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Abstract. Humans are responsible for most forest fires in Eu-

rope, but anthropogenic factors behind these events are still

poorly understood. We tried to identify the driving factors

of human-caused fire occurrence in Spain by applying two

different statistical approaches. Firstly, assuming stationary

processes for the whole country, we created models based

on multiple linear regression and binary logistic regression

to find factors associated with fire density and fire presence,

respectively. Secondly, we used geographically weighted re-

gression (GWR) to better understand and explore the local

and regional variations of those factors behind human-caused

fire occurrence.

The number of human-caused fires occurring within a 25-

yr period (1983–2007) was computed for each of the 7638

Spanish mainland municipalities, creating a binary variable

(fire/no fire) to develop logistic models, and a continuous

variable (fire density) to build standard linear regression

models. A total of 383 657 fires were registered in the study

dataset. The binary logistic model, which estimates the prob-

ability of having/not having a fire, successfully classified

76.4 % of the total observations, while the ordinary least

squares (OLS) regression model explained 53 % of the vari-

ation of the fire density patterns (adjusted R2
= 0.53). Both

approaches confirmed, in addition to forest and climatic vari-

ables, the importance of variables related with agrarian activ-

ities, land abandonment, rural population exodus and devel-

opmental processes as underlying factors of fire occurrence.

For the GWR approach, the explanatory power of the GW

linear model for fire density using an adaptive bandwidth

increased from 53 % to 67 %, while for the GW logistic

model the correctly classified observations improved only

slightly, from 76.4 % to 78.4 %, but significantly according

to the corrected Akaike Information Criterion (AICc), from

3451.19 to 3321.19. The results from GWR indicated a sig-

nificant spatial variation in the local parameter estimates for

all the variables and an important reduction of the autocor-

relation in the residuals of the GW linear model. Despite the

fitting improvement of local models, GW regression, more

than an alternative to “global” or traditional regression mod-

elling, seems to be a valuable complement to explore the non-

stationary relationships between the response variable and

the explanatory variables. The synergy of global and local

modelling provides insights into fire management and policy

and helps further our understanding of the fire problem over

large areas while at the same time recognizing its local char-

acter.

1 Introduction

Human factors are critical to explain fire occurrence world-

wide, but they are particularly relevant in European Mediter-

ranean countries with a long fire history related to tradi-

tional farming activities, as is the case in Spain. It is esti-

mated that more than 90 % of forest fires are caused by peo-

ple in European Mediterranean countries (Leone et al., 2009;

Vélez, 2009; FAO, 2007). Additionally, these areas have ex-

perienced important socioeconomic transformations over the

last few decades, including land abandonment and/or higher
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tourist and urban pressures on the forest areas, which could

imply higher ignition risk. Given the importance of the hu-

man risk, any improvement in the modelling and assessment

of factors that drive human-made ignitions is critical for fire

prevention, planning and management. Also, a better knowl-

edge of the spatial patterns of fire occurrence and their re-

lationships with underlying factors of human risk becomes

a necessity to locate and make prevention efforts more effi-

cient.

It is also necessary to further improve the modelling tech-

niques. In fire occurrence modelling, different statistical and

regression modelling techniques have been applied at sev-

eral temporal and spatial scales, in many cases assuming that

the model parameters are valid and homogeneous for the en-

tire study area from which the data were sampled or, alter-

natively, assuming that the model structure is spatially sta-

tionary, such as the examples in Syphard et al. (2008), Chu-

vieco et al. (2010), Vilar et al. (2010) and Kwak et al. (2012).

However, when large geographical study areas are involved,

it would be more reasonable to find varied rather than con-

stant relationships. For instance, Koutsias et al. (2005, 2010),

when modelling fire densities, observed that the explanatory

power of classical linear regression increased considerably

after assuming varying relationships instead of constant ones.

Their analysis was developed at the provincial level (NUTS-

3) across the European Mediterranean Basin countries (Por-

tugal, Spain, southern France, Italy and Greece) using geo-

graphically seighted regression (GWR), so initiating the use

of GWR in fire modelling studies.

Although interest in accounting for regional variations in

wildfire occurrence factors has been shown recently in some

studies (Moreira et al., 2009; Carmo et al., 2011; Gonzalez-

Olabarria et al., 2011; Padilla and Vega-Garcı́a, 2011; Nunes,

2012), except for Koutsias et al. (2005, 2010), this has only

begun to be addressed very recently by using local geograph-

ically weighted regression (Tulbure et al. 2011; Poudyal et

al., 2012; Avila-Flores et al., 2010; Sá et al., 2011; Rodrigues

and De la Riva, 2012). In our study, similar to those of Kout-

sias et al. (2010) and Sá et al. (2011), GWR is considered

as a complement to the “global” regression modelling ap-

proach, with which it is compared in order to better un-

derstand particular processes at the regional scale, but at

the same time recognizing its own local characteristics and

patterns (Fotheringham et al., 1996, 1997, 2002). The term

“global” is used here to describe a model that refers to a ho-

mogeneous process in which the relationships being mod-

elled are the same everywhere within the study area.

2 Objectives

The work presented here is an extension of previous research

(Martı́nez et al., 2009) that showed how the rate of human-

caused fires in Spain can be predicted and explained from

socioeconomic and geographic variables, assuming spatially

stationary processes. The overall objective of this new study

is to check, in a quantitative way, if these stationary mod-

els are adequate to properly explain and understand long-

term fire occurrence patterns in a large study area such as the

Spanish peninsular territory. In order to achieve this overall

objective, three improvements have been implemented over

the previous work.

The first concerns the predicted variable. Instead of mod-

elling only the high versus low occurrence, in this paper we

have addressed two aspects of fire occurrence: (i) fire pres-

ence/absence and (ii) fire density, using a longer historical

time period (25 yr versus 13) for both. For these two aspects

we built two predictive “global” models at the national scale

using two “classical” regression approaches: OLS linear re-

gression to explain long-term fire density patterns and, com-

plementarily, a binary logistic model to define the existing

underlying factors behind fire presence and to better under-

stand why in some of the municipalities no fires have been

observed during the studied period. The terms “ordinary” and

“classical” are used here to represent the default regression

model in many statistical software packages, in contrast to

other specific models like GWR.

The second innovative aspect of this work is the analysis of

the spatial variations within the fire occurrence models to ex-

plore possible local characteristics and regional patterns. For

this we used GWR, which assumes non-stationary relation-

ships between the explanatory variables and fire occurrence.

