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Cognitive Robots 
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Abstract  
Mental rotation concerns the cognitive processes that allow an agent to mentally rotate the image of an object in 
order to solve a given task, for example to say if two objects with different orientations are the same or different. 
Here we present a system-level bio-constrained model, based on neurorobotics, that provides an embodied 
accounts of mental rotation processes relying on neural mechanisms involving motor affordance encoding, motor 
simulation, and the anticipation of the sensory consequences of actions (both visual and proprioceptive). This 
model and methodology are in agreement with the most recent theoretical and empirical research on mental 
rotation. The model was validated through experiments with a simulated humanoid robot (iCub) engaged in 
solving a classical mental rotation test. The results of the test show that the robot is able solve the task and, in 
agreement with data from psychology experiments, it exhibits response times linearly dependent on the angular 
disparity between the objects. This model represents a novel detailed operational account of the brain 
sensorimotor mechanisms that might underlie mental rotation. 

Keywords  
Mental rotation, computational robotic model, neurorobotics, neural mechanisms, affordances and forward 
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1 Introduction 
Since it was first described by Shepard and Metzler 
(1971), mental rotation has attracted enormous 
research interest in the field of cognitive psychology. 
This is in part due to the attempts to understand why 
object comparison using imagery seems to obey the 
same physical principles as overt rotation, considering 
that humans are capable of using imagery that is not 
limited by the laws of physics (Kosslyn, 1994). In a 
typical mental rotation task, human participants are 
asked to make a decision on whether two objects 
presented with different rotational orientations are an 
identical or a mirror version of each other. The results 
show that the response times (RTs), as well as the 
errors, of the participants' answers, are highly 
dependent on the angular disparity between the two 
stimuli (Shepard & Metzler, 1971; Wexler, Kosslyn, 
& Berthoz, 1998). In particular, participants show 
RTs that linearly increase with the disparity angle 
between the orientations of the objects. The number 
of errors also increases with the disparity increment. 
The most accredited explanation of these results is 
that the participants might rotate a “mental” image of 
one object until its orientation matches the one of the 
other object (Kosslyn, 1994). Once mentally rotated,  

 
 
the participants can ascertain if the two objects are 
identical or not. 
 Early attempts to explain brain mechanisms 
underlying mental rotation processes relied upon a 
visuo-spatial perception hypothesis (Shepard & 
Metzler, 1971; Corballis & McLaren, 1982). 
According to this view, mental rotation is performed 
on the basis of processes mainly involving the internal 
manipulation of the visual and spatial features of 
objects. This view makes the prediction that these 
processes mainly implicate brain areas underlying 
visual and spatial perception. Contrary to this, recent 
behavioural and neuroscientific evidence indicate also 
an important involvement of motor processes, aside 
the perceptual ones. In this respect, several behavioral 
works show interferences between action planning/ 
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execution and mental rotation processes (Wexler, 
Kosslyn, & Berthoz, 1998; Wohlschläger & 
Wohlschläger, 1998; Wohlschläger, 2001). In a 
typical experiment, participants are asked to perform a 
classical mental rotation task (Shepard & Metzler, 
1971) while performing a manual rotation on a 
custom joystick in both congruent and incongruent 
conditions with respect to the direction of rotation of 
the mental image. The results show that RTs (and 
error rates) are faster (lower) when the direction of the 
two rotations (manual and mental) is congruent, 
whereas they are slower (higher) when they are 
inconsistent (Wexler, Kosslyn, & Berthoz, 1998; 
Wohlschläger, 2001). This supports the idea that 
motor processes play a key role in mental rotation as 
otherwise it would be difficult to explain why the 
production of overt motor actions can interfere with 
mental rotation only when the two are incongruent. 
 Single cell recordings in the monkey's motor cortex 
also supply direct neural evidence for the involvement 
of motor processes in mental rotation (Georgopoulos 
et al. 1989). In humans, a number of neuroscientific 
studies using different research techniques, such as 
transcranial magnetic stimulation (TMS), event-
related potentials (ERPs), and functional magnetic 
resonance imaging (fMRI), show an involvement of 
lateral and medial premotor areas (lateral premotor 
cortex/precentral gyrus and supplementary motor 
area) during mental rotation (Lamm et al. 2007; 
Richter et al. 2000). The fMRI study of Richter and 
colleagues (Richter et al. 2000), for example, shows a 
significant correlation between the hemodynamic 
response in lateral premotor areas with the response 
time of participants involved in the classical Shepard 
and Metzler mental rotation task (Shepard & Metzler, 
1971). This result suggests that mental rotation is an 
imagined (covert) object rotation action rather than an 
image transformation relying exclusively upon visuo-
spatial processing. This claim has been further 
confirmed by other studies (cf. (Wohlschläger, 2001; 
Lamm et al., 2007; Lamm, Fischmeister, & Bauer, 
2005). 
 Importantly, despite these consistent results about 
the involvement of motor processes during mental 
rotation, we still lack a comprehensive hypothesis of 
the specific brain mechanisms involving motor 
simulation that might underlie mental rotation 
processes. One proposal that might help to explain the 
role of premotor areas during mental rotation pivots 
on the concept of affordance (Gibson, 1979) and its 
behavioural manifestations (Tucker & Ellis, 2001), 
brain correlates (Rizzolatti & Craighero, 2004), and 
models (Caligiore et al., 2010; Fagg & Arbib, 1998). 
According to this perspective, affordances are the 
possible actions that objects and the environment 
offer to a certain agent. In particular, the visual 

