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Abstract

The interest in business cycle asymmetry has been steadily increasing over the last
�fteen years. Most research has focused on the di�erent behaviour of macroeconomic
variables during expansions and contractions, which by now is well documented. Re-
cent evidence suggests that such a two-phase characterization of the business cycle
might be too restrictive. In particular, it might be worthwhile to decompose the re-
covery phase in a high-growth phase (immediately following the trough of a cycle) and
a subsequent moderate-growth phase. In this paper, the issue of multiple regimes is
addressed using Smooth Transition AutoRegressive [STAR] models. A possible limita-
tion of STAR models as they are currently used is that essentially they deal with only
two regimes. We propose a generalization of the STAR model such that more than two
regimes can be accommodated. It is demonstrated that the class of Multiple Regime
STAR [MRSTAR] models can be obtained from the two-regime model in an elegant
way. The main properties of the MRSTAR model and several issues which might be
relevant for empirical speci�cation are discussed in detail. In particular, a Lagrange
Multiplier-type test is derived which can be used to determine the appropriate number
of regimes. Application of the new model class to US real GNP and US unemployment
rate provides evidence in favor of the existence of multiple business cycle phases.
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1 Introduction

The notion of business cycle asymmetry has been around for quite some time. For example,

Keynes (1936, p. 314) already observed that `the substitution of a downward for an upward

tendency often takes place suddenly and violently, whereas there is, as a rule, no such sharp

turning point when an upward is substituted for a downward tendency'. Following Burns

and Mitchell (1946), conventional wisdom has long held that `contractions are shorter

and more violent than expansions'. Starting with Neft�ci (1984), interest in the subject

of business cycle asymmetry has been revived and many macroeconomic series (output

and (un)employment series in particular) have been examined for asymmetry properties

using a variety of di�erent statistical procedures. Neft�ci (1984), Falk (1986), Sichel (1989),

and Rothman (1991), among many others, test for asymmetry between expansions and

contractions by considering the probabilities of transitions from one regime to the other.

Various nonlinear time series models have also been employed to render some insight

into the di�ering dynamics over the business cycle. Regime-switching models have been

particularly popular in this line of research. Typically, these models consist of a set of

linear models of which, at each point in time, only one or a linear combination of the

models is active to describe the behaviour of a time series, where the activity depends on

the regime at that particular moment.

Within the class of regime-switching models, two main categories can be distinguished,

depending on whether the regimes are determined exogenously, by an unobservable state

variable, or endogenously, by a directly observable variable. The most prominent mem-

ber of the �rst class of models is the Markov-Switching autoregressive model, which has

been applied to modelling business cycle asymmetry by Hamilton (1989), Boldin (1996),

and Diebold and Rudebusch (1996), among others. From the second class of models,

the (Self-Exciting) Threshold AutoRegressive [(SE)TAR] model (see Beaudry and Koop

(1993), Tiao and Tsay (1994), Potter (1995), Peel and Speight (1996), and Clements and

Krolzig (1996)) and the Smooth Transition AutoRegressive [STAR] model have been most

frequently applied (see see Ter�asvirta and Anderson (1992), Skalin and Ter�asvirta (1996),

and Jansen and Oh (1996)).

It is now well understood that recessions are di�erent from booms, and there seem

to be possibilities for even further re�nement. Ramsey and Rothman (1996) and Sichel

(1993) discuss concepts such as `deepness', `steepness' and `sharpness', which all relate to

di�erent aspects of asymmetry. A cycle is said to exhibit steepness if the slope of the

expansion phase di�ers from the slope of the contraction phase. Sichel (1993) argues that

most research has focused exclusively on the possibility of steepness, neglecting other forms

of asymmetry. The evidence presented by Sichel (1993) suggests however that deepness

might be a more important characteristic of macroeconomic variables. Deepness occurs

when the distance from the mean of the cycle to the peak is not equal to the distance from
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the mean to the trough. Sharpness focuses on the relative curvature around peaks and

troughs. In general, peaks are thought to be more `round' when compared to troughs, see

Emery and Koenig (1992) and McQueen and Thorley (1993) for some evidence in favor of

this premise.

Intuitively, if a macroeconomic variable exhibits di�erent types of asymmetry simul-

taneously, the distinction between expansion and contraction might not be su�cient to

characterize the behaviour over the business cycle. Sichel (1994) observes that real GNP

tends to grow faster immediately following a trough than in the rest of the expansion

phase. Wynne and Balke (1992) and Emery and Koenig (1992) present additional evi-

dence in favor of this `bounce-back' e�ect. This suggests the possibility of three business

cycle phases - contractions, high-growth recoveries which immediately follow troughs of

the cycle and subsequent moderate growth phases.

The nonlinear time series models mentioned above mainly focus on two regimes, i.e., ex-

pansions and contractions. The Markov-Switching and SETAR models can be extended to

multiple regimes, at least conceptually. For example, Boldin (1996) presents a three-regime

Markov Switching model in which the expansion regime is split into separate regimes for

the post-trough rapid recovery periods and the moderate growth periods for the remainder

of the expansion. In a similar vein, Pesaran and Potter (1997) and Koop et al. (1996) use

principles of SETAR models to construct a `oor and ceiling' model which allows for three

regimes corresponding to low, normal, and high growth rates of output, respectively. Tiao

and Tsay (1994) develop a four-regime SETARmodel for US real GNP in which the regimes

are labeled worsening/improving recession/expansion, thus allowing for a wide variety in

dynamics in di�erent phases of the business cycle. In contrast, extending the number of

possible regimes in STAR models does not seem to be straightforward. Therefore, the

objective of our paper is to explore how STAR models can be modi�ed to allow for more

than two regimes, with the purpose of examining whether a multiple regime STAR model

can be used to describe the behavior of post-war US real GNP and US unemployment.