Given the large territory of Spain with important climatic and

socioeconomic differences – for example between the north-

ern and the southern regions, the Atlantic and Mediterranean

areas, or between the mountains, the large plains and the river

depressions – we hypothesize that some explicative factors

should show region-specific trends, deviating from global or

national patterns. In addition, we assumed that a unique sta-

tionary model for Spain would be “notably influenced by the

high fire occurrence of the Galicia region (northwest of the

country). This area contains 11 % (850) of all municipalities

in Spain, but 70 % (152 891) of the forest fires, and thus cre-

ates a spatial imbalance in the global model” (Martı́nez et al.,

2009, p. 1251). These obvious premises have scarcely been

tested in Spain using quantitative models. Therefore, to ex-

plore the spatial variability, we focus on the assessment (i)

of variables presenting contradictory signs to the global co-

efficients, (ii) of areas where we observe unusually or unex-

pectedly high or low local coefficients, and (iii) of variables

presenting a positive or negative influence in the model; fi-

nally, (iv) we try to deduce, if possible, the cause of those

spatial patterns.

The third novelty of this paper with respect to our previous

study (Martı́nez et al., 2009) was the consideration of miss-

ing explanatory environmental variables regarding climate,

vegetation and topography. These structural environmental

variables are essential to enable fire ignition and they are

the basis on which the remaining socioeconomic, historical,

land use and landscape variables interact. Besides, missing
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response variables could be the cause of the unexplained

spatial variations in the model parameters (Fotheringham et

al., 2002; Koutsias et al., 2012). For this reason we have

specifically tried to consider all key explanatory factors, in-

cluding the environmental ones.

The starting point of creating fire occurrence models is to

identify the most critical factors and then define and gather

datasets to generate quantitative models. We identified fac-

tors based on previous literature reviews about fire causes

and fire modelling (Leone et al., 2003, 2009; Martı́nez et al.,

2004, 2009; Vélez, 2009), where the theoretical or expected

relationships between fires and each factor/variable in Spain

and Mediterranean countries were explained. Then, each of

those explanatory factors was measured as a numeric indica-

tor (direct or surrogate) from available datasets.

However, model building in this study is not fully “concep-

tual” because the final variable selection is obtained by semi-

automatic statistical techniques. Besides, this paper does not

intend to build a “mechanistic” or “cause–effect” model that

explains human fire occurrence in the different environments

of Spain. For that objective it would be better to use other

approaches, for example, such as defining different environ-

mental regions or study areas inside Spain and building spe-

cific models for each region, and subsequently comparing

which are the most influential variables for each. Nor do we

intend to analyze the statistical and spatial interactions be-

tween explanatory variables within the global models.

3 Materials and methods

3.1 Study area and fire database

As the dependent variable, the numbers of human-caused

fires occurring within a 25 yr period (1983–2007) were com-

puted for each of the 7638 municipalities of the Spanish

peninsula (487 000 km2) analyzed. This is another improve-

ment over the previous study of Martı́nez et al. (2009) in

which a 13-yr series from 1987 to 2000 was used. These data

were obtained from the Spanish Forest Fire Report Database,

one of the best and longest fire statistics in Europe (Leone et

al., 2009). A total of 383 657 fire events has been gathered

and considered in the database, regardless of their size. A bi-

nary variable (fire/no fire) for each municipality was derived

to develop logistic models, and a continuous variable (fire

density or the total number of fires in the period divided by

the area of each municipality in km2) was estimated to build

linear regression models, in this case selecting only the 6993

municipalities in which one or more fires were registered dur-

ing the study period. Log transformation was applied to con-

vert the original fire density values (Fig. 1c) to approximate

a normal distribution (Fig. 1d), since the original count data

would be more appropriately modelled with Poisson or Neg-

ative Binomial models depending on their variance to mean

ratio (Cardille et al., 2001). The spatial distribution of both

dependent variables is shown in Fig. 1a and b, revealing crit-

ical regions for fire occurrence, especially in the NW of the

country, and also along the Mediterranean coast and in some

mountain ranges in the centre.

In the previous study the dependent variable was defined

as the cumulative number of fires in the studied period di-

vided by the forest area of each municipality. Instead, the

flammable land cover (both vegetation and crops) are here

considered as explanatory variables in order to analyze their

influence and weight inside the models, and not as part of the

dependent variable.

3.2 Independent variables

The independent variables used in the analysis were com-

posed initially by 29 socioeconomic and demographic in-

dicators together with agricultural and land cover statis-

tics compiled in Martı́nez et al. (2009). The identification

of these variables was based on experts’ interviews, anal-

yses of fire reports and causality statistics, and an exten-

sive literature review. Some of the factors could not be es-

timated directly or from surrogate variables, while some oth-

ers were not available for all the regions. Table 1 in Martı́nez

et al. (2009) lists these variables along with their theoreti-

cal relationships with fire ignition factors and the literature

source, when available. Additionally, for the present study

6 new environmental variables were added referring to to-

pographic characteristics (mean altitude and slope), climatic

indicators (summer temperature and mean annual precipita-

tion obtained from Ninyerola et al. (2005), using the avail-

able station data set with more than 15 and/or 20 yr), and

forest vegetation statistics (total wildland area and the wild-

land area without tree cover, both obtained from the Forest

Map of Spain-MFE50 developed between 1997–2006). Total

wildland area included tree-covered areas (standing forest),

shrublands and grasslands and theoretically this variable is

supposed to be more related to fire presence (binary model).

Wildlands without tree cover only comprise shrublands and

grasslands. We hypothesize that these types of areas are more

strongly correlated with the fire density (linear model). All

35 variables were compiled and calculated at the municipal-

ity level for the peninsular territory of Spain, with the excep-

tion of the region of Navarre, and all of them selected after

checking for multi-collinearity as described also in Martı́nez

et al. (2009, p. 1244).

3.3 Global models using classical regression

Both predictive models, based on OLS and binary logistic

regression, were calculated in SPSS using automatic step-

wise forward procedures for variable selection in combi-

nation with manual modification (i.e. selection using the

“introduce method”). All cases were checked for potential

collinearity problems of the selected variables by calculating

the correlation matrix and applying other common statistical
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Fig. 1. Map and histograms of dependent variables. Spatial distribution of the fire density in the Spanish municipalities with more than 1 event

(A). The log transformation was applied to convert the original values of the dependent variable (C) to an approximate normal distribution

(D). The map (B) shows the spatial distribution of the municipalities without fires used for the binary logistic modelling.