presentation of objects triggers the activation, within 
the parietal-premotor circuits, of internal 
representations (the representations of affordances) 
needed for the on-line guidance of actions over them 
(Grafton et al., 1997; Grèzes & Decety, 2001). In this 
respect, the activation of affordance representations 
might be involved in the mental rotation processes as 
in brain it plays key role in the first stage of motor 
preparation. 
 Another hypothesis on how motor areas might 
participate in mental rotation comes from the theories 
(Grush, 2004), neuroscientific evidence (Miall, 2003), 
and computational architectures (Wolpert & Kawato, 
1998) on motor control based on forward models. 
This perspective suggests that preparatory/planning 
covert motor processes play a key role in the mental 
simulation and understanding of the environment, and 
involve the same brain motor areas involved in overt 
action execution. This view would suggest that mental 
rotation involves the same motor areas and 
mechanisms used in the physical execution of active 
rotations of objects (e.g., manual rotations), and the 
imagined anticipation of their sensory consequences. 
 So, both views would give important indications on 
the possible involvement of motor areas in mental 
rotation phenomena. However, they would both still 
be limited in that mental rotation is a complex process 
requiring the coordinated operation of several distinct 
elemental cognitive processes. These processes 
include (Lamm et al., 2007): (a) stimulus encoding 
and mental image generation, (b) planning and 
execution of the mental rotation, (c) comparison 
(matching) of the rotated stimulus with the target 
stimulus, and finally (d) execution of the 
same/different response. 
 In this article we propose a system-level 
computational model suggesting a specific operational 
hypothesis on how the information processes taking 
place in brain sensorimotor areas might interplay to 
perform mental rotation. This hypothesis first draws 
ideas from the affordance and forward model view 
introduced above and integrates and specifies them to 
make them applicable to the explanation of mental 
rotation. Second, it introduces some additional 
elements to allow the implementation of not only the 
processes “a-b” indicated above (mental rotation 
proper), but also “c-d” (control and exploitation of 
mental rotation processes). 
 To this purpose, the model leverages on the 
computational model “TRoPICALS” (Caligiore et al., 
2010; Caligiore et al., 2012) developed to study 
affordance compatibility effects (Tucker & Ellis, 
2001). TRoPICALS is a good starting point to design 
a model on mental rotation as it reproduces some key 
functions of the parietal-premotor circuits, crucial for 
stimulus encoding and extraction of object 
affordances (process “a”) and also includes important 



features of the prefrontal-premotor circuit pivotal for 
managing other key aspects of mental rotation 
(processes “c” and “d”). However, it cannot perform 
mental simulations as it lacks the needed feedback 
circuits. In this respect, to address the core mental 
rotation process (process “b”) the model proposed 
here enhances the functions of TRoPICALS by 
developing some key new features. First, it is 
endowed with premotor-parietal feedback loops that 
allow it to implement mental simulation and sensory 
prediction based on forward models. Second, it is 
endowed with enhanced parietal functions for 
encoding somatosensorial information important to 
elaborate anticipated proprioceptive signals. Third, it 
is endowed with an improved visual and motor system 
allowing it to scale up to more realistic 3D 
environments and robotic setups. 
 The rest of the paper is organized as follows. Sec. 
II discusses the main features of the model, the 
learning algorithms used to train it, and the robotic set 
up used validate it. Sec. III presents and discusses the 
results. Finally, Sec. IV drives the conclusions. 

