of the continuous composite model, adequate truncation of the EAT up to
the modal value (say xm), estimated from the data and the second part of
the distribution uses adequate truncation of the Lognormal distribution.

Then, the probability density function of the composite EAT–Lognormal
via mode–matching is given by

f(x) =























r
1

tan−1 α− tan−1(α e−θ xm)

αθ e−θ x

1 + (α e−θ x)2
, 0 < x ≤ xm,

(1− r)

(

1− Φ

(

log xm − µ

σ

))−1

√
2π x σ

e−
1
2(

log x−µ
σ )

2

, xm ≤ x < ∞,

(12)
with σ > 0, µ ∈ R, 0 ≤ r ≤ 1 and α > 1 to define a positive mode. Besides
Φ(·) denotes the cdf of the standard normal distribution. The mixing weight
r is given by

r =
f2(xm)F1(xm)

f2(xm)F1(xm) + f1(xm) (1− F2(xm))
. (13)

where f1 and F1 are the pdf and cdf of the EAT distribution and f2 and
F2 are the pdf and cdf of the Lognormal distribution respectively. Now, the
mode-matching condition leads to

θ = eσ
2−µ logα.

Then, by substituting the corresponding densities and distribution functions
into (13), the mixing weight is now written as
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r =
1√

2π xm σ
e−

1
2(

log xm−µ
σ )

2
[

tan−1 α− tan−1(α e−θ xm)
]

×
[

1√
2π xm σ

e−
1
2(

log xm−µ
σ )

2
[

tan−1 α− tan−1(α e−θ xm)
]

+

(

1− Φ

(

log xm − µ

σ

))

αθ e−θ xm

1 + (α e−θ xm)2

]−1

.

The cdf of the composite EAT–Lognormal distribution is provided by

F (x) =































r
tan−1 α− tan−1(α e−θ x)

tan−1 α− tan−1(α e−θ xm)
, 0 < x ≤ xm,

r + (1− r)

e−µ+σ2

2 Γ

(

1
2
;
(

log x−µ+σ2
√
2σ

)2
)

2
√
π

(

1− Φ

(

log xm − µ

σ

)) , xm ≤ x < ∞,
(14)

where Φ(·) represents the cdf of the standard normal distribution and Γ(·; ·)
is the incomplete gamma function. The quantile function can be simply
derived numerically by inverting the incomplete gamma function.

2.4 Lorenz curve and inequality measures

The Lorenz curve is a powerful tool to measure the distribution of wealth
in a society. Following Gastwirth (1971) and the original proposal by Pietra
(1915), given a distribution function F (x) with support in the subset of
the positive real numbers and with finite expectation µ, the Lorenz curve is
defined as

LF (x)(p) =
1

µ

∫ p

0

F−1(x) dx, 0 ≤ p ≤ 1, (15)

where F−1(x) = sup {y : F (y) ≤ x}.
A well–known characterization of the Lorenz curve is that if L(p) is de-

fined and continuous in the interval [0, 1] with second derivative L′′(p), the
function L(p) is a Lorenz curve if and only if

L(0) = 0, L(1) = 1, L′(0+) ≥ 0 for p ∈ (0, 1), L′′(p) ≥ 0. (16)
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By inverting 1− F̄ (x;α) from (4) we get that the Lorenz curve associated
to the EAT distribution results

LF (x;α)(p) =
1

µ

∫ p

0

log

{

tan[(1− t) tan−1 α]

α

}

dt, (17)

where µ is obtained from (9). Unfortunately due to the difficulty to solve
this integral a closed–form expression of (17) was not achieved.

Alternatively, we can use (7) to get an approximation of the exact Lorenz
curve defined in (17), curve given by

LF (x;α)(p) =
1

θ

[

(1− p) log(1− p) +

(

p+
1

α

)

log(1 + pα)

]

, 0 ≤ p ≤ 1,(18)

which is a genuine Lorenz curve (satisfying the properties given in (17)) and
which reduces to the exponential Lorenz curve (see Gastwirth (1971)) when
α tends to zero. More effort is necessary to find the Lorenz curve associated
to the cdf given in (14).

Now, the corresponding Gini and Pietra indices can be computed straight-
forwardly . The Gini index is defined as

G = 1− 2

∫ 1

0

Lα(p) dp.