The outline of our paper is as follows. In section 2 we discuss the STAR model and a

simple but elegant way to generalize this model to accommodate more than two regimes. In

Section 2.2 we give a theoretical account of this Multiple Regime STAR [MRSTAR] model,

while in Section 2.3 we focus on a simple example to demonstrate the main features of the

MRSTARmodel. In Section 3 we discuss some of the issues which are involved in specifying

these models. Emphasis in that subsection is put on developing a test statistic which can

be used to test a two-regime model against a multiple regime alternative. In Section 4 we

discuss previous research on modelling business cycle asymmetry in somewhat more detail

and apply the models to characterize the behavior of the growth rate of post-war US real

GNP and the US unemployment rate. Finally, Section 5 contains some discussion.
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2 Extending the STAR model

In this section we describe an extension of the STAR model to allow for more than two

regimes. We start with a brief description of the basic STAR model. For a more elaborate

discussion of these models we refer to Granger and Ter�asvirta (1993) and Ter�asvirta (1994).

We next argue that, irrespective of the particular transition function which is used, this

basic STAR model essentially allows for only two regimes. To overcome this limitation, the

class of Multiple Regime STAR [MRSTAR] models is introduced. The potential usefulness

of this class of models is illustrated by a simple example.

2.1 The basic STAR model

Consider the following STAR model for a univariate time series yt,

yt = �01y
(p)
t (1� F (~y

(p)
t ; ; �; c)) + �02y

(p)
t F (~y

(p)
t ; ; �; c) + "t; (1)

where y
(p)
t = (1; ~y

(p)
t )0, ~y

(p)
t = (yt�1; : : : ; yt�p)

0, �i = (�i0; �i1; : : : ; �ip)
0; i = 1; 2, and "t

is a white noise error process with mean zero and variance �2. The so-called transition

function F (y
(p)
t ; ; �; c) is a continuous function, bounded between zero and one. One of

the most often applied choices for F (y
(p)
t ; ; �; c), which is also central in this paper, is the

logistic function1,

F (~y
(p)
t ; ; �; c) = (1 + expf�(�0~y

(p)
t � c)g)�1;  > 0; (2)

where � = (�1; : : : ; �p)
0, while  and c are scalars. Note that � needs to be normalized

in an appropriate way in order to achieve identi�cation of the model, e.g., �1 = 1. The

resulting model is called the Logistic STAR [LSTAR] model.

The way the model is written in (1) highlights the basic characteristic of the LSTAR

model, which is that at any given point in time, the evolution of yt is determined by a

weighted average of two di�erent linear AutoRegressive [AR] models. The weights assigned

to the two models depend on the (recent) history of the time series itself. For small (large)

values of �0~y
(p)
t , F (~y

(p)
t ; ; �; c) is approximately equal to zero (one) and, consequently,

almost all weight is put on the �rst (second) model. The parameter  determines the

speed at which these weights change as �0~y
(p)
t increases; the higher , the faster this

change is. If  ! 0, the weights become constant (and equal to .5) and the model becomes

linear, while if  ! 1, the logistic function approaches a Heaviside function, taking the

value 0 for �0~y
(p)
t < c and 1 for �0~y

(p)
t > c. In that case, the LSTAR model reduces to a

two-regime SETAR model, see Tong (1990) for an extensive discussion.

1Chan and Tong (1986) �rst proposed the STAR model as a generalization of the two-regime SETAR

model, to alleviate the problem of estimating the threshold c. They suggested to use the standard normal

cumulative distribution function as transition function. The logistic function has become the standard

choice, probably because of the existence of an explicit analytical form, which greatly facilitates estimation

of the model.
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Ter�asvirta (1994) outlines a speci�cation procedure for STAR models. Because this will

be part of the speci�cation procedure for multiple regime STAR models to be discussed

below, we briey sketch the di�erent steps in this procedure here. After estimating a

suitable linear AR model for yt, linearity is tested against the alternative of a two-regime

STAR model (1) using the tests developed by Luukkonen et al. (1988). The testing

problem su�ers from what has become known as the `Davies-problem', i.e., the model is

not identi�ed under the null hypothesis of linearity, which can be formulated as H0 :  = 0.

This problem of nuisance parameters which are not identi�ed under the null hypothesis was

�rst considered in some depth by Davies (1977,1987) and occurs in many testing problems,

see Hansen (1996) for a recent account. The tests of Luukkonen et al. (1988) are based

on replacing the transition function in (1) by a suitable approximation which leads to a

reparameterized model in which higher order powers of the regressors yt�j; j = 1; : : : ; p,

appear and the identi�cation problem is no longer present. Linearity is tested by testing

the joint signi�cance of the coe�cients corresponding to these auxiliary regressors. For

details we refer to Luukkonen et al. (1988).

It is convenient to carry out the linearity test for �xed �, i.e., with the transition

variable(s) speci�ed in advance. This allows to select the most appropriate transition vari-

able(s) prior to estimation of the STAR model. Concerning �, it is usually assumed that

only a single lagged value yt�d acts as transition variable, i.e., � = (0; : : : ; 0; 1; 0; : : :)0,

where the 1 is the d-th element of �. An alternative which might be of interest is

when a lagged �rst di�erence �yt�d is taken to be the threshold variable, i.e., � =

(0; : : : ; 0; 1;�1; 0; : : : ; 0)0. Following Enders and Granger (1996), the resulting model might

be called a Momentum STAR [MSTAR] model, as the regime is determined by the direc-

tion in which the time series is moving, i.e., by its momentum. The choice of � for which

linearity is rejected most convincingly is considered to render the most appropriate one.