Table 1. Model parameters and sensitivity analysis for ordinary logistic model: ranking of influence of the input variables (the lower the

ranks, the more important).

VARIABLE DESCRIPTION

MODEL PARAMETERS RANKING CRITERIA

Coef. B Std. Coef. B Wald Change in Exp (B) (i) (ii) (iii) (iv) (v) Score

−2 LL

FOR P % Forest and wildland surface 0.034 0.979 160.7 200.84 1.034 1 1 1 1 3 7

DIS 50 91 Rural exodus: population decrease 0.021 0.588 89.8 98.27 1.021 3 2 2 2 4 13

between 1950 and 1991

ICFSUP P Forest/cultivated land interface area 0.099 0.506 55.0 59.71 1.104 4 4 3 3 2 16

NOGES PF Forest area with less management 0.011 0.327 58.1 55.47 1.011 6 3 4 4 7 24

and planning over time

P A Mean annual precipitation 0.003 0.687 40.6 48.09 1.003 5 6 7 6 1 25

T SU Mean summer temperature 0.158 0.386 37.4 38.58 1.171 2 5 6 5 8 26

DIS SAU Decrease in agricultural area 0.012 0.247 23.8 22.09 1.012 7 7 5 7 6 32

between 1989 and 1999

CL21 PM CORINE: agriculture but with 0.0149 0.163 7.4 8.59 1.015 8 9 9 9 5 40

significant areas of natural vegetation

POT DEN Population potential −0.0002 −0.155 17.7 18.54 1.000 9 8 8 8 9 42

Notes: intersect (constant) = −3.887. Ranking criteria: (i) standardized coefficients; (ii) Wald statistic; (iii) step at which the variable was input into the model in a forward

stepwise automatic procedure; (iv) change in log of likelihood (−2 LL) when the variable was removed from the model; (v) odds ratio or the exponential of the logit coefficient B

(Exp (B)).
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tests such as tolerance coefficient, variance inflation factor

(VIF) (Krebs et al., 2012) and eigenvalue analysis (SSTARS,

2012). The regression models were built using the standard-

ized Z-scores for the dependent and independent variables.

Additionally, the normal distribution of residuals and the lack

of systematic patterns were checked for OLS. Clustering of

over and/or under predictions is, for example, evidence that

at least one key explanatory variable is missing. For these

reasons we analyzed the histogram, the scatterplot, the nor-

mal Q − Q plot and the residual maps.

To evaluate the influence of individual variables in the

models, several criteria were computed and analyzed glob-

ally: (i) a simple calculation of the standardized coefficients

according to the method of Menard (2010, p. 89); (ii) the t-

statistic and its level of significance, although in the case of

logistic regression we used the Wald statistic; (iii) the step

at which the variable was input into the model; and (iv) the

change in the R2 when the variable was removed from the

model (the greater the change, the more important the vari-

able). In the case of logistic regression, we used the change

in logarithm of likelihood (−2 LL); and (v) the odds ratio or

the exponential of the logit coefficient B (Exp (B)) for the

logistic model case.

3.4 Local models using GWR

To overcome the assumption of stationarity we applied the

GWR approach using the independent variables of global re-

gression, both for the linear and the logistic model. All anal-

yses were implemented within GWR 3.0.1 software for Win-

dows (Fotheringham et al., 2002; Charlton et al., 2003) us-

ing both the adaptive (nearest neighbours) and the fixed (dis-

tance) kernel types, with the minimization of the corrected

Akaike Information Criterion (AICc) being the criterion to

determine the optimal bandwidth size of the kernel func-

tions. This parameter (AICc) was also used to compare the

global OLS or logistic model with the local GWR model. As

a complement, the ANOVA tests the null hypothesis that the

GWR model, in the linear approach, represents no improve-

ment over the global OLS model.

The main output from GWR for each observation point is

a set of parameter estimates (local coefficients for each in-

dependent variable) and associated diagnostics (standard er-

rors, influence index, Cook’s D statistics, local R2 statistic,

and local standard deviation) that can be visualized within

a GIS environment (Charlton and Fotheringham, 2009). De-

tailed analysis of these maps allowed us to better understand

and explore the spatial variability of the explanatory factors,

as local R2 values show the performance of the GWR model

in different areas. Additionally, GWR software includes two

tests to determine whether the local parameter estimates are

significantly stationary or not. Firstly, the variables might ex-

hibit non-stationarity if the inter-quartile range (25 % and

75 % quartiles) of the GWR parameters is greater than ±1

standard deviation (SD) of the equivalent global OLS param-

eters (Fotheringham et al., 2002; Wang et al., 2005). Sec-

ondly, significance of the spatial variability in the local pa-

rameter estimates can be examined by a Monte Carlo test, but

only in the case of linear GWR, since this test is not available

for logistic GWR.

Similar to OLS regression, some spatial autocorrelation

statistics for the residuals of the models have been esti-

mated using Moran’s I index of spatial autocorrelation. This

made it possible to explore their spatial structure and identify

whether GWR captured the spatial pattern of the residuals. If

the residuals were autocorrelated then the results of the OLS

regression analysis would violate one of the assumptions of

OLS regression and the regression analysis would be unre-

liable. In the case of logistic regression, we computed the

Average Nearest Neighbour Distance Index (ANND value)

included in ArcGIS Desktop 10 in the Spatial Statistics tool-

box. With an index < 1 the pattern would tend towards clus-

tering, while if > 1 the trend is toward dispersion or compe-

tition. The interval range is from 0 to 2.14. (ArcGIS Desktop

10 Help).

4 Results

4.1 Classical regression models

After collinearity analysis we decided not to introduce the

variables “slope” and “population occupied in agriculture”

into the regression procedure. Instead, we introduced the

variable “agricultural areas but with significant areas of nat-

ural vegetation”. The stepwise procedure for the binary lo-

gistic regression selected 9 significant variables for the fi-

nal model, which successfully classified 76.4 % of the to-

tal observations using the estimated optimal cut-off point of

0.91, which corresponds to the intersection of the two lines

in which sensitivity and specificity are equal (Vasconcelos et

al., 2001). Among the nine explanatory variables identified

as critical by the analysis, the most important variables were

the forest surface, population decrease and forest-cultivated

land interface. Mean annual precipitation and mean summer

temperature were also relevant (Table 1). The spatial distri-

bution of the residuals (over and under estimations) of the

logistic model (Fig. 2) shows that the spatial pattern of the

errors is not very clear because they are dispersed through

different regions of the country. However, some areas were

error-free, particulary in the north, northwest and some parts

of the centre and west. Most of the errors are underestima-

tions (Table 2) because it was more probable that at least one

fire had occurred during the 25-yr period than for no fires at

all. The Average Nearest Neighbour Distance Index (ANND)

showed the residuals tended towards clustering (0.77) and the

Z-score of −18.6 indicates there is less than a 1 % likelihood

that this clustered pattern could be the result of a random

process.