2 Methods 

2.1. The simulated mental rotation 
experiment: participant, stimuli and task  

Figure 1 shows the simulated humanoid robot iCub 
(Tikhanoff et al. 2008) we have used as a participant 
to model psychological experiments on the 
embodiment bases of mental rotation. It replicates the 
same body and control scheme of the real iCub robot 
(Sandini, Metta, & Vernon, 2007), which is an open 
source robotic platform built for studying cognitive 
development in humans. iCub looks like a human 3-5 
years old child, in great part designed to be 
constrained on humans’ body structures and 
movements. Thanks to these features, the iCub 
platform is widely used as benchmark cognitive 
robotics tool in many robotics laboratories (Cangelosi 
& Schlesinger, in press). 
 The iCub simulator provides visual perception via 
simulated cameras and can perform actions 
corresponding to specific motor commands. Each arm 
of the iCub has 16 joints. Here we use the joint 
number 5 of the right arm affecting the robot wrist’s 
angle. If the robot holds an object with the right hand, 
rotating the wrist will change only orientation in the 
object plane. During the mental rotation task the 
model has to compare two visual stimuli having 
different orientation. 
 The stimuli are colored in red to make easier their 
detection by the iCub camera. The edge detection 
method is used as an early visual processing stage. 
The image is centred on a single object, and the red 

color filter is applied. The edges of the object are 
extracted with the Canny edge detection technique 
(Canny, 1986), using the OpenCV library. The output 
from the edge detection process is converted as 
activation level to the neural network, input units at 
the beginning of the simulation. The left object is 
considered to be the target stimulus, whereas the right 
one represents the current stimulus which has to be 
mentally rotated (left stimulus to PP, right stimulus to 
PFC_1, see figure 2). The eyes’ position of the iCub is 
fixed, with the object centered on the fovea 
throughout the experiment. Regarding the motor 
response, the iCub’s wrist angle can rotate in the 
range of [-90°; 90°]. Counter-clockwise orientations 
are indicated by positive values, while clockwise 
orientations are indicated by negative values. 
 

 
Figure 1.  The iCub simulator, its environment and a 
sample pair of stimuli. 

 During the experiment pairs of target-current 
object images having different orientations are used. 
The objects are displayed in the space in front of iCub 
(Figure 1). For the training, the rotation of the 
comparison object is varied by 30° per pair, so that 
each stimulus could assume seven orientations (-90°, -
60°, -30°, 0°, 30°, 60°, 90°). During the process of 
affordance training, only one stimulus is shown in the 
left position, with the experimenter varying the 
orientation of the object and assigning a 
corresponding target position for the robot's wrist 
angle. In the testing session, two stimuli are displayed 
in the left and in the right positions. In each trial, the 
rotation of the left image is systematically varied, 
while the right one is presented with several degrees 
orientations. 
 After training, the generalization ability of the 
model is tested using 196 pairs of stimuli, which are 
supplied in sequence to the model. The experiment 
has been repeated 10 times to test the consistency of 
the model. Each time the pair of stimuli is changed, 
the model internally rotates the left stimulus to match 
with the right one and produce an answer. Three types 
of information are recorded during the experiment: 
the response times (RTs) which is the result of a 
neural dynamical competition (see sec. 2.2.2 and cf. 
(Caligiore et al., 2010; Erlhagen & Schöner, 2002); 



the answer for the current mental rotation task (see 
sec. 2.2.2); the successful degree of rotation (the 
maximum number of rotation cycles is set to 10, as in 
some cases the model cannot rotate the image to a 
preferred orientation at the first cycle, thus requiring 
extra rotations). When the number of rotation cycles 
is equal to 10, it indicates that the model cannot 
correctly perform the mental image rotation of the left 
stimulus and will be forced to do the next step 
(matching process) by using the last image. 

2.2. Neural architecture, simulated mental 
rotation, learning phase  

2.2.1 Neural Architecture 
The neural network model (Figure 2) proposed in this 
article suggests an operational hypothesis about the 
interplay of the visual and motor neural processes 
during mental rotation. To accomplish this aim it 
extends some features of the TRoPICALS model 
(Caligiore et al., 2010). The architecture of the model 
is shown on Figure 2. It consists of four main parts 
corresponding to specific areas of the brain mainly 
involved during mental rotation tasks (Lamm et al., 
2007; Richter et al., 2000): the parietal cortex (PC), 
the premotor cortex (PMC), the prefrontal cortex 
(PFC), and the primary motor cortex (M1). 
 These cortical areas are constituted by neural maps 
activated using population code methods (Pouget, 