If linearity is rejected for certain �, the remaining parameters in the STAR model can

be estimated by nonlinear least squares2 [NLS], see Ter�asvirta (1994) for a discussion of

the issues involved. The �nal stage of building a STAR model is to subject the estimated

model to some diagnostic tests to check whether it adequately captures the main features

of the data. Eitrheim and Ter�asvirta (1996) develop appropriate test statistics for serial

correlation, constancy of parameters and remaining nonlinearity.

2To be precise, the speci�cation procedure of Ter�asvirta (1994) �rst proceeds by applying a sequence

of nested tests to decide whether a logistic or exponential type transition funtion (given in (3) below) is

most appropriate. We omit details here because we focus on models with logistic transition functions to

introduce the multiple regime models. The same principles discussed below apply to models with di�erent

transition functions as well.
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2.2 A multiple regime STAR model

The LSTAR model seems particularly well suited to describe asymmetry of the type that

is frequently encountered in macroeconomic time series. For example, the model has been

successfully applied by Ter�asvirta and Anderson (1992) and Ter�asvirta et al. (1994) to

characterize the di�erent dynamics of industrial production indices in a number of OECD

countries during expansions and recessions. As argued in the introduction, sometimes more

than two regimes might be required to adequately decribe the behaviour of a particular

time series.

The notation in (1) shows that the set of linear AR models of which the STAR model is

composed contains only two elements. Hence, it is immediately clear that the STAR model

cannot accommodate more than two regimes, irrespective of what form the transition

function takes. It has been suggested that a three regime model is obtained by using the

exponential function,

F (~y
(p)
t ; ; �; c) = 1� exp(�f�0~y

(p)
t � cg2);  > 0; (3)

as transition function in (1). According to Ter�asvirta and Anderson (1992), this exponen-

tial transition function gives rise to a model which allows expansions and contractions to

have di�erent dynamics than the `middle ground', similar to the `oor and ceiling' model

of Pesaran and Potter (1997). However, it is obvious that the models in the two outer

regimes, associated with very small and large values of �0~y
(p)
t (and, hence, corresponding

with the expansions and contractions), are restricted to be the same, so that e�ectively

there still are only two distinct regimes. Furthermore, this Exponential STAR [ESTAR]

model does not nest the SETAR model as a special case, because for both  ! 0 and

 ! 1, the model becomes linear. The latter can be remedied by using the `quadratic

logistic' function

F (~y
(p)
t ; ; �; c1; c2) = (1 + expf�(�0~y

(p)
t � c1)(�

0~y
(p)
t � c2)g)

�1;  > 0 ; (4)

as proposed by Jansen and Ter�asvirta (1996). In this case, if  ! 0, the model becomes

linear, while if  ! 1, the function F (~y
(p)
t ; ; �; c1; c2) is equal to 1 for �0~y

(p)
t < c1 and

�0~y
(p)
t > c2, and equal to 0 in between. Hence, the STAR model with this particular

transition function nests a three regime SETAR model, although the models in the outer

regimes are still restricted to be the same.

In this paper we propose an alternative way to extend the basic STAR model to allow

for more than two, genuinely di�erent, regimes. Building upon the notation used in (1),

we suggest to `encapsulate' two di�erent LSTAR models as follows,

yt = [�0

1y
(p)
t (1� F1(~y

(p)
t ; 1; �1; c1)) + �0

2y
(p)
t F1(~y

(p)
t ; 1; �1; c1)][1� F2(~y

(p)
t ; 2; �2; c2)]

[�0

3y
(p)
t (1� F1(~y

(p)
t ; 1; �1; c1)) + �0

4y
(p)
t F1(~y

(p)
t ; 1; �1; c1)]F2(~y

(p)
t ; 2; �2; c2) + "t; (5)
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where both transition functions F1 and F2 are taken to be logistic functions as in (2).

As both functions can vary between zero and one, (5) de�nes a model with four distinct

regimes, each corresponding to a particular combination of extreme values of the transition

functions. We call the model given in (5) a Multiple Regime STAR [MRSTAR] model.

The MRSTAR model considered here allows for a maximum of four di�erent regimes,

but it will be obvious that, in the notation of (5), extension to 2k regimes with k > 2

is straightforward, at least conceptually. Needless to say a model with three regimes can

also be obtained from (5), by imposing appropriate restrictions on the parameters of the

autoregressive models which prevail in the di�erent regimes. If in fact �1 = �2 � �, i.e.,

a single linear combination of the past of yt governs the transitions between all regimes,

it will be intuitively clear that it is not sensible to allow for four di�erent regimes. For

example, if c1 < c2, F1 changes from zero to one prior to F2 for increasing values of

�0~y
(p)
t and, consequently, the product (1� F1)F2 will be equal to zero almost everywhere,

especially if 1 and 2 are large. Hence, it makes sense to exclude the model corresponding

to this particular regime by imposing the restriction �3 = 0.

Note that the MRSTAR model nests several other nonlinear time series models. For

example, an arti�cial neural network [ANN] model, see Kuan andWhite (1994), is obtained

by imposing the restrictions �ij = 0; i = 1; : : : ; 4; j = 1; : : : ; p and �40 = �20 + �30 � �10.