In the case of OLS regression, the model selected 23 vari-

ables as significant using an automatic stepwise procedure.
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Fig. 2. Municipalities where prediction and observation data did not agree; either fire is predicted when it is not observed (overestimated) or

fire is not predicted when it is observed (underestimated). Ordinary logistic regression on the right and GW logistic regression on the left.

Table 2. Residual spatial performance of logistic models using the Average Nearest Neighbour Distance Analysis.

Ordinary Binary logistic model GW Binary Logistic model

Total Over- Under- Total Over- Under-

errors estimated estimated errors estimated estimated

Number of cases 1797 158 1639 1513 170 1343

Nearest neighbour ratio 0.77 0.62 0.74 0.70 0.69 0.66

z-score −18.60 −9.08 −20.20 −22.15 −7.62 −23.89

p-value 0.000 0.000 0.000 0.000 0.000 0.000

To simplify the model we selected the first nine most ex-

planatory, plus three others in positions 11, 15 and 18 (de-

crease in number of owners of agrarian holdings, % owners

of agrarian holdings > 55 yr, and density of agricultural ma-

chinery, respectively) that, in our opinion, included relevant

aspects of agrarian structure, as reported by different regional

studies. Consequently, the final model consisting of 12 vari-

ables (Table 3) explained 53 % of the variation of the depen-

dent variable (adjusted R2
= 0.53). Among these variables,

mean annual precipitation, density of agricultural properties,

mean altitude, population decrease and non tree-covered for-

est surfaces were the most explanatory. For the residuals of

this OLS regression model, the Kolmogorov-Smirnov test

value was low (0.028) but still significant (p = 0.000), show-

ing that the residuals fit the normal curve poorly. However,

as can be observed in the histogram (Fig. 3b), the residuals

with a mean value close to 0 and a SD of 0.99 approximate

acceptably well to the shape of the normal curve. The Nor-

mal Q − Q plot (Fig. 3c) represents the expected values in

a straight line when the data are normally distributed. In this

case, the residuals fit properly except for low observed val-

ues (low fire densities). A clustered pattern can be observed

in the distribution map of the residuals (Fig. 3d) in parts of

the country, although there is no clear systematic pattern. The

over-predicted cases (negative values) were more concen-

trated in some inland areas of the eastern part of the Iberian

Peninsula. Under-prediction was more dispersed with some

areas especially clustered in the NW.

Both models, logistic and OLS, are complex with a high

number of variables, and for some variables the effect of in-

troducing them in the model (measure by the change in R2 or

the change of −2 LL) is very weak, as can be seen in Tables 1

and 3, although still significant. In any case, the high number

of variables in the model was considered in agreement with

the objective of identifying the factors that are more signif-

icant to explain fire risk, rather than obtaining parsimonious

models with very few variables.

4.2 Geographically weighted regression models

The GWR results showed that local models based on GWR

generally fit better than global models based on classical

OLS or logistic regression, while the number of effective pa-

rameters increased considerably from 10 to 29.7 in logistic,

and from 13 to 63.03 or 158.34 for linear models. Based on

the minimization of the corrected Akaike Information Cri-

terion (AICc), the best fixed bandwidth size in the case of

logistic GWR was 219 km (AICc = 3321.19). For the lin-

ear GWR, the best bandwidth size for the fixed mode was

a distance of 154 km (AICc = 5898.6), while for the adaptive

mode it was 5724 nearest neighbours (AICc = 6395.5). Mod-

els like this, with a high number of neighbours, tend to have

a poor fit and present an oversmoothed pattern, as could be

Nat. Hazards Earth Syst. Sci., 13, 311–327, 2013 www.nat-hazards-earth-syst-sci.net/13/311/2013/
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Fig. 3. Residual analysis of the OLS regression model: scatterplots between observed and predicted observations (A), histogram data plots

of the standardized residuals (B), normal Q − Q plot of the standardized residuals (C) and map of the standardized residuals (D).

Table 3. Model parameters and sensitivity analysis for ordinary linear regression model (OLS): ranking of influence of the input variables

(the lower the ranks, the more important).

VARIABLE DESCRIPTION
MODEL PARAMETERS RANKING CRITERIA

Coef. B Std Coef. t Sig. R2 (i) (ii) (iii) (iv) Score

Change

P A Mean annual precipitation 0.0013 0.331 33.5 0.000 0.304 1 1 1 1 4

PAR SEXP Agricultural land fragmentation: 0.0020 0.185 −16.2 0.000 0.092 2 3 2 2 9

density of agricultural plots

ALT MEAN Mean altitude of municipality −0.0005 −0.178 17.8 0.000 0.046 3 2 3 3 11

DIS 50 91 Rural exodus: population decrease 0.0057 0.161 11.5 0.000 0.035 4 6 4 4 18

between 1950 and 1991

DESAR P % Wildlands without tree cover 0.0077 0.147 15.6 0.000 0.025 5 4 5 5 19

(mainly shrub and grasslands)

FRAG7 × 7 Landscape fragmentation index 0.1810 0.111 15.4 0.000 0.012 6 5 6 6 23

using a 7 × 7 kernel

ENTSIN M Density of human settlements 0.0024 0.081 7.8 0.000 0.008 7 7 7 7 28

ROAD DEN Density of roads 0.0003 0.074 7.4 0.000 0.005 8 8 8 8 32

IUF DEN Urban/forest interface density 0.0005 0.059 6.2 0.000 0.003 9 10 9 9 37

DIS TIT Decrease in number of owners −0.0022 −0.056 −6.2 0.000 0.002 10 9 10 10 39

of agrarian holdings 89–99

MAQUIN D Density of agricultural machinery 0.0088 0.034 4.2 0.00003 0.001 12 11 11 11 45

TIT 55 P Rural ageing: % owners of agrarian 0.0026 0.035 3.1 0.00195 0.001 11 12 12 12 47

holdings > 55 yr

Note: intersect (constant) = −1.2073. Ranking criteria: (i) standardized coefficients; (ii) t statistic; (iii) step at which the variable was input into the model in a forward

stepwise automatic procedure; (iv) change in the R2 when the variable was removed from the model.