Dayan, & Zemel, 2003). The population code theory 
claims that information (e.g., on stimuli and actions) 
is encoded in the brain on the basis of the activation 
of populations of neurons organized in neural maps 
having a broad response field. In particular, each 
neuron responds maximally to a certain value of the 
variables to encode, and then progressively less 
intensely to values (based on a Gaussian function). 
 PC is formed by two distinct areas: the posterior-
parietal cortex (PP) and the somato-sensory cortex 
(SS). The neurons of the PP map (32 x 32 neurons) 
encode the shape and the orientation of the object that 
has to be mentally rotated (Rizzolatti & Craighero, 
2004). The neurons of the SS map (31 x 100 neurons) 
elaborate the proprioceptive signal related to the robot 
wrist orientation (Caligiore et al., 2010). The PMC 
region is formed by 2 neural maps PMC_1 (31 x 100 
neurons) and PMC_2 (10 x 20 neurons), encoding 
motor programs related to different arm parts 
(Rizzolatti & Craighero, 2004). PMC_1 neurons 
encode the wrist posture of the robot corresponding to 
the object orientation encoded in PP. PMC_2 neurons 
encode the hand posture that the robot produces to 
accomplish the mental rotation results (i.e. to indicate 
if two objects are same or different). The PFC also 
consists of 2 maps, respectively implementing the 
working memory (PFC_1, 32 x 32 neurons) and the 
matching process area (PFC_2, 64 x 64 neurons) 
(Fuster, 2001). 

 
 

 
Figure 2. The model of mental image rotation. Each box represents the model’s components. The arrows represent information 
flows from one component to another. The arrows accompanied by the letter “C” are the connections learned by SOM learning rule 
(dash-dot arrows) or by Hebbian learning rule (solid thick arrows). 



 The visual input for the model is the image of a 
simulated camera of one of the eyes of a simulated iCub 
robot. The edge information for the object on the left is 
passed to the PP, while the one for the “target object” on 
the right is for the PFC_1. The target object is used as a 
reference for rotational purposes. The robot has to 
mentally rotate the object encoded by PP to check if it is 
the same or it is different with respect to the target object 
stored within PFC_1. PFC_1 supplies also a bias signal to 
PMC_1 to lead the full activation (with a level of neural 
activation of 1.0) of one affordance among the elicited 
ones so transforming it into the representation of a 
desired wrist posture. This cluster represents the desired 
posture that the robot has to (mentally) reach to make a 
mental rotation useful to overlap the image within PP 
with the target image within PFC_1. PFC_2 is the core 
for the matching process. It is formed by a Kohonen self-
organizing map (SOM) (Kohonen, 1997) which takes 
inputs from the PP and PFC_1. At the end of the 
matching process, PFC_2 neurons trigger PMC_2 
activation whose neurons in turn encode the answering 
behaviour. 
 M1 consists of two areas M1_1 and M1_2. M1_1 is a 
SOM map (64 x 64 neurons) responsible for encoding a 
combination of current posture (from SS) and desired 
orientation (from PMC_1). The neural activation of 
M1_1 is used as input from SS during the mental rotation 
process (see below) as well as to trigger a wrist rotation 
through M1_2. This is a neural array formed by three 
(clusters of) neurons (N1, N2, N3). The activation of N1 
causes a 30° clockwise rotation of the wrist; the 
activation of N3 causes a 30° counter-clockwise rotation 
of the wrist; the activation of N2 does not lead any 
rotation of the wrist. 

2.2.2 The mental rotation process simulated by the 
model 

This section briefly summarizes how the model 
reproduces the mental rotation processes. The follows 
points refer to the model functioning after the learning 
phase. 
 Affordances pre-activation (C1). The left object image 
encoded by PP neurons pre-activates all the possible 
object affordances within PMC_1 (wrist postures for a 
given object) at the same time. Since one object could 
assume 7 different orientations, we have 7 different 
clusters of neurons pre-activated within PMC_1. The 
affordances pre-activation mimics the preparatory 
processes for actions present when people see an object. 
 Affordances selection (C6). PFC_1 supplies a bias 
signal to PMC_1 to lead the full activation (with a level 
of neural activation of 1.0) of one affordance among the 
elicited ones so transforming it into the representation of 
a desired wrist posture. This cluster represents the desired 
posture that the robot has to (mentally) reach to make a 