The last restriction ensures that the interaction term ��40F1F2, where ��40 = �10 � �20 �

�30 + �40 drops out of the model, which now can be rewritten as

yt = ��10 + ��20F1(~y
(p)
t ; 1; �1; c1) + ��30F2(~y

(p)
t ; 2; �2; c2) + "t: (6)

where ��10 = �1, �
�

20 = �20 � �10 and ��30 = �30 � �10.

Additionally, the MRSTAR model (5) might be extended to a `semi-multivariate'

model by including exogenous variables as regressors or transition variables. Granger

and Ter�asvirta (1993) discuss incorporating exogenous variables xit in the STAR model

(1) to obtain the Smooth Transition Regression [STR] model, see also Ter�asvirta (1996)

for a more recent survey. Likewise, the MRSTAR model can be extended to a Multiple

Regime STR [MRSTR] model by de�ning zt = (1; ~z0t)
0, ~zt = (yt�1; : : : ; yt�p; x1t; : : : ; xkt)

0,

and substituting zt for y
(p)
t in (5), i.e.,

yt = [�0

1zt(1� F1(~zt; 1; �1; c1)) + �0

2ztF1(~zt; 1; �1; c1)][1� F2(~zt; 2; �2; c2)]

[�0

3zt(1� F1(~zt; 1; �1; c1)) + �0

4ztF1(~zt; 1; �1; c1)]F2(~zt; 2; �2; c2) + "t; (7)

where now the vectors �i; i = 1; : : : and �i; i = 1; 2 are of lengthm+1 andm, respectively,

with m = p+ k. In particular, Lin and Ter�asvirta (1994) argue that polynomials of time

are allowed as transition variables in STAR models; even though these are nonstationary

variables, no problems occur because the transition function is bounded between zero

and one. L�utkepohl et al. (1995) and Wolters et al. (1996) apply this idea to model
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time-varying parameters in German money demand. In the MRSTR model time trends

might be used as transition variables as well. This opens the interesting possibility to

model nonlinearity and time-varying parameters simultaneously. A possible application

in business cycle research might be to examine whether the properties of expansions and

contractions are time-invariant. For example, Lin and Ter�asvirta (1994) demonstrate that

the properties of the index of industrial production in the Netherlands have changed after

the �rst oil crises in 1975. Sichel (1991) claims that expansions have become longer after

World War II and have started to exhibit duration dependence, while recessions have

become shorter and duration dependence has disappeared. This issue is beyond the scope

of this paper and is left for further research.

The MRST(A)R model also nests the class of Nested TAR [NeTAR] models recently

proposed by Astatkie et al. (1997) as an extension of conventional TAR models to allow

for multiple sources of nonlinearity. A NeTAR model is obtained from (7) (or (5)) if the

parameters 1 and 2 both tend to in�nity (or, equivalently, the logistic functions are

replaced by Heaviside functions), such that the di�erent regimes are separated by sharply

determined borders. Astatkie et al . (1997) describe a sequential speci�cation procedure

for NeTAR models.

2.3 A simple example

In this subsection we focus on a simple example of a four regime MRSTAR model to

highlight some features of the model. We set p = 2, require all second order AR coe�cients

as well as the intercepts to be equal to zero, and set �1 = (1;�1)0, �2 = (0; 1)0. The

resulting model then is written as

yt = [�1yt�1(1� F1(�yt�1; 1; c1)) + �2yt�1F1(�yt�1; 1; c1)][1� F2(yt�2; 2; c2)]

[�3yt�1(1� F1(�yt�1; 1; c1)) + �4yt�1F1(�yt�1; 1; ; c1)]F2(yt�2; 2; c2) + "t: (8)

For each combination of the transition variables (�yt�1; yt�2) the resulting model is a

weighted average of the four AR(1) models associated with the four extreme regimes.

Figure 1 shows the weights given to each of these four models in the (yt�1; yt�2) plane, with

1 = 2 = 2:5 and c1 = c2 = 0. For (�yt�1; yt�2) = (0; 0) or equivalently (yt�1; yt�2) =

(0; 0), all models are given equal weight. Along the lines yt�1 = yt�2 and yt�2 = 0, which

might be interpreted as representing the borders between the di�erent regimes, the models

receive equal weight pairwise. For example, along yt�1 = yt�2, the models in the �rst and

third regime receive equal weight, while the same holds for the models in the second and

fourth regime (where the subscript of the autoregressive parameters is used to identify the

regime number). Moving into a particular regime increases the weight of the corresponding

model.

- insert Figure 1 around here -
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To illustrate the possible dynamics which can be generated by the MRSTAR model,

Figure 2 shows some time series generated by the sample model (8). Two hundred pseudo-

random numbers are drawn from the standard normal distribution to obtain a sequence

of errors "t, while the necessary initial values y�1 and y0 are set equal to zero. The

thresholds c1; c2 and the parameters 1 and 2 are set equal to the values given above.