www.nat-hazards-earth-syst-sci.net/13/311/2013/ Nat. Hazards Earth Syst. Sci., 13, 311–327, 2013



318 J. Martı́nez-Fernández et al.: Modelling long-term fire occurrence factors in Spain

Fig. 4. Model fitting maps: local squared R for GW lineal (left) and GW logistic (right).

observed in the resulting maps. For that reason, we finally

selected a kernel size of 1300 nearest neighbours, which

showed a better fit (AICc = 5063.72) when trying to better

capture the regional variations within the country, avoiding

both over- and under- smoothing. In relation to the adap-

tive kernel, the manually chosen value of 1300 nearest neigh-

bours approximately represents the number of municipalities

of two contiguous average regions in Spain. Regarding the

fixed kernel of 154 km defined automatically by statistical

criteria for GWR software, this is also considered appropri-

ate to capture regional variations, since the mean area of the

Spanish regions (autonomous communities) is 34 524 km2

(e.g. Catalonia or Extremadura), which corresponds to a cir-

cle of about 145 to 160 km radius.

Comparing the fitting of the OLS and GWR models, the

GWR logistic model, using a fixed bandwidth of 219 km,

correctly classified 78.4 % of the observations compared to

76.4 % of the ordinary logistic regression. This improvement

is not as high as expected, but it is significant as the deviance

(−2 LL) improved from 3431.2 to 3261.4 and the AICc from

3451.2 to 3321.19. The optimal cut-off point for the classi-

fication of this GW logistic model according to the graph

of sensitivity versus specificity is 0.90. For the linear ap-

proach, the explanatory power of the OLS model increased

from 53 % to 67 % in the case of the adaptive mode, using a

bandwidth of 1300 nearest neighbours, and 62 % in the case

of the fixed mode using a bandwidth of 154 km. The adaptive

mode gave slightly better results, as indicated by the coeffi-

cient of determination with a 14 % improvement, while in the

case of logistic GWR it was only 2 %. The AICc enhanced

considerably using GWR (from 7440.3 to 5063.7). The F-

value of the ANOVA test suggests that the GWR model is a

significant improvement on the global OLS model in Spain,

at a confidence level less than 0.01 (99 %), for both fixed and

adaptive models.

Figure 4 shows local R2 values for GW linear and GW

logistic models indicating the areas where the predictions of

the models are better. In both cases, best fits were found in the

northwest and some eastern areas of the Mediterranean coast

where there is usually high fire occurrence (check Fig. 1a).

However, these maps are too oversmoothed in capturing lo-

cal variations, especially in the logistic GWR model. The

trend of the residuals of the logistic model towards cluster-

ing did not significantly decrease from the ordinary model to

the GWR model according to the Average Nearest Neighbour

Distance Analysis (Table 2), and there was only a minor im-

provement, especially in the overestimation errors. Although

in the GW logistic model there were fewer errors, the spatial

distribution was very similar to the ordinary logistic model

(Fig. 2). Also, analysis of the linear GW regression model

residuals revealed similar characteristics to the global OLS

model, with a mean value of 0.01 and a SD of 0.51, accept-

ably following the shape of the normal curve (Fig. 5b). The

Kolmogorov-Smirnov test value was low (0.03) but still sig-

nificant (p = 0.000), showing that the normal fit was poor.

The residuals fitted properly except for low fire density val-

ues according to the normal Q − Q plot (Fig. 5c). However,

the scatterplot was more compact along the tendency line and

the standardized residual map (Fig. 5d) showed a more dis-

persed distribution through the study area in comparison to

the OLS model (Fig. 3d), without any evident systematic pat-

tern. These analyses indicated a slightly better performance

of the GWR model.

4.3 Regional and local variations

The results of the Monte Carlo test on the local estimates

pointed out a significant spatial variation (at 0.1 % signifi-

cance level) in the local parameter estimates for all the vari-

ables of both linear GWR models (fixed and adaptive). Be-

sides, all variables in the linear and logistic models showed

evidence of spatial variability (non-stationarity) across the

study area since the inter-quartile range (25 % and 75 % quar-

tiles) of the GWR parameters was greater than ± 1 SD of the

equivalent global OLS parameters.

Local coefficient estimates for each explanatory variable

are presented in Fig. 6 for logistic GWR, and in Fig. 7 for

adaptive linear GWR. Negative coefficients are represented

by cold colours (green to blue) and positive coefficients with
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Fig. 5. Residual analysis of the GW linear regression model: scatterplots between observed and predicted observations (A), histogram data

plots of the standardized residuals (B), normal Q − Q plot of the standardized residuals (C), and map of the standardized residuals (D).

warm colours (orange to red). The objective of these maps is

to explore the spatial variability and to understand better lo-

cal and regional variations of the fire occurrence causal fac-

tors in Spain, developed in the discussion section.

4.4 Spatial autocorrelation of residuals

Spatial correlograms of the residuals of the linear models

(Fig. 8) show that there is significant spatial autocorrelation

of the residuals of the OLS regression model up to a distance

of 600 km, while for the residuals of the GWR model the au-

tocorrelation has been reduced significantly but still exists in

relative short lag distances, up to approximately 110 km (Ta-

ble 4). Less structured residuals have been observed in other

studies dealing with GWR (Koutsias et al., 2010), indicating

that although the method does not directly address spatial au-

tocorrelation issues (Jetz et al., 2005), it provides a solution

to the problem of spatially autocorrelated errors (Propastin

and Kappas, 2008).

5 Discussion

In both regression modelling approaches there were impor-

tant variables related with land and population abandonment,

agrarian activities, or development processes, in addition to

forest properties and climatic variables. However, only two

variables, precipitation and population decrease, were com-

mon between the two approaches, indicating different under-

lying mechanisms for fire presence and for fire density at

the community level. In this discussion we analyze the most

important explanatory variables for each model and explore

their spatial variations according to GWR local parameters

(Figs. 6 and 7). Some variables presented high variability in

explaining the dependent variable, occasionally even being

contradictory to the global coefficients.