Then the Gini index associated to approximation (18) is

G =
1

α2θ
[α(1 + (1 + θ)α)− (1 + α)2 log(1 + α)].

Less known but no less interesting, the Pietra index measures the pro-
portion of total income that needs to be reallocated across the population to
achieve perfect equality in income. This proportion is given by

P = max
0≤p≤1

[p− L(p)] =
1

2µ
E|X − µ|

and corresponds to the maximal vertical deviation between the Lorenz curve
and the egalitarian line (see Pietra (1915) and Frosini (2012)).

Differentiating p− LF (x;α)(p) we find that the Pietra index is attained at

p0 =
1−e−θ

1+αe−θ . Then, the Pietra index is p0 − LF (x;α)(p0).
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3 Empirical Application with Australian Data

3.1 Data Sources

For the empirical application we use data from the Household Income and
Labour Dynamics in Australia (HILDA) survey for the period 2001–2012.
This is a nationally representative survey with detailed information about
the income of families in Australia which makes it particularly suitable to
study changes in the distribution of income in this country. The HILDA
survey began in 2001 with a sample of 7,682 households containing 19,914
people. Subsequent waves of HILDA have collected information from mem-
bers of the original sample and from other new members of their households
related to them3. Following the income distribution literature, we take the
individual as the unit of analysis and assume that individuals’ income is
equal to the disposable income of the household. This is defined as the net
income available to household members and is given by the sum of market in-
come plus government transfers minus personal income taxes. Market income
comprises all private incomes in the form of wages and salaries, business and
investment income, private pensions, private transfers, and any windfall in-
come received by any household member. Government payments include the
value of all public transfers provided by the Australian government, including
pensions, parenting payments, scholarships, mobility and carer allowances,
and other government benefits. The sum of these income components is re-
duced by personal income tax payments made by household members during
the financial year.

3.2 Results

We use the HILDA data on household incomes to investigate the suitability
of the parametric models to describe income distributions and their changes
over time. Table 1 below shows the descriptive statistics of the distributions
of household disposable for the period 2001–2012. This was a period of
strong economic growth in which Australia outperformed most high-income
economies. There was a rapid growth in disposable incomes as reflected
by the large increase in the mean and median values of these two variables.
Importantly for our analysis, there are many families with zero income values
where a number of observations with zero disposable income was below 50

3For a detailed description of the HILDA sample see Wooden and Watson (2007).
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throughout the period considered. In this regard, by 2001 more than 40
individuals reported zero disposable incomes and this group accounted for
0.22 per cent of the whole sample. The proportion of observations with zero
market income steadily declined over the period 2001–2007 reflecting the
strong economic growth and the increase in market opportunities over that
period. The rate of zeros rose in 2008 and 2009 probably due to the increase
in unemployment in the aftermath of the Global Financial Crisis. Finally,
the proportion of zeros decreased again in the period 2011–2012. In addition
to this, histograms for the household disposable income variable for the years
2003, 2007, 2009 and 2012 are displayed in Figure 1. In all years there is
positive mass at zero. Furthermore, as it is typical with income distributions,
the empirical distributions are unimodal and positively skewed.

Table 1. Descriptive statistics of household disposable income data
in Australia, 2001–2012

Year Observations Mean Median Zeros % of zeros
2001 19,859 52,826 47,381 44 0.22
2002 18,269 54,193 48,271 29 0.16
2003 17,602 56,357 49,606 24 0.14
2004 17,160 58,162 51,995 26 0.15
2005 17,437 62,614 56,616 27 0.15
2006 17,407 67,872 60,065 15 0.09
2007 17,211 74,302 65,001 15 0.09
2008 17,077 78,137 69,891 24 0.14
2009 17,583 84,705 77,730 47 0.27
2010 17,821 85,828 75,751 33 0.19
2011 23,365 89,697 79,051 37 0.16
2012 23,154 92,971 82,992 20 0.09
Notes: Mean, and median values expressed in Australian dollars