In the upper panel of Figure 2, the autoregressive parameters are set as follows; �1 =

�2 = 0:3 and �3 = �4 = 0:9. Hence, the model reduces to a basic LSTAR model (1)

with yt�2 as transition variable. In all panels of Figure 2, a realization of an AR(1)

model yt = �yt�1 + "t with autoregressive parameter � = 0:6, using the same errors

"t, is also plotted for comparison. Although the time series generated by the LSTAR

model has the same `average' autoregressive parameter as the linear AR(1) model, the

behavior is markedly di�erent: for positive values of yt�2, the tendency of the series to

return to its attractor (which is equal to zero) is much smaller than for negative values

of the transition variable. The middle panel of Figure 2 shows the AR(1) series together

with a realization of the MRSTAR model with �1 = �3 = 0:3 and �2 = �4 = 0:9. The

resulting model is a momentum STAR [MSTAR] model, as the autoregressive parameters

only depend on the direction in which the series is moving. In our example, the memory

of the series is longer for upward than for downward movements. The main di�erence

between the AR and MSTAR models occurs in the peaks, the upward (downward) peaks

being more (less) pronounced in the nonlinear model. Finally, the lower panel of Figure

2 shows the AR(1) series together with a realization of the MRSTAR model (8) with the

autoregressive parameters taken to be the averages of the parameters in the LSTAR and

MSTAR models, i.e., �1 through �4 are set equal to 0.3, 0.6, 0.6, and 0.9, respectively.

Obviously, the resulting time series combines the properties of the LSTAR and MSTAR

models: persistence is strongest for positive and increasing values, intermediate for positive

and decreasing values, and negative and increasing values, and smallest for negative and

decreasing values of the time series.

- insert Figure 2 around here -

3 Speci�cation of MRSTAR models

We suggest a `speci�c-to-general' approach to specify MRSTAR models, i.e., to build up

the number of regimes by iterating between testing for the desirability of additional regimes

and estimating multiple regime models3. The reason for preferring this approach rather

than for example applying model selection criteria is that the MRSTAR model given in (5)

is not identi�ed, as the parameters in the di�erent transition functions can be interchanged

3See Ter�asvirta and Lin (1993) for a similar approach to determine the appropriate number of hidden

units in ANN models.
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without altering the model. The use of model selection criteria requires the estimation of

all candidate models. If models with too many regimes are considered, estimation routines

may fail.

Hence we suggest that speci�cation begins with specifying and estimating a basic

LSTAR model (1), using the speci�cation procedure of Ter�asvirta (1994) as discussed

in Section 2.2. The two-regime model should be tested against the alternative of a gen-

eral MRSTAR as given in (5). The principle of approximating the transition function as

applied by Luukkonen et al . (1988) to develop LM-type tests against STAR nonlinearity

is used below to obtain a test against the MRSTAR alternative (5)4. For this purpose it

is convenient to rewrite the model as follows,

yt = ��

1
0y

(p)
t + ��

2
0y

(p)
t F1(~y

(p)
t ; 1; �1; c1) + ��

3
0y

(p)
t F2(~y

(p)
t ; 2; �2; c2) +

��

4
0y

(p)
t F1(~y

(p)
t ; 1; �1; c1)F2(~y

(p)
t ; 2; �2; c2) + "t; (9)

where ��

1 = �1, �
�

2 = �2 � �1, �
�

3 = �3 � �1 and ��

4 = �1 + �4 � �2 � �3. The two-regime

model which has been estimated is assumed to have F1(�) as transition function. Hence, we

desire to test if the addition of the regimes determined by F2(�) is appropriate. Subtracting

1/2 from the logistic function F2 does not alter the model, while it allows to express the

null hypothesis to be tested as H0 : 2 = 0. We assume that the test is to be carried out

for �xed �2 (while �1 is also assumed to have been �xed at an earlier stage). Although it

is fairly straightforward to derive a test statistic for general �2 assuming this parameter

vector �xed facilitates the notation involved considerably. Moreover, this seems to be the

most relevant case in a practical model building situation, as one might have an intuitive

idea of the appropriate transition variables, or be interested in getting such an idea. As

the model is not identi�ed under the null hypothesis, a test statistic cannot be derived

directly. We proceed by replacing the transition function F2(~y
(p)
t ; 2; �2; c2) in (9) by a

third-order Taylor expansion around zero5. After rearranging terms, the model becomes

yt = �0

1y
(p)
t + �0

2y
(p)
t F1(~y

(p)
t ; 1; �1; c1) +

�0

1~y
(p)
t (�0

2~y
(p)
t ) + �0

2~y
(p)
t F1(~y

(p)
t ; 1; �1; c1)(�

0

2~y
(p)
t )

�0

3~y
(p)
t (�0

2~y
(p)
t )2 + �0

4~y
(p)
t F1(~y

(p)
t ; 1; �1; c1)(�

0

2~y
(p)
t )2

�0

5~y
(p)
t (�0

2~y
(p)
t )3 + �0

6~y
(p)
t F1(~y

(p)
t ; 1; �1; c1)(�

0

2~y
(p)
t )3 + et: (10)

4The test of Eitrheim and Ter�asvirta (1996) for remaining nonlinearity can be regarded as a test against

a restricted version of the MRSTAR model (5). To be precise, Eitrheim and Ter�asvirta (1996) derive

their test from an additive STAR model, which is obtained from (1) by adding an extra nonlinear term

�0
3y

(p)
t F2(~y

(p)
t ; 2; �2; c2). Alternatively, this model can be obtained from (5) by imposing the restriction

�1+�4��2��3 = 0. Here we are primarily interested in specifying a multiple regime model, and therefore

we do not want to impose such restrictions a priori. Note however that our test can also be interpreted

and used as a diagnostic tool to evaluate estimated two-regime STAR models.
5Because we restrict attention to logistic transition functions, a �rst-order Taylor expansion would

su�ce. However, there might be certain alternatives against which the resulting test statistic has very

little or no power, see Luukkonen et al. (1988) for details.
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The null hypothesis can now be reformulated as H�

