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Abstract. In recent years several mathematics education researchers have attempted to anal-
yse students’ arguments using a restricted form of Toulmin’s (1958) argumentation scheme. In
this paper we report data from task-based interviews conducted with highly talented postgrad-
uate mathematics students, and argue that a superior categorisation of genuine mathematical
argumentation is provided by the use of Toulmin’s full scheme. In particular, we suggest
that modal qualifiers play an important and previously unrecognised role in mathematical
argumentation, and that one of the goals of instruction should be to develop students’ abilities
to appropriately match up warrant-types with modal qualifiers.
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The analysis of mathematical arguments produced by students and mathe-
maticians has been a recurring theme in the mathematics education literature.
Generally these types of analysis are of two kinds: those that concentrate on
the argument’s content and those that concentrate on the argument’s structure.
This paper fits into the second category. It explores a scheme for describing
the structure of arguments, demonstrates the value of examining a core part of
that scheme (the modal qualifier) and categorises some of the different forms
of argumentation used by mathematicians in realistic proving contexts. These
forms are inextricably linked to the extent to which an argument may be qual-
ified or potentially overturned; in highlighting this link the paper emphasises
the importance of reducing uncertainty in general mathematical argument,
alongside the goal of removing uncertainty which is considered one of the
hallmarks of proof.

1. Toulmin’s The Uses of Arguments.

Toulmin (1958) advocated an approach to analysing arguments that dramat-
ically departed from existing approaches to formal logic. He was less con-
cerned with the logical validity of an argument, and more worried about
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the semantic content and structure in which it fits. Indeed, this led to one
contemporary describing The Uses of Arguments as “Toulmin’s anti-logic
book” (a description reported by Toulmin, 2001). This manner of analysing
argumentation has become known as ‘informal logic’ in order to emphasise
its differences from formal logic.

Toulmin’s (1958) scheme has six basic types of statement, each of which
plays a different role in an argument. The conclusion (C) is the statement
of which the arguer wishes to convince their audience. The data (D) is the
foundations on which the argument is based, the relevant evidence for the
claim. The warrant (W) justifies the connection between data and conclusion
by, for example, appealing to a rule, a definition or by making an analogy.1

The warrant is supported by the backing (B) which presents further evidence.
The modal qualifier (Q) qualifies the conclusion by expressing degrees of
confidence; and the rebuttal (R) potentially refutes the conclusion by stating
the conditions under which it would not hold. It should be noted that, in any
given argument, not all of these roles will necessarily be explicitly verbalised.

These six components of an argument are linked together in the structure
shown in Figure 1.

D

B

6

W

6
- Q

R

?
- C

Figure 1. Toulmin’s model of a general argument. The argument would read “D, and since W
(given B) we can Q conclude C, unless R”.

An example of an argument expressed in this form is given in Figure 2.
Here, the arguer is suggesting that, during a football match, Hislop was at
fault for the goal (C) – a close range header scored whilst he was the goal-
keeper (D) – because he ought to have caught the cross from which the goal
was scored (W). This is because goalkeepers are expected to be able to catch
crosses that are close to them (B). The arguer believes his argument to be
likely to be sound (Q), but accepts that the argument could be rebutted if
Hislop was fouled as the ball was crossed (R).

In his original work Toulmin (1958) suggested that formal mathematics
was one of the few domains of explanation where formal logic – the sys-
tem he was reacting against – adequately described argumentation structures.
However, in a later work, Toulmin et al. (1984) gave an example of a for-
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The goal came from a close range
header when Hislop was goalkeeper

goalkeepers should be able to catch
crosses which are close to them

6

Hislop ought to have caught the cross
from which the goal was scored

6
- so, probably

unless Hislop was fouled as
the ball was crossed

?
- Hislop was at fault

Figure 2. An argument expressed using Toulmin’s structure.

mal mathematical argument modelled using his scheme. Further examples of
applying informal logic to mathematics have been developed in recent years.

In the field of mathematics education, Krummheuer (1995) started the
trend of using Toulmin’s scheme by analysing classroom-based mathematical
arguments. However, he applied a reduced version of the original scheme,
omitting the use of the rebuttal and the modal qualifier, apparently seeing
them as irrelevant to mathematical arguments. Although this restricted ver-
sion of the layout may have been sufficient to provide the level of analysis of
the classroom episodes Krummheuer wanted, it is unclear how this omission
can be justified in a conceptual framework aimed at the reconstruction of
argumentation which may lack logically necessary conclusions.

Most subsequent mathematics education research appears to have fol-
lowed Krummheuer in using the reduced scheme. This approach has been
adopted by, amongst others, researchers studying basic number skills (Evens
and Houssart, 2004), logical deduction (Hoyles and Küchemann, 2002; We-
ber and Alcock, 2005), geometry (Knipping, 2003; Pedemonte, 2005; Pede-
monte, in press), and general proof (Yackel, 2001). Indeed, this position ap-
pears to have become so entrenched that, in her recent review of research
on proof in mathematics education, Mariotti (2006) referred to Toulmin’s
scheme as a “ternary model”.

Authors from other disciplines have adopted a different approach to adapt-
ing Toulmin’s brand of informal logic to formal mathematics. Aberdein (2005,
2006) and Alcolea Banegas (1998), when analysing formal mathematical
proofs using Toulmin’s scheme, retained all of its constituent parts including
modal qualifiers and rebuttals. In all cases, however, these were filled with
psychologically inconsequential values, including qualifiers such as “clas-
sically” and “constructively”. While these qualifiers may be useful when
modelling formal proofs from a philosophical standpoint, they are less rel-
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evant for our purposes, as they do not refer to the strength of a person’s belief
in a conclusion, given the argument’s data, warrant and backing.