mental rotation useful to overlap the image within PP 
with the target image within PFC_1. 
 Mental rotation by the forward model and by the 
proprioceptive signal (C7, C8 and after this C10, C2). 
The desired wrist posture (encoded by PMC_1) and the 
current wrist posture (encoded by the SS) are combined 
within M1_1 (C7, C8). The SOM cluster within M1_1 
works as a forward model with respect to SS evoking a 
Gaussian cluster within SS corresponding to the next 
wrist posture (C10). The SS map is also activated by 
current proprioceptive signal due to the wrist movement. 
The overall cluster within SS activates the new rotated 
image within PP (C2) causing a mental rotation. 
 In line with empirical evidence (Chu & Kita, 2008; 
Chu & Kita, 2011) the current proprioceptive signal 
affects the mental rotation processes as the overall 
activation of SS depends by both the signal from the 
forward model (C10) as well as by the current wrist 
proprioceptive signal (Figure 2). We assume that 
attention mechanisms might drive the system to be more 
focused on the mental rotation task rather than to the 
effect of its wrist movements. The effect of this attention 
focus is simulated by considering (within SS) the signal 
from the current proprioception weaker than the signal 
from the forward model. 

2.2.3 Learning process 
Connections between maps are trained using Hebbian 
learning and SOM competitive learning which are widely 
accepted as a biologically plausible learning mechanism 
mainly involving cortical areas (Doya, 2000). The 
specific Hebbian learning method used in this model is 
the Oja rule (Oja, 1982), a Hebbian like equation that 
solves the problem of the basic Hebb rule causing a 
weights growing without bound. The equations used to 
implement the Hebbian learning process are as follows: 
 

∆wij   =   η ai (aj - wij);   w(t)ij  =   w(t-1)ij  +  ∆wij       (1) 

where ∆wij denotes the weight's change from neuron i to 
neuron j, ai and aj denote activation potential of neuron i 
and j respectively, η denotes the learning rate which is set 
to 0.15, and w(t)ij is a weight value at a particular time 
step. The SOM learning rule has been implemented using 
the follow equation: 
 

w(t)i  =   w(t-1)i  +  Θ(t-1) i η(t-1) i (v(t-1) i -w(t-1 ) i)  (2) 

where w(t)i  denotes current weight value of neuron i at 
time t, w(t-1)i  denotes an old weight value of the neuron 
i,  Θ denotes the amount of influence on distance between 
neuron i and the best matching neuron in a map, η 
denotes the learning rate which is set to 0.15. Note that, 
Θ and η decrease over time. The Table 1 shows the 
parameters used for learning of the various connections. 
  

 
 



Table 1. The parameters used in the network. 
Connection Type number of patterns Training cycles Type of output 
C1 Hebb 14 84 Cluster of activity 
C2 Hebb 14 84 Image 
C3 & C4 Kohonen 98 10,000 Cluster of activity 
C5 Hebb 196 1,176 Cluster of activity 
C6 Hebb 14 84 Cluster of activity 
C7 & C8 Kohonen 196 10,000 Cluster of activity 
C9 Hebb 98 1,960 Cluster of activity 
C10 Hebb 98 1,960 Cluster of activity 
 
 Now we describe the training phases leading the 
model to perform the mental rotation task. The learning 
of the sensory-motor mapping (C7, C8, C9) and of the 
forward model (C10, C2) is accomplished at the 
beginning of the robot life. The aim of the sensory-motor 
learning phase is to obtain the values of the connection 
weights between SS-M1_1, between PMC_1-M1_1 and 
between M1_1-M1_2, useful to get a wrist rotation 
(encoded by M1_2) driving the current wrist posture 
(encoded by SS) towards the desired wrist posture 
(encoded by PMC_1). 
 The learning phase pivots on the follows “motor 
babbling procedure”: (a) the robot assumes a random 
wrist posture within [-90°, 90°], which is encoded by a 
Gaussian cluster within SS; (b) the random generator 
randomly decides the direction of rotation (DR) and the 
number of rotations (NR). For example, if DR = 1 and 
NR = 3 the robot has to clockwise rotate its wrist of 90° 
(3 x 30°). DR = 1 causes the activation of the neuron N1 
of M1_2. NR = 3 implies that N1 is activated for three 
sequential steps. We assume that “one time step” is the 
time the robot needs to rotate its wrist of 30°; (c) the 
value of the wrist rotation is used to compute the total 
rotation (in this case 3 x 30° = 90°) and, based on the 
current posture, it is used to activate the PMC_1 map as a 
possible desired wrist posture; (d) PP neurons encode the 
current object orientation; (e) at the end of each step the 
Kohonen rule (2) is used to update the connection values 
(C7, C8) in order to obtain different cluster within the 
M1_1 representing all the combinations of the desired 
final wrist posture (PMC_1) and the current wrist posture 
(SS); (e) aside the SOM M1_1, at the end of each step we 
also train the forward model (C10, C2). Each SOM 
cluster (M1_1) is associated by the Hebbian rule (1) with 
the following wrist posture cluster (SS) which is in turn 
associated by (1) with the corresponding object 
orientation (PP) (this corresponds to perform a rotation 
with an object in the hand and associating the felt 
proprioception with the seen object image); (f) at the end 
each step the clusters activated within the SOM M1_1 are 
associated to M1_2 activated neuron (C9) using (1). The 
use of the SOM M1_1 is necessary to learn all the 
possible combinations between current posture (SS), 
desired posture (PMC_1), and control signal (M1_2). 
Overall there are 7 possible desired postured encoded in 
PMC_1 and 7 x 14 possible combinations to be encoded 
in M1_1. 