0 : �i = 0; i = 1; : : : ; 6. Note that under

the null hypothesis �1 = ��

1 = �1 �2 = ��

2 = �2 � �1 and et = "t. Assuming the errors to

be normally distributed, it follows that the conditional log-likelihood for observation t is

given by

lt = c� (1=2) ln �2
� e2t =2�

2; (11)

where c is an irrelevant constant. As the information matrix is block diagonal, the error

variance �2 can be assumed �xed. The remaining partial derivates evaluated under the

null hypothesis are given by

@lt

@�1

�

�

�

�

H0

= (1=�2)êty
(p)
t ; (12)

@lt

@�2

�

�

�

�

H0

= (1=�2)êty
(p)
t F1(~y

(p)
t ; ̂1; �1; ĉ1); (13)

@lt

@1

�

�

�

�

H0

= (1=�2)êt�̂
0

2y
(p)
t

@F1(~y
(p)
t ; ̂1; �1; ĉ1)

@1
; (14)

@lt

@c1

�

�

�

�

H0

= (1=�2)êt�̂
0

2y
(p)
t

@F1(~y
(p)
t ; ̂1; �1; ĉ1)

@c1
; (15)

where

@F1(~y
(p)
t ; ̂1; �1; ĉ1)

@1
= (1 + expf�̂1(�

0

1~y
(p)
t � ĉ1)g)

�2 expf�̂1(�
0

1~y
(p)
t � ĉ1)g(�

0

1~y
(p)
t � ĉ1);(16)

@F1(~y
(p)
t ; ̂1; �1; ĉ1)

@c1
= ̂1(1 + expf�̂1(�

0

1~y
(p)
t � ĉ1)g)

�2 expf�̂1(�
0

1~y
(p)
t � ĉ1)g: (17)

The partial derivatives (16) and (17) will be denoted as F̂1(t) and F̂c1(t), respectively,

while we also use the short-hand notation F̂1(t) to denote F1(~y
(p)
t ; ̂1; �1; ĉ1).

The above suggests that an LM-type test statistic to test H�

0 can be computed in a

few steps as follows:

1. Estimate the two regime LSTAR model (1) with (2) by nonlinear least squares and

compute the sum of squared residuals under the null hypothesis, SSR0.

2. Regress the residuals êt on fy
(p)
t ; y

(p)
t F̂1(t); �̂

0

2y
(p)
t F̂1(t); �̂

0

2y
(p)
t F̂c1(t)g and the auxil-

iary regressors fy
(p)
t (�0

2~y
(p)
t )i; y

(p)
t F̂1(t)(�

0

2~y
(p)
t )i; i = 1; 2; 3g and compute the sum of

squared residuals under the alternative, SSR1.

3. Compute the LM-type test statistic as

LMMR =
SSR0 � SSR1=6p

SSR1=(T � (2p+ 2)� 6p)
: (18)

In the second step, the estimates of the autoregressive parameters in the LSTAR model

are used to obtain an estimate of �2, i.e., �̂2 = �̂2 � �̂1, which is consistent under the null

hypothesis. Under the null hypothesis, the statistic LMMR is F distributed with 6p and
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T�(2p+2)�6p degrees of freedom. As usual, the F version of the test statistic is preferable

to the �2 variant in small samples because its size and power properties are better. The

remarks made by Eitrheim and Ter�asvirta (1996) concerning potential numerical problems

are relevant for our test as well. If ̂1 is large, such that the transition between the

two regimes in the model under the null hypothesis is fast, the partial derivatives of the

transition function F1 with respect to 1 and c1, as given in (16) and (17), approach

zero functions (except for Fc1(t) at the point �0

1~y
(p)
t ). Hence, the moment matrix of the

regressors in the auxiliary regression becomes near-singular. However, as the terms in the

auxiliary regression involving these partial derivatives are likely to be very small for all

t = 1; : : : ; T , they contain very little information. It is therefore suggested to simply omit

these terms under such circumstances, which will not harm the test statistic.

If the LM-type test (18) rejects the two-regime model in favor of the four-regime

alternative, one might proceed with estimation of the alternative model. Estimation of

the general MRSTAR model as given in (5) might pose a problem because the model is not

identi�ed. However, if �1 and �2 are �xed, estimation is fairly straightforward and can be

done by nonlinear least squares. Once the general model has been estimated, restrictions

on the autoregressive parameters, to test for example equality of models in two di�erent

regimes, can be tested using likelihood ratio tests. Diagnostic tests for serial correlation,

constancy of parameters and remaining nonlinearity can be developed along the same lines

as in Eitrheim and Ter�asvirta (1996).

4 Multiple regimes in the business cycle?

Business cycle asymmetry has been investigated mainly by examining output series, such

as gross national or domestic product and industrial production, and (un)employment

series. We follow this practice here and explore whether multiple regimes in the business

cycle can be identi�ed by applying MRSTAR models to US real GNP in Section 4.1 and

US unemployment in Section 4.2.

4.1 An MRSTAR model for US GNP

Tests for asymmetry in US real GNP have provided mixed results. In particular, the

evidence obtained from nonparametric procedures has not been very compelling. For

example, Falk (1986) cannot reject symmetry when examining US real GNP for steepness,

see also DeLong and Summers (1986) and Sichel (1993). Similarly, Brock and Sayers

(1988) only marginally reject linearity, while Sichel (1993) �nds only moderate evidence for

deepness. An exception to the rule is Brunner (1992), who obtains fairly strong indications

for asymmetry in GNP, which might be associated with an increase in variance during

contractions. This is con�rmed by Emery and Koenig (1992) who suggest that the variance

of leading and coincident indexes increases as the contraction proceeds.