In this paper, we will demonstrate that, in order to analyse the full range
of mathematical argumentation (which we interpret to include both informal
reasoning and formal proof2), it is important to use Toulmin’s full argumen-
tation scheme. Whilst it is well documented that professional mathematicians
rely on non-formal arguments as they develop their ideas (e.g. Burton, 2004;
Hadamard, 1945; Poincaré, 1905; Thurston, 1994), this paper seeks to explore
the kinds of non-formal arguments they use, how they can be analysed, and
the potential differences between expert and novice mathematicians in their
use of non-formal arguments. We give examples of arguments developed by
talented mathematicians which require an analysis involving the elements
most often ignored in analysing mathematical argument – the modal quali-
fier and rebuttal – and we show that these elements are closely linked to a
categorisation of the type of warrant that mathematicians use.

2. Method and Participants.

The data reported in this study come from a series of task-based interviews
conducted with highly successful mathematics graduates studying for post-
graduate degrees. The task, designed as part of a larger study to investigate
how successful mathematicians evaluate conditional statements, was based
on an adaptation of the materials used by Markowitz and Tweney (1981).

Participants were interviewed alone in a seminar room or private office.
The interview began with the participant being given some information, on
a A5 card, as shown in Figure 3. When participants indicated that they were
ready to proceed they were given the first of the conjectures, and as each
conjecture was completed to their satisfaction, they were given the next –
each presented on a new A5 card. The full list of conjectures is shown in
Figure 3. A mathematical discussion of each of the conjectures, including
brief solutions, can be found in the Appendix.

The procedure took the form of semi-structured clinical interviews (in
the sense of Ginsburg, 1981), with the interviewer prompting participants
when their method was unclear, and asking for clarification as appropriate.
Discretion was used by the interviewer in determining whether or not to miss
out certain conjectures in order to maximise the use of time. Participants had
unlimited amounts of paper available on which to work. As they moved on
to subsequent conjectures, they retained access to their previous cards and
work. If the participant began to check some examples, or asked whether any
examples were available, they were given a further card, shown in Figure 3.

At first sight, one might consider the conjectures to be simple number
theory problems which the talented mathematicians would find straightfor-
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All the numbers below should be assumed to be positive integers.
Definition. An abundant number is an integer n whose divisors add up to more
than 2n.
Definition. A perfect number is an integer n whose divisors add up to exactly
2n.
Definition. A deficient number is an integer n whose divisors add up to less than
2n.
Example. 12 is an abundant number, because 1 + 2 + 3 + 4 + 6 + 12 = 28 and
28 > 2 × 12. However, 14 is a deficient number, because 1 + 2 + 7 + 14 = 24,
and 24 < 2 × 14.
Your task is to consider the following conjectures and determine, with proofs,
whether they are true or false.

Conjecture 1. A number is abundant if and only if it is a multiple of 6.
Conjecture 2. If n is perfect, then kn is abundant for any k ∈ N.
Conjecture 3. If p1 and p2 are primes, then p1 p2 is abundant.
Conjecture 4. If n is deficient, then every divisor of n is deficient.
Conjecture 5. If n and m are abundant, then n + m is abundant.
Conjecture 6. If n and m are abundant, then nm is abundant.
Conjecture 7. If n is abundant, then n is not of the form pm for some natural m
and prime p.

Examples.
The first few abundant numbers are: 12, 18, 20, 24, 30, 36, 40, . . .

The first few perfect numbers are: 6, 28, 496, 8128, . . .

Figure 3. The instructions, conjectures and examples given to participants.

ward. However, while the problems might be accessible, the evidence from
the interviews was that the participants found them quite hard - in an inten-
sive hour-long working session, only one participant (David) finished all the
problems to their satisfaction.

While the problems were substantial ones for the participants, it is worth
noting that the task set for them did not mimic genuine research (nor was it
intended to) and, in being in a given context (number theory), was likely to
restrict the forms of argument used (e.g. we would expect few visual argu-
ments). Nevertheless, the nature of the problems was sufficient to allow us to
begin to analyse the types of argument used by sophisticated mathematicians
when faced with genuine problems and, in particular, to examine the link
between different parts of their arguments.

Data from six of the interviews from the larger study are reported in
this paper. All of the participants were studying in highly ranked UK uni-
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versities; five were studying for doctorates and one, Fred, for a masters de-
gree: all had been highly successful in their undergraduate mathematics de-
grees. Interviews were recorded with an electronic audio-dictaphone, and
later transcribed for analysis. The analyses took the form of a multiple case
study approach, following the quasi-judicial procedure developed by Bromley
(1986).

3. The need for modal qualifiers.

As discussed above, previous work that has applied Toulmin’s (1958) argu-
mentation scheme to mathematical reasoning has tended to ignore the role of
the modal qualifier and rebuttal parts of arguments. This section demonstrates
that appreciating the role of the modal qualifier is crucial to fully understand
how mathematicians argue.