 
 Learning the affordances pre-activation (C1). The 
training pattern is constituted by 2 series of rotating 
images which are 30 degrees different per step. Each 
image is loaded in the PP area as activity level of a set of 
neurons in the map. The aim of the training process is to 
create a mapping between the input image (PP) and all 
the possible wrist posture of the robot encoded by cluster 
of activities (Gaussian tuning curve) within PMC_1. 
Importantly, the signal from PP pre-activates the clusters 
within PMC_1 with a value of 0.2 (the pre-activation is 
easily obtained by opportunely setting the max value of 
the PP-PMC_1 connection weights). This means that the 
object pre-activates several affordances (and not only 
one). The signal from PFC_1 allows the full activation, 
and hence the selection, of one cluster (one affordance) 
according the organism's goal (in our case the goal is 
given by the target image within PFC_1) (cf. Sec. 2.2). 
The training process is implemented using the Hebbian 
learning rule (1). 
 Learning the affordances selection (C6). The training 
pattern is formed by 2 series of rotating images which are 
15° different per step. Each image is loaded into a PFC_1 
map as activity level of a set of neurons in the map. An 
important difference with respect to the pre-activation of 
affordances training phase discussed above, is that here 
the aim of the training process is to create a mapping (by 
the Hebbian rule (1)) between specific target image 
(PFC_1) and specific wrist posture of the robot encoded 
by clusters of activities (Gaussian tuning curve) within 
PMC_1. In this way the signal from PP pre-activates 
within PMC_1 all the possible affordances (i.e. the 7 
possible desirable wrist postures) related to the seen 
object, whereas the signal from PFC_1 supplies the 
crucial bias signal to select the desired wrist posture 
related to the target object. 
 Learning the matching and the answering processes 
(C3, C4, C5). The connections from PP and PFC_1 to 
SOM PFC_2 (C3, C4) are responsible for the matching 
process. When the network generates a mental image in 
the PP, having the same degrees rotation of the target 
image encoded by PFC_1, then the process of learning is 
triggered. The connections link two maps, one is PFC_1 
(target image), which is set at the beginning of the 
simulation, and another is PP (the mental image). A 
training set for PFC_2 is a combination of all the possible 
neural representations for the stimuli of each input. A 
neural activity in PFC_2 forms a salient cluster with 



respect to the two specific inputs. As there are 14 
possible images in each map, four 196 clusters will be 
formed. To train PFC_2 has been used the SOM learning 
rule (2). The PFC_2 SOM map is trained in advanced. In 
this way, a response of PMC_2 can be fixed for each 
input couple from PP and PFC_1.  
 The answer triggering process uses the connection C5 
from PFC_2 to PMC_2. When two images are “similar” 
the robot chooses the “YES” answer, otherwise it chooses 
the “NO” answer. The term “similar” means “it is 
approximately the same”. The mental rotation ends when 
the position of cluster of activity in M1_2 is close to the 
stand still position (N2). The most salient cluster in 
PFC_2 is used to produce the answer. Given the 196 
possible combinations of inputs in the matching process, 
half of them are responsible for a "SAME" answer, while 
the remaining half for the "MIRROR" answer. Therefore, 
98 regions in PFC_2 with respect to the same image from 
the PP and PFC_1 cause one cluster in PMC_2. While 98 
other regions within PFC_2 represent different images of 
the two input maps. In this process, PMC_2 is 
responsible for the answer triggering, the motor response 
to press two answer buttons or to produce some utterance 
such as “YES” or “NO”. In the current version of the 
model this motor command is still not used to supply a 
control signal for the iCub but is directly interpreted as 
the response of the system. 
 After learning, an action potential of each neuron in 
the PMC_2 map is calculated by using a dynamic 
competition method (Erlhagen & Schöner, 2002). As the 
connections within a neural map are based on an all-to-all 
pattern, each neuron in the map sends/receives signals 
to/from every neuron. The dynamic competition process 
causes dynamic activities within the map, based on a 
distance between neurons following the rule of long-
range inhibition and short-range excitation. Neighbouring 
neurons which are activates with high potential will 
receive excitatory signals and tend to form clusters of 
activity. In contrast, neurons which are far from the 
active neuron in the neural space will receive an 
inhibition signal and their action potential will be 
depressed. 
 The dynamic competition is also used as a method to 
calculate an agent’s response time (RT), e.g. to compare 
the model results with reaction time data in psychology 
experiments. Unlike a simple feed-forward process in 
layered neural networks, the dynamic competition 
process will be repeated until the action potential of at 
least one neuron in the neural map reaches a specific 
threshold. This process can be used to calculate the 
response time based on the action potential of an 
individual neuron that is most sensitive to a particular 
input. In detail, the number of repeating dynamic 
competition processes was recorded and used as 
simulated response time. One cycle of repeating the 