11



The application of parametric nonlinear time series models has been more success-

ful. Hamilton (1989) and Durland and McCurdy (1994) for example �nd that a two-state

Markov Switching model for the growth rate of post-war quarterly US real GNP outper-

forms linear models. Boldin (1996) examines the stability of this model and demonstrates

that the model is not robust to extension of the sample period. Tiao and Tsay (1994),

Potter (1995) and Clements and Krolzig (1996) all estimate a two-regime SETAR model

consisting of AR(2) models (although Potter (1995) adds an additional �fth lag). The

growth rate two periods lagged is used as the transition variable, while the threshold is

either �xed at zero (Potter (1995)) or estimated to be equal to or close to zero (Tiao and

Tsay (1994), Clements and Krolzig (1996)). Hence, a distinction is made between periods

of positive and negative growth. A common feature of all these estimated models is that

the dynamics in recessions are very di�erent from those during expansions. In particular,

the SETAR models of Tiao and Tsay (1994), Potter (1995) and Clements and Krolzig

(1996), which are estimated on data from 1948 until 1990, all contain a large negative

coe�cient on the second lag in the lower regime, suggesting that US GNP moves quickly

out of recessions. Notably, Clements and Krolzig (1996) �nd much less evidence of this

property when they re-estimate their model on a recent vintage of data, ranging from

1960 until 1996. Beaudry and Koop (1993) estimate a two-regime TAR model in which

the `current depth of recession', which measures deviations from past highs in the level of

real GNP, is the threshold variable. This variable is discussed in more detail below.

Whereas most attention focuses on the distinction between contractions and expan-

sions, some indications for the existence of multiple regimes has been obtained as well.

For example, Sichel (1994) demonstrates that growth in real GDP is larger immediately

following a business cycle trough than in later parts of the expansion, suggesting that the

business cycle consists of three distinct phases: contractions, high-growth recoveries, and

moderate-growth expansions. Wynne and Balke (1992) and Balke and Wynne (1996) also

document this `bounce-back' e�ect in industrial production. Furthermore, they examine

the relationship between growth in the �rst twelve months following a trough and the de-

cline of the preceding contraction and show that in general deep recessions are followed by

strong recoveries. Emery and Koenig (1992) also �nd that the mean growth rate in leading

and coincident indexes is larger (in absolute value) in early (late) stages of the expansion

(contraction). The three-regime Markov Switching model estimated by Boldin (1996), the

`oor-and-ceiling' model of Pesaran and Potter (1997), and the four-regime SETAR model

of Tiao and Tsay (1994) explicitly model the existence of a strong-recovery regime as these

models include a regime in which output is growing fast (following a recession).

Compared to the previous studies mentioned above, we use a relatively long span of

data, which ranges from 1947:I to 1995:II. The data, which are at 1987 prices, are seasonally

adjusted and are taken from the Citibase database. The growth rate yt is graphed in the
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upper panel of Figure 3. The solid circles indicate NBER-dated peaks and troughs. The

lower graph of this Figure shows the mean growth rates during contractions and di�erent

phases of expansions. It is seen that in the �rst four quarters following a trough, growth

is considerably higher than during the rest of this expansion, con�rming the observation

of Sichel (1994).

- insert Figure 3 around here -

Following the approaches of previous authors, we use an AR(2) model as basis for our

model building exercise. The estimated model over the period 1947:IV-1995:II is

yt = 0:430
(0:091)

+ 0:345
(0:073)

yt�1 + 0:095
(0:073)

yt�2 + "t; (19)

�̂" = 0:917, SK = 0:01(0:48), EK = 1:40(0:00), JB = 15:58(0:00), ARCH(1) = 3:03(0:08),

ARCH(4) = 9:27(0:06), LB(8) = 5:05(0:41), LB(12) = 14:00(0:12), AIC = �0:142; BIC =

�0:091;

where standard errors are given in parentheses below the parameter estimates, �̂" is the

residual standard deviation, SK is skewness, EK excess kurtosis, JB the Jarque-Bera test

of normality of the residuals, ARCH is the LM test of no AutoRegressive Conditional

Heteroscedasticity [ARCH], LB is the Ljung-Box test of no autocorrelation, and AIC and

BIC are the Akaike and Schwarz order selection criteria, respectively. The �gures in

parentheses following the test statistics are p-values.

Normality of the residuals is rejected due to the considerable excess kurtosis. Closer

inspection of the residuals reveals that this may be caused by large residuals in the �rst

quarter of 1950 and the second quarter of 1980. These observations may also cause the

ARCH tests to reject homoscedasticity. On the other hand, the LM test for ARCH is

known to have power against alternatives other than ARCH as well, and, hence, it may

also be that the signi�cant values of this test statistic are caused by neglected nonlinearity.

This �nal conjecture is investigated further by applying the LM-type tests of Luukkonen

et al. (1988) to test for the possibility of STAR-type nonlinearity. We only report results of

their test S2 which is obtained by replacing the transition function in (1) by a third-order

Taylor approximation (similar as in going from (9) to (10)) as well as the `economy'-

version S3, which is obtained from S2 by omitting redundant terms and which therefore

might have better power properties. Apart from lagged growth rates and changes therein,

we also consider a measure of the current depth of recession [CDR] as possible transition

variable, following Beaudry and Koop (1993). We de�ne CDRt as

CDRt = max
j�1

fxt�jg � xt; (20)

with xt the log of US real GNP. Note that this de�nition di�ers slightly from the one of

Beaudry and Koop (1993), who take the maximum of past and current GNP. Hence, their
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CDR measure is equal to zero if real GNP is at an all time high, and greater than zero

otherwise. Since using such a truncated variable as transition variable in STAR models is

not very convenient, we only consider the maximum up to time t6.