5.1 Driving factors of long-term fire presence

The percentage of wildland area was the most important fac-

tor to discriminate non fire-prone from fire-prone municipal-

ities (defined as those in which at least one fire was observed

during the 25-yr period studied). This is reasonable since the

probability of fire ignition and spread was very low in places

with a very low percentage of forest and natural cover, as

fuels are very scarce or non-existing. The influence of this

variable was higher in the south of the country, as observed in

Fig. 6. Another important variable was forest–cultivated land

interface (ICFSUP P), which is related to agricultural activ-

ities where fire is frequently used in arable and crop lands,

www.nat-hazards-earth-syst-sci.net/13/311/2013/ Nat. Hazards Earth Syst. Sci., 13, 311–327, 2013



320 J. Martı́nez-Fernández et al.: Modelling long-term fire occurrence factors in Spain

Fig. 6. Local coefficients for GW binary logistic model using a fixed bandwidth of 219 km. Negative coefficients are mapped with cold

colours (green) and positive with warm colours (orange to red). Variable names and their descriptions are in Table 1.

Table 4. Moran’s Index Summary for different band distances on the Linear GWR residuals.

Threshold Distance 90 km 100 km 105 km 110 km 120 km 154 km

Moran’s Index 0.007316 0.003598 0.001945 0.00088 −0.00041 −0.00021

Expected Index −0.000143 −0.000143 −0.000143 −0.00014 −0.000143 −0.00014

z-score 8.939 4.95545 2.898472 1.48896 −0.421 −0.125

p-value 0.000 0.000001 0.00375 0.13650 0.674 0.900

residual pattern interpretation clustered clustered clustered random random random

very close to or intermixed with forest areas. This variable

was less relevant in the Iberian Mountain System and Ebro

River Depression. The importance of the forest–agriculture

interface (FAI) in forest fires in Spain was observed in pre-

vious studies (Martı́nez et al., 2009, Ortega et al., 2012;

Gonzalez-Olabarrı́a et al., 2012), which found that the land-

scapes most vulnerable to fire were those with fine-grained

forest–agriculture mixtures or mosaics, where the human-

caused fires were more intense than homogeneous and non-

fragmented landscapes.

Variables DIS 50 91 (population decrease between 1950

and 1991) and DIS SAU (decrease in agricultural area be-

tween 1989 and 1999) were positively correlated with the

occurrence of at least one fire event. Both variables can be

associated with abandonment of land and traditional activi-

ties and the movement of population from rural and moun-

tainous areas to lowlands and urban areas. A consequence of
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Fig. 7. Local coefficients for adaptive GWR linear model using a bandwidth of 1300 nearest neighbours. Negative coefficients are mapped

with cold colours (green to blue) and positive with warm colours (orange to red). Variable names and their descriptions are in Table 3.

land abandonment is fuel build-up. Instead, according to the

positive correlations observed for these variables, in munic-

ipalities with population reduction and land abandonment,

fires were expected in cases where the decrease is lower.

Under this demographic and social context, areas maintain-

ing a relatively higher agricultural population are more fire

prone. This is an example of the contradictory types of rela-

tionships between the explanatory and response variables in

wildfire occurrence modelling. According to the local coef-

ficient maps in the NW, the occurrence of at least one fire is

more closely associated to the population presence than the

rural exodus or land abandonment (DIS 50 91), while in the

south, the presence of agricultural land (DIS SAU) is more

influential (Fig. 6).
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Fig. 8. Spatial correlograms of the residuals of the OLS linear regression (left) and GWR regression modelling (right).

Population and agricultural area decrease are also closely

related with the population potential (POT DEN), a similar

concept of population density or human presence, which is

further associated with the probability of fire ignition and

area burned. This has a positive influence in many studies

(Cardille et al., 2001; Maingi and Henry, 2007; Romero-

Calcerrada, 2008; Catry et al., 2009; Sebastian-Lopez et al.,

2008; Martı́nez et al., 2009; Marques et al., 2011; Nunes,

2012) or a negative relationship for some areas in other stud-

ies (Narayanaraj and Wimberly, 2012; Sá et al., 2011). Addi-

tionally, the previously mentioned variables were also related

with the CORINE land use class “agriculture but with signif-

icant areas of natural vegetation” (CL 21 PM), showing that

fire occurrence was more likely in municipalities where agri-

cultural and forest areas are intermixed, similar to what has

been reported by Ortega et al. (2012). Recently, when try-

ing to explain the extreme 2007 fires in the Greek Pelopon-

nese, Koutsias et al. (2012) observed that the CORINE land

cover category “agricultural land, highly interspersed with

significant areas of natural vegetation” was the most affected

by fire, reflecting the encroachment of natural vegetation in

abandoned fields and also recent patterns of evolution in the

wildland–rural interface where agricultural land is increas-

ingly intermixed with natural vegetation.

Together with land abandonment and population decrease,

the economic value of lands and forests was identified as a

factor of human-caused fires due to a decreasing involve-

ment in conservation and land management by the remain-

ing rural population. In this sense, the NOGES PF variable

in the model was positively correlated with fire occurrence.

This variable measures the percentage of forest surface with

less management, control and planning over time, which in

Spain is the private forest land, land belonging to local au-

thorities with free use, consortiums and neighbouring forests.

All these kinds of properties have a generally worse conser-

vation and protection status than national, regional or public

forest. Local coefficients for this variable were positive in

the Mediterranean coast and negative in the NW. Padilla and

Vega-Garcia (2011) found that several variables related to

forest ownership (private, public and communal areas) were

significant for the northern ecoregions of Spain.

Finally, climatic variables were also found to be relevant

factors to explain fire occurrence. Mean summer tempera-

ture and mean annual precipitation are important factors, es-

pecially in the warmer areas of the E and SE. Many studies

(Shyphard et al., 2008; Drever et al., 2008; Vilar et al., 2010;

Padilla and Vega-Garcı́a et al., 2011; Oliveira et al., 2012,

Sá et al., 2011; Narayarnaraj and Wimberly, 2012; Nunes,

2012) selected several climatic variables as very significant

in their fire models – some related to precipitation, such as

fire-season and off-season precipitation, precipitation sea-

sonality, soil water storage and soil moisture anomaly – and

others related to temperature, especially the maximum tem-

perature in the driest season.

5.2 Driving factors of long-term fire density

Summer temperature was not a significant factor to explain

fire density in linear regression, unlike in the logistic model

(fire/no fire incidence). However, the mean annual precipita-

tion was the most important factor to explain forest fire den-

sity (Table 3). Local coefficients for this variable were posi-

tive across almost the entire country, especially in the SE and

some parts of the inland west, which may be related to the

impact of rainfall on fuel availability, particularly in the dry

SE regions of Spain. The exception was observed in the NE

and central Pyrenees (negative local coefficients) where rain-

fall occurs also in the summer and therefore the fire season

tends to be shorter, although this also happens in other parts

of the country where positive coefficients are found. Oliveira

et al. (2012) pointed out that the most important variables re-

lated with fire density distribution in the EUMed region were

off-season precipitation (positive influence related to vegeta-

tion growth and fuel accumulation) and fire season precipi-

tation, with a negative relationship limiting fire ignition and

spread. Sá et al. (2011) indicate that in the drier areas of sub-

Saharan Africa there is a positive relationship between fire

incidence and soil water, which is important for vegetation

growth.