process will be assumed to be equal to 1 millisecond 
(Caligiore et al., 2010). 

3 Results 
The two stimuli of the simulated mental rotation task can 
be varied in seven angular positions in the range [-90°; 
90°] with a step of 30°. Therefore the maximum angular 
disparity between the two stimuli is 180° and requires six 
rotational steps to mentally overlap the left stimulus to 
the target one. When the number of rotation cycles is 
equal to 10, it indicates that the model cannot correctly 
perform the mental image rotation of the left stimulus and 
will be forced to do the next step (matching process) by 
using the last image; the answer for the current mental 
rotation task (see sec. 2.1). 
 Figure 3(a) shows the mental rotation steps (PP) and 
the matching (PFC_2) and answering (PMC_2) processes 
for a successful trial. In this example the mental rotation 
process takes 5 steps to rotate an image of a stimulus in -
60° to an image of stimulus in 90°, both stimuli are 
object-A. The mental rotation process ends when the 
rotated image reaches 90° orientation. After that, the 
matching process within PFC_2 is performed by using as 
input the neural activity of target image in PFC_1, and 
the rotated image in PP. The neural activation 
representing the matching process within PFC_2 is 
showed in the third column of the last row on Figure 3(a). 
The answering process of PMC_2, is indicated in the 
fourth column of the last row on figure 3a. The cluster of 
activity formed in the left side of the map will cause the 
answer "YES" to be chosen. The blank panels indicated 
that the rotational steps needed in this sample are less 
than 10. 
 In contrast, Figure 3(b) shows one case in which the 
model cannot rotate the left stimulus of 0° into the 60° 
position as the target stimulus. The model fails to rotate 
the image within 10 cycles, and has to do the matching 
process by using the last (un-rotated) image in PP. This 
scheme is similar to a guessing process in human subjects 
when the time to do mental rotation task is over. The 
model fails to rotate the image after 10 cycles: each 
cycle, the image in the PC is changed but cannot goes to 
be the preferred image. This case might be caused by a 
mismatch cluster in SS that is also caused by noisy 
cluster's position of M1_1. As indicates by the panel 
encoding, mental-0, and target in Figure 3(b), the 
direction of rotation is incorrect. 
 Possible failures in rotation and response of the model 
mainly come from the map M1_1 and connection C9 and 
C10. Because there are too many possible patterns to 
train these connections a cluster of active neurons in 
M1_1 might be overlapped in a position of clusters from 
other patterns and that overlapped might generate 
incorrect or noisy outputs. This feature of the model 



simulates the error response often found in human 
subjects. 
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Figure 3. Mental image rotation steps. Where (a) indicates 
rotational steps in the case that the model is able to create a 
series of image changes to reach the target orientation; (b) the 
model is unable to rotate the seen object. The matching and 
answering processes are represented by the neural activation of 
the two bottom right side maps respectively. 
 
 After testing the model with all possible pairs of 
stimuli used in the training set, the model achieve 97.95% 
(192 out of 196) successful rate of rotation of the left 
stimulus to match with the target. The overall percentage 
of correct response (answer triggering) is 85.7% (168 out 
of 196). 
 As indicated by RTs profiles showed in Figure 4(a), 
when the angular disparity is high, the required cycle of 
rotation and RTs also increase. The angular disparity (x-
axis) is calculated by using the difference in orientation 
between the two stimuli. The 0° disparity is calculated 
from the left stimulus orientation that is the same as the 
right one but can be from the different type of object. As 
indicates by the RTs profile, there is no significantly 
effect from the different types of object that are used in 
rotation and comparison process. 