When modelling arguments using Toulmin’s (1958) scheme it is often
the case that certain parts of the argument (most commonly backings and
rebuttals) are not explicitly verbalised by the arguer. In line with earlier re-
searchers who have used the scheme, we dealt with this issue by inferring the
backings and rebuttals of participants’ arguments where they were not explic-
itly verbalised. Consequently the diagrams reported in the remainder of this
paper represent plausible models which account for participants’ behaviour
and utterances; they are not direct one-to-one mappings from utterance to
argument. However, it should be noted that, in the examples given here, very
few sections of the diagrams are not directly related to the participant’s ac-
tual spoken words. The methodological issues involved in using Toulmin’s
scheme for modelling empirical data are discussed in depth by, for example,
Bromley (1986) and Simosi (2003).

A clear example of the use of qualification came from Chris’s work on
Conjecture 3. After Chris had correctly identified that the conjecture as writ-
ten was false, the interviewer asked him whether he thought the conjecture
would be true if it was modified to read “if p1, p2 are prime, then p1 p2 is not
abundant”. Chris tried two examples (2 & 3, and 5 & 97) to investigate the
situation and then remarked:

CHRIS: Since the smallest numbers I could find to put in this equation showed it was
perfect and in the larger limit it showed, p1 p2 was deficient. So it’s possible it
holds for all p1, p2.

INTERVIEWER: Do you think it does?
CHRIS: I think it probably does. But I’m not sure why [LAUGHS]. Yeah, the fact that

this is, in some ways, sort of monotonic. In other words, I know that this
statement is true for large p1, p2; I know it’s true for small p1, p2; so I feel
therefore that it should be true for p1, p2 in the middle. Umm, but I might have
to do some work to show that.
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The structure of this argument is shown graphically in Figure 4.

p1, p2 are prime

number theory tends
to be “monotonic”

6

p1 p2 is not abundant for small p1, p2
(2 and 3), and is not abundant for large p1, p2

(5 and 97), “so I feel therefore that it
should be true for p1, p2 in the middle”

6
- so, probably

unless there is
a counterexample

?
- p1 p2 is not abundant

Figure 4. Part of Chris’s response to Conjecture 3.

Chris says that he thinks it is “probable” that the statement is true, on the
basis of two examples and an argument related to monotonicity. He accepts
that he has not shown the result formally, but informally he has persuaded
himself that the statement is probably true, and does not feel obliged to carry
on and produce a formal proof. In terms of Toulmin’s (1958) scheme, his
argument revolves around a modal qualifier that does not carry certainty,
instead his uncertainty has merely been reduced.

In this example Chris appears to be fairly confident that the conclusion
can be drawn, but there are examples of less certain modal qualifiers. Here,
for example, David is asked the same question, about the modified version of
Conjecture 3:

INTERVIEWER: If I changed it [CONJECTURE 3] then, to be ‘not abundant’, what would
you say?

DAVID: That would seem more reasonable. Because primes look very deficient.

Compare the different modal qualifiers used by Chris and David. David
appears less convinced by his argument than Chris did, felt the need to convert
this informal piece of reasoning into a formal proof, and went on to do so.
Chris, on the other hand, was sufficiently convinced of his argument that he
didn’t feel the need to continue, despite accepting that “some work” would
be needed to prove the result.

The key point here is that Chris and David used different types of warrants
in their respective arguments. These different warrants were accompanied by
different modal qualifiers, which fixed their degree of belief in the conclu-
sion of the argument. The approach taken by earlier researchers to use a
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restricted scheme without modal qualifiers would fail to highlight the dif-
ference between Chris and David and, arguably, could dismiss the forms of
argument they use as non-mathematical, despite appearing to be crucial in
their development of solutions to the problems posed. We argue that, by using
the full Toulmin scheme, we gain access to a wider range of distinctions in
mathematical argument.

In the rest of the paper, we highlight a rough categorisation of mathemati-
cal argumentation on the basis of warrant-types. Whereas a warrant is a part
of a particular argument, a warrant-type is a category of warrants with similar
properties. The warrant-types categories have a broadly similar range to the
‘proof-schemes’ outlined by Harel and Sowder (1998) and consequently this
paper adopts some of Harel and Sowder’s nomenclature in our description of
warrant-types.

However, it is important to note that we are not categorising ‘proof schemes’,
‘proofs’ or even ‘attempted proofs’. The talented mathematicians in this study
are fully aware that some of their arguments do not constitute formal proofs
– they are, however, mathematical arguments and are often vital to their solu-
tion of the problem. Crucial to the difference between warrant-type and proof
scheme is that Harel and Sowder (1998) define a person’s proof scheme as
that which allows them to “remove her or his own doubts about the truth of
an assertion”. A proof scheme, then, is about removing uncertainty. Warrants
from certain warrant-types, in contrast, may only reduce uncertainty. This
distinction is developed in greater depth in later sections.

4. The inductive warrant-type.

Harel and Sowder (1998) define inductive proof schemes as “when students
ascertain for themselves and persuade others about the truth of a conjecture
by quantitatively evaluating their conjecture in one or more specific cases”
(p.252). An inductive warrant uses a similar strategy to reduce uncertainty
about the conclusion of an argument. Many examples of inductive warrants
were used by participants in the current study. One example has already been
discussed: Figure 4 shows an argument offered by Chris during his work on
Conjecture 3. He quantitatively evaluated the conjecture for both small and
large numbers, and thus felt that it should be true for all numbers.

In his response to Conjecture 4, having failed in his initial proof attempt,
Andrew offered the following argument:

ANDREW: Let’s make some experiments [LAUGHS]. OK, so the deficient numbers are,
for example, 9. 9 is deficient. That’s too big because, OK, 10 let’s say, we’ve
got 2, 5. Primes are apparently deficient.