Source: Authors’ calculations based on HILDA data

Our main goal is to assess the suitability of the EAT and the composite
EAT–Lognormal models to describe distributions of income. In addition, we
compare the results for the EAT and the EAT–Lognormal (EATLG) models
with those of the Gamma distribution, a model which has been shown to pro-
vide a good fit of household incomes (Drǎgulescu et al. 2001). The parameter
estimates of these models for the distribution of household disposable income
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in Australia for various years are reported in Table 2. The parameters were
estimated by the method of maximum likelihood (ML) by directly maximiz-
ing the likelihood surface, except for the composite EAT–Lognormal model
whose parameters were estimated numerically via a segment-wise maximiza-
tion by using the function “mle”/“mle2” in R. Note that only for the sake
of comparison and for the purpose of applying the method of maximum like-
lihood estimation to the whole sample when using the Gamma distribution,
the zeros in the sample have been replaced by ones. Also shown in the table
are the standard errors of the ML estimates derived by inverting the Fisher’s
information function.

Our results show that all models capture the large increase in the mean
and median incomes experienced in Australia over some of the years during
the period 2001–2012. In order to compare the parameter θ with the mean
incomes presented in Table 1, we have denoted T = 1/θ (e.g. the mean of the
exponential distribution) to express this parameter in units of Australian dol-
lars. Additionally the parametrization g(x) = (T αΓ(α))−1 xα−1 exp(−T/x)
with x, T, α > 0 has been chosen for the Gamma distribution. Thus, for
instance, the estimated value of the parameter T of the EAT model steadily
increased between 2003 and 2012 which is consistent with the increase in the
average income documented above. Similarly, we find that the estimate of
the parameter µ of the composite EAT–Lognormal increased over the period
under analysis reflecting the rise in the mean and median incomes of families
in Australia over the last decade. Additionally, the value of the parameter
α for the EAT distribution is greater than one, across the years considered,
indicating the fact that its density is unimodal what is consistent with the
histograms displayed in Figure 1. To illustrate the impact of excluding the
observations with zero incomes from the analysis, Table 3 reports the pa-
rameter estimates for the four models without taking into account the zeros.
The omission of zeros clearly influences the estimation results, especially in
the case of the Gamma model which appears to be more sensitive to the ex-
clusion of zeros than the other models. Thus, for both the Gamma and the
EAT models, the value of the parameter T̂ drops when zeros are excluded.
However, the fall is substantially larger for the Gamma model for which the
estimated coefficient declines by more than 1000 units, whereas the size of
the change for the EAT model is below 100 units in most years. In contrast,
the value of the parameter α̂ of the Gamma and the EAT models increases
when zeros are dropped. The impact is larger for the Gamma model as
the increase in the estimated coefficient is more than twice that of the EAT
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model. The composite EAT–Lognormal is more robust to the exclusion of
zeros as reflected by the small variation in the estimated coefficients relative
to the other models.

Table 2. Parameter estimates (above) and standard errors (below)
for the distribution of household disposable income in Australia

Gamma EAT EATLG

Year T̂ α̂ T̂ α̂ α̂ µ̂ σ̂
2003 22735 2.479 26577 5.599 27.45 10.75 0.604

252.6 0.025 200.6 0.000 1.116 0.007 0.006
2007 32765 2.268 37512 4.620 24.51 11.00 0.642

369.1 0.023 286.2 0.000 0.981 0.007 0.006
2009 39599 2.139 40271 5.680 19.15 11.23 0.559

443.6 0.021 304.5 0.000 0.604 0.006 0.006
2012 39985 2.325 45382 5.129 24.39 11.25 0.617

388.6 0.020 298.5 0.000 0.819 0.006 0.005

Source: Authors’ calculations based on HILDA data

Table 3. Parameter estimates (above) and standard errors (below) for the
distribution of household disposable income excluding zeros in Australia

Gamma EAT EATLG

Year T̂ α̂ T̂ α̂ α̂ µ̂ σ̂
2003 21436 2.633 26508 5.652 28.38 10.75 0.607

237.65 0.026 199.9 0.000 1.181 0.007 0.006
2007 31658 2.349 37451 4.646 25.07 11.00 0.643

356.8 0.024 285.6 0.000 1.021 0.007 0.006
2009 35683 2.380 40056 5.788 19.97 11.22 0.562

398.0 0.024 302.5 0.000 0.648 0.007 0.006
2012 38574 2.412 45308 5.158 24.79 11.25 0.619