 There are three types of errors that have been 
generated by uncontrolled situations within the model. 
The first is from the situation that the model cannot rotate 
the left stimulus to match with the right one within 10 
rotational cycles. An error from this case will cause 
higher response time than normal cases, and also the 
cause of incorrect response. Secondly, as the connection 
from SS to PP underlies a forward model, a possible 
positioning error in SS directly effects a mental image in 
PP. Therefore, it raises the issue of successful rotation by 
accidence. In detail, when active neurons in M1_1 cause 
an incorrect cluster in SS, by chance, it might be a cluster 
that causes an image of the target of a given task. And 
then the model stops rotational processes. In this case, the 
number of rotation will be less than usual which effects 
response times and also might causes an incorrect 
answer. Lastly, even the model can correctly and 
successfully rotate the left stimulus of a given task, but 
the answer might not be always correct. The first two 
errors are caused by neuron activity within the map M1_1 
while the last error is from the map PFC_2. 
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Figure 4. The comparison of response time profiles. Where 
panel (a) indicates the difference of response time profile 
between different pairs of stimuli (b) shows the difference 
between supplied a match/mismatch of proprioceptive signal to 
SS. Label AA in the panel (a) denotes that the left stimulus is 
object-A and compare with the target that is object-A, while 
AB, BA, and BB are used to denote each specific line in the 
graph by the same meaning as AA. 



 The proprioceptive signal has been simulated by using 
the current wrist's angle of the robot. A specific cluster in 
SS is involved according to the wrist's angle. This process 
acts as a cluster pre-activation for the map SS. When the 
position of the pre-active cluster and of the cluster caused 
by M1_1 are the same or overlapped, it should support 
the rotational processes and the response times will be 
reduced which means the model could do rotation faster. 
In contrast, if they are difference, the dynamic 
competition processes should take a longer time to 
activate the most salient neuron within a map. The match 
situation between the current wrist's angle and the felt 
proprioception (SS clusters) is simply simulated by 
activating the overlapping clusters as described above. 
On the other end, the mismatch situation is caused by the 
chance activation of a cluster in SS (using random 
number generator to choose a specific cluster). The 
response time profiles in Figure 4(b) indicate the 
difference between proprioceptive signal match and 
mismatched with the felt proprioception for object's 
orientation. 

4 Conclusion 
The neurorobotics model proposed in this paper accounts 
for the mental rotation processes based on neural 
mechanisms involving visual imagery, affordance 
encoding and forward models processing. In this respect, 
the proposed approach is in agreement with the most 
recent theoretical and empirical research on mental 
rotation (Lamm et al., 2007).  
 Importantly, in addition to replicating the typical 
mental rotation data, the model is able to account for 
other data which link overt movements and mental 
rotations (Wohlschläger & Wohlschläger, 1998; 
Wohlschläger, 2001) (cf. Introduction). This recent 
empirical evidence claims that the performance of mental 
rotation tasks can be improved by the assistance of hand 
movements, or gestures called “co-thought gestures” 
(Chu & Kita, 2008; Chu & Kita, 2011). Spontaneous 
gestures during the performance of mental rotation 
provide a rich sensorimotor experience to the solving 
strategy in human subjects. Gestures improve the internal 
representation of a spatial transformation of objects. 
Following this hypothesis, the proposed model includes 
proprioceptive units that act as an internal representation 
of wrist movements, which directly affect the mental 
rotation process within the parietal-premotor circuit. 
Interestingly, the model suggests an operational 
hypothesis on how the covert mental rotation neural 
mechanisms pivoting of forward model circuit and overt 
movements might be combined to affect mental rotation. 
 The model is validated within the simulated humanoid 
robot iCub engaged in solving a mental rotation tasks. 
The provides a demonstration that the integration of 

mental rotation capabilities with the affordance and 
embodiment processes (developed in the motor babbling 
training phase) leads to the successful performance of 
mental rotation task. 
 This sets the basis for ongoing work on the extension of 
this model for investigating the role of co-thought 
gestures (Chu & Kita, 2008; Chu & Kita, 2011) to 
support mental rotation tasks, as well as other cognitive 
capabilities as for communicative gesture use and 
language learning. 
 Future extension of this model will also look at the use 
of a variety of objects for mental rotation. The current 
model can only process and rotate the objects of the 
training set. To permit the rotation of unseen objects, the 
object orientation mechanisms will be separated by the 
object identity function, e.g. using an inferotemporal 
cortex (IT) map whose neurons encode objects 
independently of their orientation. 
 Overall the proposed neurorobotic model of mental 
rotation provides a useful computational framework to 
study the integration between mental rotation capabilities 
and embodied cognition, to demonstrate the role of motor 
processes and affordance in mental simulation task. 
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