INTERVIEWER: Primes are deficient?
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ANDREW: Primes are always deficient, yeah, because the sum is equal to the number
plus 1. Well, always [LAUGHS], no, or is it? no, even 2 is deficient, so it doesn’t
fail. Yeah, so apparently it works here. Yeah ok, so apparently, it seems to me
that it’s true.

INTERVIEWER: Why do you say that then? Because it works for 10?
ANDREW: Because [PAUSE] because, hmm. [LONG PAUSE]

At this point, after a long pause, Andrew began a proof attempt that eventu-
ally resulted in a correct proof. Andrew’s argument is modelled in Figure 5.
Based on one empirical evaluation, Andrew’s uncertainty in the conjecture
is sufficiently reduced to start a proof attempt. In the language of Balacheff
(1988), Andrew conducted a ‘crucial experiment’ to persuade himself of the
statement’s probable truth.

n is deficient

“even 2 is deficient”

6

10 is deficient, and
so are 2 and 5.

6
- so, it seems that

unless there is
a counterexample

?
- all the divisors of

n are deficient

Figure 5. Part of Andrew’s response to Conjecture 4.

In a similar example, David constructed a two stage argument to evaluate
Conjecture 2. In the first stage he successfully showed that σ(kn) ≥ 2kn if n
is perfect3 (using the same argument deployed during his work on Conjecture
1), and during the second stage he tried to remove the possibility that kn is
abundant:

DAVID: Why would it [THE EQUATION σ(kn) ≥ 2kn] be a greater than? Umm, I don’t
know, why couldn’t it be perfect? I mean you’ve got some possible counterex-
amples here, I mean, we might look for one of them, so does 6 divide into that?
[LOOKS AT THE LIST OF EXAMPLES OF PERFECT NUMBERS] I don’t know, no it doesn’t
does it? So does 6 divide into the next thing? So, I can’t see any counterexam-
ples there, and for example. . . So I guess, umm, what was we, what would I,
umm, we need to find some divisors that aren’t of the form 2m for m a divisor
of n, don’t we?

David’s search for counterexamples is a failure, so he concludes that it is plau-
sible that the statement is true, and attempts a proof. It is notable that before he
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looked for possible counterexamples, David seemed unsure of whether it was
true or not. The list of examples David used contained only 28, 496 and 8128;
after noting that 6 did not divide any of these three perfect numbers, David
was sufficiently satisfied that the conjecture was true (that is, his uncertainty
was sufficiently reduced) that he began a proof attempt. The second stage of
his argument is modelled in Figure 6.

kn is perfect
or abundant

28, 496 and 8128 are perfect,
but not of the form 6k

6

28, 496 and 8128 are
not counterexamples

6
- so, it is plausible that

possibility of a
counterexample

?
- kn is abundant

Figure 6. Part of David’s response to Conjecture 2.

On many occasions, participant’s degrees of belief in conclusions were
affected by the use of examples. Two distinct strategies emerged: the use of
examples (e.g. Figures 4 and 5) and the use of counterexamples (e.g. Figure
6). The first strategy involved the use of an example as a ‘crucial experiment’
(Balacheff, 1988) to test whether the Conjecture held in that case or not. If
it did, a ‘plausible’ modal qualifier was used to link the conclusion with the
data. The second strategy was somewhat different, in this case participants
looked through a series of examples to see if they could find a counterexam-
ple. If they couldn’t, again a ‘plausible’ modal qualifier was used. The second
strategy seems closer to Balacheff’s ‘naive empiricism’.

In both cases, once participants sufficiently reduced their uncertainty in
the conclusion, they attempted to prove it formally. No participant used an
inductive warrant to attempt deduce with certainty that the conclusion fol-
lowed from the data, and this would not have been expected, since they
were all highly talented mathematicians. However, inductive warrants were
widely used to reduce uncertainty in the conclusion, but they were moderated
with appropriate modal qualifiers. Crucially, without incorporating the modal
qualifier into the modelling of these arguments, an accurate picture of these
types of reasoning would be impossible.
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5. The structural-intuitive warrant-type.

The term ‘structural-intuitive’ is used to refer to a participant using observa-
tions about, or experiments with, some kind of mental structure, be it visual
or otherwise, that persuades them of a conclusion. Often, but not necessarily
always, this sort of reasoning appears to be of an intuitive type (in the sense
of Fischbein, 1987).

Chris’s reasoning about Conjecture 4 exemplifies the structural-intuitive
warrant-type:

CHRIS: So if n is deficient then we get for free that umm, none of it’s divisors are
perfect, so every divisor must be deficient or abundant. Umm, it would seem
odd if they were allowed to be deficient and abundant but not perfect. Because
perfect is kind of the middle case, so it looks true.

This argument is modelled in Figure 7. Chris’s warrant here is based on some
intuitive understanding about how the properties of deficiency and abundancy
should behave, and a realisation that if the conjecture was false, it would mean
that these properties would have been broken.

All the divisors
of n are either

deficient or abundant

perfect numbers are the “middle case”,
and abundancy seems to be monotonic

6

It would “be odd” if divisors could be
abundant or deficient but not perfect

6
- so, it is

plausible that

possibility of
a counterexample

?
- all divisors of

n are deficient

Figure 7. Part of Chris’s response to Conjecture 4.

Conjectures 5 and 6 asked participants to consider the situation where m
and n are abundant, and to decide whether they can conclude that m + n or
mn is abundant, respectively. These conjectures were particularly rich sources
of structural-intuitive warrants. Conjecture 5 provoked many participants to
argue that the conjecture was probably false. Take Fred, for example:

FRED: I think, going on instinct, it’s probably false.
INTERVIEWER: Why?