374.3 0.021 297.9 0.000 0.840 0.006 0.005

Source: Authors’ calculations based on HILDA data

We analyse the validation of these three models using both theoreti-
cal and practical approaches. Theoretical validation is assessed by means
of Kullback–Leibler divergence, which is consistent with an information–
criterion based approach. Two criteria have been considered: the negative
log–likelihood (NLL) and the Hannan–Quinn information–criterion (HQIC)
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defined as twice the NLL plus twice (k+1) log(log(n)), where k is the num-
ber of estimated parameters and n refers to the sample size. Model selection
was also assessed from a practical perspective using the Kolmogorov–Smirnov
(KS) and the Crámer–von Mises (CvM) goodness–of–fit measures to quantify
the distance between the empirical distribution function (EDF) constructed
from the data and the ones generated from the fitted models. Let F̂ denote
the cumulative distribution function of the fitted model, the original data
by x1, ..., xN and the ordered data in increasing magnitude by x(1), ..., x(N).
Then the expressions of the KS and CvM statistics are given by:

• Kolmogorov–Smirnov (KS) test statistics: D = max(D+, D−), where

D+ = max
1≤j≤N

∣

∣

∣

∣

j

N
− F̂ (x(j))

∣

∣

∣

∣

, D− = max
1≤j≤N

∣

∣

∣

∣

F̂ (x(j))−
j − 1

N

∣

∣

∣

∣

.

• Crámer–von Mises (CvM) test statistics:

W 2 =
N
∑

j=1

[

F̂ (x(j))−
2j − 1

2N

]2

+
1

12N
.

Results on the goodness–of–fit of the three parametric models to the
distribution of disposable income in Australia with and without zeros are
presented in Tables 4 and 5, respectively. Note that for all measures a smaller
value indicates a better fit to the data. Further we use the KS and CvM
statistics to test the null hypothesis that the observed income data come
from the parametric models considered.

We find that the EAT model provides in general the best overall fit
of the three models when zeros are considered for the analysis, especially
for the years 2009 and 2012. In terms of the NLL, the EATLG model,
present a similar performance for the years 2003 and 2007. Interestingly,
both the composite and the EAT models significantly outperform the Gamma
distribution for all years considered. Thus, these two simple extensions of the
Exponential model provide a better fit to the empirical data while preserving
the capacity of the Exponential to capture the presence of zeros in the data,
since these models have a positive probability density at zero income. In
this sense the Exponential distribution has also been fitted to household
disposable income data for the year 2012, the estimate mean is T̂ = 92971
with NLL value of 288037.
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On the other hand, when the zeros are excluded from the analysis, we
find that the fit of the EAT distribution improves the Gamma for the years
2009 and 2012. The EAT model also significantly improves the goodness–
of–fit of the Gamma model, especially when this is measured with the CvM
statistic for the years considered. Our results suggest that there exists enough
statistical evidence to reject the null hypothesis that the data come from any
of the models considered4. However, it is relevant to mention that these tests
reject the Gamma distribution earlier than the EAT distribution for almost
all the years examined.

We also study the goodness–of–fit the three parametric models graphi-
cally in Figures 1–3. Figures 1 and 2 compare the estimated density and
survival functions for each model with the empirical functions derived from
the data disposable incomes for the years 2003, 2007, 2009, and 2012. Inspec-
tion of the empirical histograms and the density functions reveals that while
the probability of finding zeros in the data is clearly positive in all years,
the only models with positive density at zero are the EAT model and the
EAT–Lognormal models whereas the Gamma model has zero density at this
point. No significant differences were found regarding the survival functions.
Indeed, for all years, the survival functions of the three models cross mul-
tiple times along the income distribution. Figure 3 shows the log–log plots
for each of the models. In these graphs we have plotted the logarithm of the
incomes against the log of the ranked position in the sample. Income values
reported in the HILDA survey are top–censored which explains the shape
of the empirical function at the top end of the distribution. Inspection of
the plots reveals that, while all models provide similar fit to the data at the
bottom and middle parts of the distribution, the composite EAT–Lognormal
model clearly outperforms the other models when fitting the upper tail of the
distribution. For these log–log plots only sample values greater than one have
been considered. Further analysis using income data adjusted to take differ-
ences in household size into account using the modified OECD scales, shows
that the EAT–Lognormal model performs even better when top incomes are
smoothed taking into account differences in family size5.