The density of agricultural properties (PAR SEXP)

was positively related to fire occurrence, suggesting that

highly partitioned agricultural properties increased the
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human-caused ignition risk. In combination with the vari-

able “density of agricultural machinery” (MAQUIN D), this

indicates that, the higher the number of properties and ma-

chines, the more likely conflicts and negligence become. Fire

is one of the preferred tools to eliminate stubble, weeds,

field margins, hedges and shrubs, and to reclaim abandoned

lands (Leone et al., 2003), especially in areas where agricul-

tural parcel density is very high and irregularly distributed

in space. In Spain, more than 20 % of the fires that occurred

within the 25-yr period (1980–2004) were caused by inten-

tional or negligent agricultural burnings and other burnings

of shrublands to regrow or maintain pastures for livestock,

although the importance of these causes could be far greater,

and actually estimated at 45 % (Leone et al., 2009; Kout-

sias et al., 2010). In addition, as explained in Martı́nez et

al. (2009, p. 1248), in many cases mechanization implies a

willingness to obtain more space and land for cultivation,

and fires are one of the tools to achieve it. Also, more in-

tensive agricultural activity, promoted by mechanization over

time, may increase the need to burn more stubble, agricul-

tural residues and prunings, as well as a higher number of

ignitions produced by accidental sparks deriving from en-

gine operation. Similar agriculture related variables have also

been used in other fire modelling studies (Sebastian-Lopez

et al., 2008; Catry et al., 2009). According to the spatial dis-

tribution of the local coefficients, we identified areas where

the expected direction in relation to high fire density exhib-

ited opposite trends to the global model. This is the case of

variable PAR SEXP in the Valencia Region and the northern

plateau (especially in the “Ribera del Duero” region), where

local negative coefficients were found. Both areas have high

fragmentation of small-holdings both in irrigated and in rain-

fed arable land agriculture, but they have few forested ar-

eas and a landscape with less wildland–agrarian mosaics.

However these areas present high and positive coefficients

for variable agricultural machinery. Instead, in the eastern

Cantabrian regions (Basque Country and Cantabria) and the

Guadalquivir depression in the SW, variables MAQUIN D

(agricultural machinery) and TIT 55 P (percentage of old

owners of agrarian holdings) showed the opposite trends. In

some of these humid Atlantic environments of the north, live-

stock and forestry are more important than agriculture. The

southwestern Guadalquivir area presented one of the low-

est indices in the number of agricultural machines compared

with other irrigated areas of the country.

The mean municipality altitude (ALT MEAN) variable

was the third most explanatory in the model. The global coef-

ficient and most of the local coefficients throughout the coun-

try were negative, so at lower altitudes more fire densities

were expected, especially in the central part of the country

and the eastern coast. However, we observed a positive influ-

ence across the entire S of the country and in the NW (Gali-

cia). Coefficients were neutral (close to 0) in the N of Aragon

and the central Pyrenees in the upper mountains. Other stud-

ies showed that elevation presents contrasting relationships

with fire occurrence. Some studies found a positive influence

(Catry et al., 2009; Marques et al., 2011) as a consequence

of pastoral burns (renovation of pastures for livestock) or a

higher frequency of lightning in higher altitudes (Vazquez

and Moreno, 1998; Narayanaraj and Wimberly, 2012), while

other studies found a negative correlation (Vasconcelos et al.,

2001; Sebastian-Lopez et al., 2008; Gonzalez-Olabarrı́a et

al., 2012; Vilar et al., 2010; Padilla and Vega-Garcia, 2011),

suggesting that lower elevations tend to be the more xeric

places, with dryer fuels and less productivity. However, fuel

dry-out is probably a function of the temporal distribution of

precipitation, which in the Mediterranean area is very high

in summer due to the seasonal drought. In addition, when

altitude increases, the vegetation loading tends to decrease

with more unburnable areas appearing (rocks, sparse vege-

tation, ice, etc.) although only over a certain height. Unlike

lightning-caused fires, Narayanaraj and Wimberly (2012) de-

tected a negative association between elevation and slope and

human-caused fires in a mountain area of Washington State.

Similarly, Vilar et al. (2010) found a less intense land use

at high elevations in the Madrid Region. In some regions of

Spain, as in other parts of the world, population, roads and

some land uses responsible for the higher number of ignitions

are concentrated in coastal areas, decreasing with increasing

elevation (Badia-Perpinya and Pallares-Barbera, 2006). The

same conclusions about how topography reflects the loca-

tions of human activities in relation to fire ignitions are indi-

cated for a region of China by Xu et al. (2006), showing that

the anthropogenic factors are closely related to fires when al-

titudes of forests are lower than 900 m. However, at higher

elevations their influence is much lower. In other studies the

topography effect has been related with fires, using variables

related with roughness or terrain shape index (Dickson et al.,

2006, Nunes, 2012; Padilla and Vega-Garcia, 2011; Naraya-

naraj and Wimberly, 2012).

As in the logistic model, population decrease between

1950 and 1991 (DIS 50 91) was found to be a relevant ex-

planatory variable. Besides, the inclusion in the model of

DIS TIT (decrease of the number of owners of agrarian hold-

ings 89–99) reinforces the idea of the relationship between

land abandonment and rural exodus, with a high fire risk

(Hill et al., 2008; Nunes, 2012). The local coefficient maps

of these two variables portrayed two patterns: (1) on one

hand, in the east of the country, fires are related to population

abandonment and rural exodus, with the resulting accumula-

tion of fuels, but at the same time there is some maintenance

of agricultural activities related to fires because the variable

DIS TIT correlates positively with fire density; and (2), in

contrast to this trend, the western region, particularly in the

NW, DIS 50 91 has positive correlation with fires, indicating

a further influence of the population presence on fires. How-

ever, in these western areas, DIS TIT correlates negatively

to fires, so if agricultural land owners decline and agricul-

tural activities are abandoned, fires tend to be more frequent,

mainly because of greater fuel accumulation. In addition, in
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this NW area (Galicia), which is the most fire affected region,

we found strong positive coefficients with the variable ageing

agricultural population (TIT 55 P), because in this region the

older population is the more accustomed to use fire in farm-

ing works, as they did in their youth (Vélez, 2009). This vari-

able also suggests the impact of the land abandonment pro-

cess in increasing fire frequency. A similar trend was also ob-

served by Nunes (2012) in Portugal, where the ageing index

correlates negatively with the density of the population and

is positively associated with agricultural land abandonment.