FRED: Because, err, I mean, think of it. . . Another typical example, like, saying whether
something is abundant is to do with it’s divisors, so it’s to do with things that
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divide it, it’s to do with multiples. And then, when you add two numbers to-
gether, it doesn’t necessarily mean that any properties of the divisors stay the
same. I mean, like, I don’t know, when you add 3 and 5. 3 and 5 have certain
divisors, but 8 has completely different divisors. Umm, but you never know.
So, but abundant is a very sort of wide statement, so, I mean, intuitively you’d
expect to apply to roughly half of all numbers, so maybe it’s not so absurd to
think they would, err, that would hold. So I’ll try.

Fred went on to try to prove the statement before abandoning his attempt and
looking for counterexamples.

Fred’s behaviour here is interesting. Immediately after having read the
statement he seems sure that it is false, and justifies his intuition with a
structural-intuitive warrant based on the absence of a link between addition
and divisors. However, as he speaks, he appears to try to convince himself
not to trust his original intuition. Notwithstanding this initial change of mind,
Fred went on to discover that the statement is indeed false, and realised that
looking for a counterexample is straightforward.

Similar structural-intuitive warrants were used by other participants:

CHRIS: Right, so if m and n are abundant, then m + n is abundant. That doesn’t look
true.

INTERVIEWER: Why not?
CHRIS: Because the factors of n+m don’t really have anything to do with the factors

of n or m. So it should be fairly easy to construct a counterexample. I say that
[LAUGHS]. So if I pick two nice abundants, umm. . .

Chris went on to find a counterexample.
It is interesting to compare participants’ immediate responses to Conjec-

ture 5 with their corresponding responses to Conjecture 6. Here is Chris’s
response:

CHRIS: [READS CARD] Right, so if n and m are abundant then nm is abundant. That
looks more plausible, because they’re going to share factors.

This excerpt from Chris illustrates the use of similar structural-intuitive war-
rants to that used in Conjecture 5, but here it carries plausibility rather than
implausibility. In the case of both conjectures the warrants act to reduce
uncertainty sufficiently to continue the argument in the given direction.

The pattern of responses to Conjecture 5 was uniform; participants’ initial
intuitions gave them a structural-intuitive warrant which they used to decide
that the conjecture was unlikely to be true. This then directed their attempts
at refuting the conjecture. Since they had deduced that the conclusion was
unlikely to be true, looking for a counterexample was the most appropri-
ate strategy. In Conjecture 6 the situation was reversed. Participants used
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structural-intuitive warrants to determine that the conjecture was likely to be
true, and then based their decision to look for a proof on this judgement.

The reliability of intuition in mathematics has been a recurring subject
of discussion by mathematicians and philosophers. Hahn, in a famous essay
written in 1933 (reprinted as Hahn, 1960), even went as far as to argue that
intuition is entirely unreliable and should be “expelled” from mathematical
reasoning. To back up his position Hahn gave several examples of counter-
intuitive ‘monsters’: a map of three regions which meet each other at every
point along one border, and a curve which intersects itself at every point (e.g.
Moore, 1900; Whyburn, 1942). These objects, Hahn argued, are impossible
to reconcile with intuition, and thus he argued that intuition needs to be re-
moved from all mathematical reasoning. Other authors have disagreed with
this analysis, pointing out that although intuition may sometimes be mislead-
ing it is essential for giving direction to mathematical research (Feferman,
2000; Poincaré, 1905). The data from this study support this latter stance.
Participants used their intuitive structures to establish a belief in whether the
conclusion follows from the data. Structural-intuitive warrants were widely
used to reduce uncertainty.

As we have argued throughout this paper, the full Toulmin scheme allows
us to discuss the wider issue of reducing uncertainty, while the restricted
version (without modal qualification or with the trivial modal qualification
of ‘in all cases’) focuses narrowly on preserving certainty.

Structural-intuitive warrants, whilst reducing uncertainty, do sometimes
support incorrect conclusions. In several of the interviews the issue of whether
abundant numbers need to be even developed naturally. When Fred was work-
ing on Conjecture 5, for example, he considered what sorts of numbers were
likely to be abundant:

FRED: Err, well my thinking is, odd numbers are not [abundant], generally because. . .

INTERVIEWER: When you say “generally” what do you mean?

FRED: Just the general idea, because, like, if a number is even then one of its divisors
is half the number, which is a pretty big chunk, but if a number is odd it’s
missing a big chunk.

INTERVIEWER: So, you reckon no odd numbers are abundant?

FRED: I think that’s quite unlikely.

During the course of his interview Ben was asked directly whether he thought
all abundant numbers were even, his argument was similar to Fred’s:

INTERVIEWER: I mean that’s an incredibly difficult question, but what’s your sort of,
if you had to have a stab in the dark about it?

BEN: Umm, [LONG PAUSE] I think it might have to be true.

INTERVIEWER: Why?
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BEN: [LONG PAUSE] I think if they’re odd, you lose too much of the, sort of, sequence
that you can’t divide into, if you get what I mean, because you can’t, you can’t
divide past, so say it was odd and the first one was 3, you’d only have ones
up to n

3 and then n, whereas if you go up to n
2 you get a lot more, well in

theory, you could get a lot more possible divisors, so it’s based on a sort of
size argument rather than anything particularly. . . But, intuitively, even numbers
would certainly be more likely to be abundant than odd numbers.