4We do not report the p–values of the KS and CvM statistics which take value zero in
all the years considered. They were computed via Monte Carlo methods using a simulation
size of 10000 repetitions.

5These figures are not reported here for the sake of space but are available from the
authors upon request.
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Table 4. Model validation measures for models of household
disposable income in Australia

Year Measure Gamma EAT EATLG
2003 NLL 206929 206810 206810

HQIC 413872 413634 413640
KS 0.038 0.039 0.038
CvM 7.335 2.882 9.381

2007 NLL 207593 207544 207544
HQIC 415200 415102 415107
KS 5 0.039 0.037 0.041
CvM 8.050 3.880 10.166

2009 NLL 214705 213853 214350
HQIC 429424 427719 428719
KS 0.064 0.021 0.047
CvM 24.360 1.718 10.921

2012 NLL 284279 284014 284251
HQIC 568572 568041 568521
KS 0.035 0.033 0.041
CvM 10.728 3.410 12.277

Source: Authors’ calculations based on HILDA data
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Table 5. Model validation measures for models of household
disposable income excluding zeros in Australia

Year Measure Gamma EAT EATLG
2003 NLL 206308 206516 206484

HQIC 412625 413045 412987
KS 0.035 0.040 0.037
CvM 4.614 2.978 9.606

2007 NLL 207231 207358 207338
HQIC 414472 414730 414694
KS 0.038 0.038 0.042
CvM 6.460 3.938 10.342

2009 NLL 213583 213255 213705
HQIC 427175 426524 427429
KS 0.051 0.022 0.046
CvM 14.340 1.723 11.168

2012 NLL 283774 283759 283971
HQIC 567557 567532 567961
KS 0.033 0.034 0.042
CvM 8.055 3.481 12.481

Source: Authors’ calculations based on HILDA data

To further illustrate the value of the new parametric families for modelling
income variables with large number of zeros, we have fitted the Exponential
and EAT models to the distribution of household market income. House-
holds with no market income typically include families whose members are
permanently out of the labour force, like those in retirement or those with
disabilities, and also jobless families whose members of working age are out
the labour market due to unemployment. For these households public trans-
fer constitute the main income source as they tend to rely on publics transfers
such as the age or disability pensions or unemployment benefits. The propor-
tion of observations with zero market income is much higher than in the case
of household disposable income. Thus the proportion of zeros for the year
2012 is 6.93%. In the presence of such a large number of zeros, estimation of
the Gamma model using information from the whole sample is not feasible.

The estimate mean of the exponential distribution is T̂ = 51152.4 and
with NLL value of 273683 where as for the EAT distribution we have obtained
T̂ = 42889.1 and α̂ = 1.169 and NLL equals to 273455. Note that for the
latter model, α̂ has reduced its value considerably, as compare to household
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disposable income data, approximating the shape of the density curve to
the exponential one. Of course, other spliced models derived from the EAT
distribution that mimic some features of the data (e.g bimodality), would
certainly improve the fit to the data.

4 Conclusions and further research

This paper contributes to existing literature by proposing two simple ex-
tensions of the Exponential distribution to describe income distributions:
the two-parameter Exponential ArcTan (EAT) distribution and the compos-
ite EAT–Lognormal model. The new models preserve key properties of the
Exponential model including its capacity to model distributions with zero in-
comes. The existence of observations with zero incomes poses an important
challenge for the analyst as it precludes the possibility of fitting widely used
models such as the Lognormal, Gamma or the GB2 which do not include
the zero in their domains. When working with income variables with zeros,
many analysts opt for excluding the zeros from the analysis. The extensions
of the Exponential model proposed in this paper constitute a more sensible
approach as it allows to make the best use of the data using information on
zeros without increasing considerably the number of parameters.

The suitability of the new models was evaluated using income data for
Australia for the period from 2001 to 2012 which include an small number
of zeros. Our empirical results show that the EAT and composite EAT–
Lognormal provide in general a better fit to the data than the Exponential
and Gamma models. The use of parametric models with positive density
at zero is especially important when the number of zeros is large. A future
extension of this paper will consider the use of the EAT and other mixture
models to describe the distribution of the individual components of family
income such as market income, business income or investment income where
the proportion of zeros is particularly large due to the large number of families
that do not earn income from those sources.
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