The same process has been pointed out for the Mediterranean

European Basin using the difference of the youth index be-

tween 1990 and 1960 (Koutsias et al., 2010) as a proxy.

Two of the variables relate fires to forestry and landscape

features. Thus, more fires were found in landscapes with a

large percentage of shrublands and grasslands (DESAR P),

especially in the Cantabrian Mountains and N coast where

there are numerous pastoral fires to create, maintain, or re-

grow pastures for livestock (Moreira et al., 2011). Many stud-

ies have confirmed that shrubland is one of the most fire af-

fected land cover types (Nunes et al., 2005; Sebastian-López

et al., 2008; Catry et al., 2009; Moreira et al., 2009; Bajocco

and Ricotta, 2008; Nunes, 2012; Oliveira et al., 2012) due to

a combination of factors: “a higher rate of fire spread, a larger

frequency of ignitions (e.g. to create pastures) and a lower

fire fighting priority” (Marques et al., 2011, p. 783). In sub-

Saharan Africa the herbaceous vegetation proportion is the

variable best related with fire incidence (Sá et al., 2012). On

the other hand, more fire density was found in Spanish land-

scapes with high fragmentation (FRAG7 × 7), especially in

the three main river depressions where agriculture dominates

(Duero, Ebro and Guadalquivir) and where there is less forest

cover. Heterogeneous and interspersed patterns composed by

spatially separated patches with different land uses presents

higher ignition frequencies (Ortega et al., 2012; Ruiz-Mirazo

et al., 2012).

Finally, two variables were related, in general, to human

presence and accessibility. Road density (ROAD DEN), the

same as road distance, has very often been found to be related

to human accidental or negligent fires (Cardille et al., 2001;

Vasconcellos et al., 2001; Badia-Perpinya and Pallares-

Barbera, 2006; Yang et al., 2007; Romero-Calcerrada et

al., 2008; Martı́nez et al., 2009; Catry et al., 2009; Vi-

lar et al., 2010; Padilla and Vega-Garcı́a, 2011; Gonzalez-

Olabarria, 2012; Oliveira et al., 2012; Narayanaraj and Wim-

berly, 2012), as well the density and distance to human set-

tlement (ENTSIN M). Specifically, the risk appeared to be

higher in the urban–forest interface (IUF DEN) zone (Badia-

Perpinya and Pallares-Barbera, 2006; Syphard et al., 2007;

Catry et al., 2009; Martı́nez et al., 2009; Romero-Calcerrada

et al., 2010; Vilar et al., 2010; Gonzalez-Olabarrı́a et al.,

2012; Narayanaraj and Wimberly, 2012) where population

and human infrastructure facilities are in contact, close to or

disseminated throughout the forested zones, especially in the

vicinity of large cities and tourist resorts (Viegas et al., 2003).

According to the spatial distribution of the local coefficients

of these variables, it might be surprising to find high coef-

ficients in areas where the values of these variables are low,

such as in the southern part of Central Spain and in the in-

land mountains of the south, where a low population density,

few population centres and scarce wildland–urban interfaces

are found. However, these few places with higher densities of

human activities seem to tend to bias the model and therefore

seem to be decisive for the fire occurrence in those areas.

6 Conclusions

In this study we built two complementary models which

cover the whole range of the human-caused fire occurrence

in Spain during a 25 yr period. The first model tries to pre-

dict and explain fire densities, and the second fire pres-

ence/absence. The most influential variables for both mod-

els are related to agrarian activities, land abandonment, ru-

ral exodus and development processes. Additionally, specific

traits of vegetation, climatology and topography have also

been very important, since they affect the initial conditions

enabling fire incidence. The inclusion of these environmental

variables results in an improvement over the previous model

(Martı́nez et al., 2009), on which this study is based.

Relevant differences between both models are found be-

cause only two explanatory variables are common: mean

annual precipitation and population decrease. Potentially

flammable land cover types (total wildland area and agri-

cultural/forest interfaces and mosaics) and the mean sum-

mer temperature are the main specific variables for the fire

presence model. Instead, agricultural fragmentation, eleva-

tion, shrublands and grasslands, along with human structures

(roads, settlements, etc.) and other rural indicators are spe-

cific variables for the fire density model.

However, these stationary models and global regression

approaches seem to be insufficient to appropriately explain

the underlying fire factors, because all variables selected

showed significant spatial variations at the regional or lo-

cal scale according to the GWR model. Nevertheless, only

some of them present, in fact, very high variability or con-

tradictory relationships with the response variable and/or the

global trends. For example, the density and fragmentation of

agricultural plots has a negative relationship with fires in re-

gions with low forest areas and less wildland–agrarian mo-

saics, as along the E coast in the Valencia Region and the

eastern part of the northern plateau (Ribera de Duero), and

both areas are characterized by having small-holdings of irri-

gated agriculture and also rain-fed arable lands. Also, precip-

itation, decrease in owners of agrarian holdings, population

entities or the urban–forest interface present unexpectedly

high regression coefficients in areas where those variables

have low original values. Thus, although precipitation seems

to be a very important factor to model fire densities in the dri-

est areas of the country, it is not that relevant in other areas
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with more rainfall availability. Similarly, the percentage of

forest and wildland area has a higher influence in the S of the

country, which is drier and with less vegetation as compared

to the N. Another interesting pattern is observed between the

E and the W–NW where population presence seems to have

a further influence on fires, although at the same time im-

portant land abandonment processes are observed. In the E,

instead, fires seem directly more related to population aban-

donment and rural exodus, but also to agricultural activities,

though to a lesser degree. Finally, lower altitude seems more

related with the fire density along the eastern coast and in the

central part of the country, unlike the pattern observed in the

S and NW where higher altitudes present more fire risk. In

the upper mountains of the Central Pyrenees this relation is

neutral.

This analysis is another contribution to the field of fire

management and fire risk assessment in the Mediterranean

countries, which quantitatively and spatially demonstrated

the importance of considering regional variations and local

modelling as a complement to global and stationary models

in order to better understand the fire problem over large study

areas.
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