The structure of Ben and Fred’s arguments is modelled in Figure 8. Both used
structural-intuitive warrants about the properties of abundant numbers, using
understanding that they had built up through working on previous conjec-
tures.

n is abundant

the possible divisors of an even number run from
1 to n

2 , compared with 1 to n
3 for an odd number

6

if n is odd then you lose
a lot of the possible divisors

6
- so, it is probable that

possibility of
a counterexample

?
- n is even

Figure 8. Ben and Fred’s argument regarding the parity of abundant numbers.

Notwithstanding Ben and Fred’s structural-intuitive warrants, there are in
fact an infinite number of odd abundants, with 945 the first. Indeed, surpris-
ingly, it is possible to construct an abundant number whose smallest divi-
sor is arbitrarily high. So Ben and Fred’s (apparently reasonable) structural-
intuitive warrant that odd abundants are unlikely, as the divisors can only
‘live’ in, at best, the lowest third of the number turns out to be wrong. Abun-
dants can be constructed where the divisors live in the lowest kth of the
number where k is as high as you like. Thus the structural-intuitive warrants
in this case considerably reduced their uncertainty in the conjecture that every
abundant number is even, despite this being false.

6. The deductive warrant-type.

Harel (2001) referred to the most sophisticated proof scheme as the ‘deductive-
modern-axiomatic’ scheme: people who have this scheme use deductions
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from axioms to establish truth. A similar notion is the basis of the deduc-
tive warrant-type: formal mathematical justifications are used to warrant the
conclusion of the argument in question. These justifications can be of var-
ious sorts: deductions from axioms, algebraic manipulations, or the use of
counterexamples would all be classified as deductive warrants.

For professional mathematicians, a deductive warrant is seen as carrying
formal mathematical necessity: an argument that uses a deductive warrant
admits no effective rebuttal. It could be argued that, in complex proofs, math-
ematicians do sometimes have non-trivial qualifiers and rebuttals – such as
‘unless there is a flaw in my argument’ – but the aim of these forms of
argument is to minimise this. Thus, while for professional mathematicians
the inductive and structural-intuitive warrant types aim to reduce uncertainty,
the deductive warrant aims to remove uncertainty. Although this is the case
for professional mathematicians, it may not be for all students: the potential
for constructing an inappropriate matching between deductive warrants and
modal qualifiers is discussed later in the paper.

Examples of deductive warrants were present throughout our data. For ex-
ample, when Andrew was working on Conjecture 2 he produced the following
argument (having used a different approach in Conjecture 1):

ANDREW: OK, so if n is perfect, then kn is abundant, for any k. OK, so what does
it, yeah it looks, so what does it mean? Yeah so if n is perfect, and I take any
pi which divides this n, then afterwards the sum of these pi s is 2n. This is the
definition. Yeah, ok, so actually we take kn, then obviously all kpi divide kn,
actually, we sum these and we get 2kn. Plus, we’ve got also, for example, we’ve
also got k dividing this, dividing kn. So we need to add this. As far, as basically,
there is no disquiet, k would be the same as this. Yeah. And, how would this
one go? [LONG PAUSE]

INTERVIEWER: So we’ve got the same problem as up here [CONJECTURE 1] but in
general? With a. . . ?

ANDREW: Yeah. Umm, can we find one? Right, so I don’t know. Some example.
INTERVIEWER: I’ve got some examples for you.

ANDREW: You’ve got examples of some perfect numbers? OK, so 12, we’ve got
1 + 2 + 3 + 4 + 6, then, ok, +12. [MUTTERS] But this is not? OK, perfect, I
wanted perfect numbers. OK, so let’s say 6. Yeah, and we’ve got 1 + 2 + 3 + 6
and actually we take 2 × 6 which is 12. Then yes, I’ve got divisors 2, 4, 6, 12.
Plus I claim we’ve got also divisors. Yeah! actually it’s simple because, err,
because err, the argument is that we’ve also got 1 which is divisor, and this
divisor is no longer contained here if we multiply.

There are two quite distinct stages to this argument, both use a deductive
warrant. The first establishes that n must be either abundant or perfect. At
this stage Andrew realises that he needs to reject the perfect case, and uses
the generic example of 2 × 6 to do this (Balacheff, 1988). In both stages
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the conclusion follows necessarily from the data. Although Andrew believed
that no rebuttals were possible, in fact there is a possible rebuttal, the case
where k = 1. When prompted by the interviewer, he immediately recog-
nised this trivial case, and modified the conclusion appropriately. Note, again,
that though formally Andrew’s conclusion was incorrect until he made this
modification, his deductive warrant had effectively removed his uncertainty.

Not all deductive warrants are of this form, where conclusions are deduced
from data by logical implications. Sometimes, for example, participants used
counterexamples to warrant their conclusions. Here is part of Edward’s ar-
gument in Conjecture 1. After he had successfully shown that all proper
multiples of 6 are abundant, he turned his attention to 6 itself:

EDWARD: Yeah. [ . . . ] so this leaves the special case of n = 6. . . which is a perfect
number, I just know that. Or is it? Hmm. 1 + 2 + 3 + 6 = 12, yeah, so it’s a
perfect number. Abundant, does that mean greater or equal to, or just greater?
So, that’s, that’s a counterexample, so when n = 6 it’s not an abundant number.
So. . . we’ve got rid of the ‘if’.

The key distinction, then, in the manner in which participants used de-
ductive warrants compared to those discussed in previous sections, is that
deductive warrants were matched with absolute modal qualifiers and that no
rebuttals were admitted. They are the types of warrants discussed by Aberdein
(2005) during his analysis of formal mathematical proofs. However, as we
demonstrate in the next section, this appropriate matching between deductive
warrants and absolute modal qualifiers may not always happen.

7. Discussion.

In the previous three sections three different warrant-types have been dis-
cussed, with examples of the use of all three by highly talented mathematics
research students. We do not claim that this threefold classification is exhaus-
tive: it is possible that the type of problems used in this research restricted
the range of warrant-types we were likely to uncover; putting the participants
in a situation which modelled mathematical research processes more realisti-
cally, or choosing problems from a different area, might have led to us seeing
different types of argumentation being used. Indeed, we do not even argue
that a warrant may belong to a distinct warrant-type. For example, Chris’s
argument, given in Figure 4, seems to combine both inductive properties (he
quantitatively evaluated several examples) with structural-intuitive properties
(he believed that number theory tends to be monotonic).

The restricted form of Toulmin’s (1958) scheme used by earlier researchers
to model mathematical argumentation constrains us to think only in terms of
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arguments with absolute conclusions. In our data we see talented mathemati-
cians using a much wider range of argumentation; a range which needs the
full Toulmin scheme to model. The key, however, is that these wider forms
of argument are not put forward by the participants as proofs: the inductive
and structural-intuitive warrants they use are paired with entirely appropriate
modal qualifiers which indicate they appreciate they have reduced but not
removed their uncertainty in the conjectures. A proof stage (which can gener-
ally be modelled with empty or trivial qualifiers and rebuttals) appeared only
later in the development of their arguments.

7.1. MATHEMATICAL DEVELOPMENT.

When developing their proof schemes framework, Harel and Sowder (1998)
argued that in order to succeed at advanced level mathematics students must
replace inductive, transformational and external proof schemes with a deduc-
tive scheme:

“[T]he goal of instruction must be unambiguous; namely, to gradually
refine current students’ proof schemes toward the proof scheme shared
and practiced by the mathematicians of today” (Harel, 2001)

Similar arguments have been made by other researchers. Tall (2004), for
example, argued that as students deepen their cognitive development, their
‘warrants for truth’ (in the sense of Rodd, 2000) also deepen, hopefully with
the result that formal proof becomes the only acceptable warrant. Tall referred
to this process as moving through the ‘three worlds’ of mathematics: from the
embodied and proceptual worlds through to the formal-axiomatic world (Tall,
2004).

We would certainly agree with Harel (2001) and Tall (2004) when they
suggest that no student will be successful at advanced mathematics if they ac-
cept a conclusion with certainty on the basis of non-deductive warrants. How-
ever, we argue that our data indicates these non-deductive warrant-types play
a crucial role in mathematical argumentation, as long as they are paired with
appropriate modal qualifiers. We suggest that, when a person enters Tall’s
(2004) formal-axiomatic world, or when they develop Harel and Sowder’s
(1998) axiomatic-deductive proof scheme, rather than reducing the range of
warrant-types they use, they retain the use of the warrants that have been used
in previous ‘worlds’ or ‘proof schemes’, but they qualify them appropriately
(where appropriateness is defined by expert practice). Our data show that
mathematicians do not abandon inductive and intuitive arguments; instead,
they learn to pair them with appropriate modal qualifiers and rebuttals. It is
this pairing that is so crucial to successfully developing as a mathematician.
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7.2. INAPPROPRIATE WARRANT-QUALIFIER PAIRINGS.

There is evidence that this key skill – the ability to appropriately pair warrants
with modal qualifiers – is not always present. In this section we briefly dis-
cuss two examples taken from the literature which show students constructing
inappropriate pairings.

Weber (2003) reported a student’s purported proof of the statement “for
every odd integer n, n2

− 1 is divisible by 8”:

“12
− 1 = 0 which is divisible by 8. 32

− 1 = 8 which is divisible by 8.
52

− 1 = 24 which is divisible by 8. And so on. Therefore if n is odd,
n2

− 1 is divisible by 8.”

As a consequence of their use of an inductive warrant, Harel and Sowder
(1998) would describe this student as having an inductive proof scheme, and
in terms of Tall’s (2004) framework they are yet to reach the axiomatic-formal
world. In terms of our framework for modelling mathematical argumentation,
this argument has a modal qualifier which is inappropriately matched with its
warrant. The key difference between our perspective and that of Harel and
Sowder and Tall, however, is our examination of the ways in which non-
deductive warrants may be used appropriately in mathematics. The use of an
inductive warrant is not inappropriate per se, it is only when it is inappro-
priately paired with an absolute modal qualifier that the argument becomes
problematic.

In this case, Weber’s (2003) student inappropriately paired a non-deductive
warrant with an absolute qualifier, but there are also reported cases of students
doing the reverse: pairing deductive warrants with non-absolute qualifiers.

As part of his work on learning styles, Simpson (1995) discussed re-
sponses to the so-called ‘Arithmagons’ problem (Mason et al., 1982):

“A secret number is assigned to each vertex of a triangle. On each side
of the triangle is written the sum of the secret numbers at its ends. Find a
simple rule revealing the secret numbers.”

Simpson reported one student’s behaviour:

“Having been asked to prove a result which she had stated after some
time working on the [Arithmagons problem] she wrote a quite delightful
little proof which, though just essentially algebraic manipulation, made
me feel that she had grasped the essence of the problem and gave a quite
general solution.

On the next page, she wrote ‘I wonder if it works for big numbers?’ ”
(Simpson, 1995; see also Duffin and Simpson, 1993).

This student, despite having presented an apparently perfect deductive proof,
did not pair it with an absolute modal qualifier. For her, the deductive warrant
she had written only allowed her to conclude that the statement was true
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about small numbers. The possibility that large numbers could form a rebuttal
remained a concern for her.

In short, this student used a deductive warrant successfully, but was un-
able to qualify it suitably. Similar examples have been reported by Fischbein
(1982). Such examples indicate that the use of deductive warrants alone is
not sufficient in advanced mathematics: they must be paired with appropriate
modal qualifiers.

8. Final remarks.

Earlier researchers have attempted to model mathematical arguments using
a restricted version of Toulmin’s (1958) argumentation scheme, in which the
role of the modal qualifier and rebuttal were downplayed, marginalised or
omitted entirely. In this paper we have argued that this restricted version is
inadequate for accurately modelling the full range of arguments constructed
by mathematics students. Our data, collected from highly successful post-
graduate mathematics students, shows frequent use of non-deductive warrants
to deduce non-absolute conclusions and highlights that these forms of argu-
ment are crucial for them in the process of solving the problem. This type of
argumentation would be impossible to accurately model using the restricted
scheme advocated by earlier researchers.

Furthermore, we have argued that omitting the role of the modal qual-
ifier in models of mathematical arguments constrains us to consider only
arguments with absolute conclusions, and, consequently, to undervalue non-
deductive warrants in advanced mathematics. Whereas the various non-deductive
proof schemes described by Harel and Sowder (1998) certainly have no place
in advanced mathematics classes, we suggest the equivalent non-deductive
warrant-types do have an important role to play in mathematical argumen-
tation. While the purpose of this paper was not intended to directly affect
pedagogy, examining the nature of the arguments put forward here suggests a
change: perhaps the goal of instruction should not be to remove any trace of
inductive or intuitive reasoning from students’ arguments, but to ensure that
they qualify these sorts of warrants appropriately.

Appendix

Conjecture 1. A number is abundant iff it is a multiple of 6. False. 20 is a
counterexample to the ‘only if’ statement, it is abundant, but not a multiple
of 6. 6 is a counterexample to the ‘if’ statement, it is a multiple of 6 and is
perfect, not abundant. However, all multiples of 6 apart from 6 are abundant.
Take n = 6k for some k 6= 1. Then n has, at least, 1, k, 2k, 3k, 6k as distinct
divisors which sum to greater than 12k = 2n.

MQP9h_dist.tex; 9/08/2007; 18:55; p.19



20

Conjecture 2. If n is perfect, then kn is abundant for any k ∈ N. False. If
k = 1 then kn is clearly not abundant. The statement is true provided k 6= 1.
Suppose n is perfect with divisors d1, d2, . . . , dr (i.e. 2n = d1+. . .+dr ). Then
kn has amongst its divisors 1, kd1, kd2, . . . , kdr , and these sum to 2kn + 1 >
2kn. So kn is abundant.

Conjecture 3. If p1 and p2 are primes, then p1 p2 is not abundant. True. If
p1, p2 are distinct, we need to show that 1 + p1 + p2 + p1 p2 ≤ 2p1 p2. This
can be rearranged to (p1 −1)(p2 −1) ≥ 2 which is clearly true as at least one
of p1, p2 is greater than 2. If p1 = p2, the inequality reduces to 1 + p1 ≤ p1

2

which is true for all integers greater than 1.
Conjecture 4. If n is deficient, then every divisor of n is deficient. True.

Consider the contrapositive: if n is not deficient, then kn is not deficient.
Suppose n has divisors d1, . . . , dr and that d1 + . . . + dr ≥ 2n. Then the set
of divisors of kn contains 1, kd1, kd2, . . . , kdr . And we know that 1 + kd1 +

. . . + kdr ≥ 2kn + 1. Therefore kn is not deficient.
Conjecture 5. If n and m are abundant, then n + m is abundant. False. 20

and 12 are abundant, but 32 is deficient (1+2+4+8+16+32 = 63 < 2×32).
Conjecture 6. If n and m are abundant, then nm is abundant. True. This

is a specialisation of the claim that all multiples of abundant numbers are
abundant, so it is true.

Conjecture 7. If n is abundant, then n is not of the form pm for some
natural m and prime p. True. Consider the contrapositive: if n is of the form
pm then n is not abundant. The divisors of pm are 1, p, p2, . . . , pm , so we
need to show that 1+ p+ . . .+ pm

≤ 2pm . Trivially pm(p−1) ≥ pm
−1. But

pm
−1 = (pm−1

+pm−2
+. . .+p+1)(p−1), so pm

≥ pm−1
+pm−2

+. . .+p+1
and hence 2pm

≥ pm
+ pm−1

+ pm−2
+ . . . + p + 1.
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Notes

1 Toulmin’s (1958) use of the word ‘warrant’ is not identical to how the term has been used
by some of the mathematics education literature. In the terms we will use in this paper, Rodd
(2000) saw a warrant as removing uncertainty, whereas Toulmin was more flexible, accepting
that a warrant can be qualified with a modal qualifier to reduce uncertainty.

2 There has been some discussion in the mathematics education literature regarding the
differences and similarities between ‘argumentation’ and ‘proof’ (e.g. Boero, 1999, Duval,
1991). Adopting the standard terminology used by Toulmin (1958), we, and presumably other
researchers who employ his scheme, interpret mathematical proof to be a type of argument.
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3 Here σ(n) denotes the sum of the divisors of n.
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