If � is left unspeci�ed, the test rejects the null hypothesis of linearity quite convincingly;

the p-value of the S2 and S3 tests are equal to 0.029 and 0.057, respectively. However, if

� is �xed in order to get an impression of the most appropriate transition variable(s), the

evidence for nonlinearity, in particular from the S2 test, disappears somewhat7. As shown

in Table 1, the p-values of the tests seem to suggest that yt�2, �yt�1, �yt�2, CDRt�1,

and CDRt�2 might be considered as transition variable.

- insert Table 1 around here -

We decide to estimate an LSTAR model with CDRt�2 as transition variable, because

the p-value of the S3 test is lowest for this variable. The parameters in this LSTAR model

are estimated as

yt = [ 0:160
(0:138)

+ 0:346
(0:090)

yt�1 + 0:282
(0:108)

yt�2]� [1� F (CDRt�2)]

[0:665
(0:163)

+ 0:308
(0:121)

yt�1 + 0:048
(0:148)

yt�2]� F (CDRt�2) + "t (21)

F (CDRt�2) = (1 + exp[� 200:0
(�)

(CDRt�2 � 0:281
(0:135)

)=�CDRt�2 ])
�1 (22)

�̂" = 0:899, SK = �0:17(0:16), EK = 1:19(0:00), JB = 12:21(0:00), ARCH(1) = 2:74(0:09),

ARCH(4) = 7:09(0:13), LMSI(4) = 1:39(0:24), LMSI(8) = 1:48(0:17), LMC1 = 1:12(0:35),

LMC2 = 1:01(0:44), LMC3 = 0:87(0:62), AIC = �0:129, BIC = 0:008,

where LMSI(q) denotes the LM-type test for q-th order serial correlation in the residu-

als and LMCi; i = 1; 2; 3 denote LM-type tests for parameter constancy. Both sets of

diagnostic checks are developed in Eitrheim and Ter�asvirta (1996), to which we refer for

details.

The exponent in the transition function is scaled by the standard deviation of the

transition variable in order to make  scale-free. The sum of the autoregressive coe�cients

is considerably larger in the regime where F (CDRt�2) is equal to zero, which corresponds

to expansions. This con�rms the �ndings of Beaudry and Koop (1993) and Potter (1995),

among others, that contractions are less persistent than expansions. Also note the large

6Note that CDRt resembles the growth rate yt quite closely. Given that real GNP is upward trending,

maxj�1 xt�j will be equal to xt�1 most of the time. In that case CDRt equals �yt. To be more precise,

it is straightforward to show that CDRt = max(CDRt�1; 0) � yt. Hence, during expansions (i.e., when

CDRt�1 > 0) CDRt and yt coincide, while during contractions they might di�er. The correlation between

CDRt and yt equals -0.8, which con�rms their similarity.
7Jansen and Oh (1996) also report that tests for STAR-type nonlinearity do not reject the null hypothesis

of linearity. Similarly, Hansen (1996) shows that tests for threshold-type nonlinearity do not provide very

convincing evidence in favor of a threshold model.
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constant in the upper regime, which might be taken as an additional indication of a quick

recovery following contractions, cf. Sichel (1994) and Wynne and Balke (1992).

Apart from the diagnostic checks reported below the LSTAR model (21), we also

applied the LM-type test against the MRSTAR alternative, as derived in Section 2.3, as

well as the LM-type tests for remaining nonlinearity of Eitrheim and Ter�asvirta (1996).

Table 2 shows the p-values of the di�erent tests for various choices of transition variables

in the second transition function. The same Table also reports on results of the same tests

when the additional transition function is replaced by only a �rst-order Taylor expansion,

which should, in theory at least, be su�cient if only the logistic function is considered. It

can be seen from the entries in this Table 2 that there is some evidence for the necessity

of considering a more elaborate nonlinear model than the �tted standard LSTAR model,

especially if the change in the growth rate lagged one period is taken to be the transition

variable in the second transition function.

- insert Table 2 around here -

Hence we proceed with estimating a four regime MRSTAR model, with CDRt�2 and

�yt�1 as transition variables in the two logistic functions. After deleting some of the

variables having insigni�cant coe�cients from the di�erent regimes and restricting the

threshold for CDRt�2 to be equal to zero (as this also turned out to be insigni�cant), the

parameters in the �nal simpli�ed model are estimated as

yt = [( 0:471
(0:122)

+ 0:527
(0:113)

yt�1)� (1� F (�yt�1))

(� 0:467
(0:762)

+ 0:709
(0:335)

yt�1)� F (�yt�1)]� [1� F (CDRt�2)]

+[(+ 0:349
(0:272)

� 0:522
(0:349)

yt�1 + 1:000
(0:418)

yt�2)� (1� F (�yt�1))

(+ 0:041
(0:394)

+ 0:678
(0:230)

yt�1 � 0:263
(0:235)

yt�2)� F (�yt�1)]� F (CDRt�2) (23)

F (�yt�1) = (1 + exp[� 6:461
(6:598)

(�yt�1 � 0:484
(0:254)

)=��yt�1 ])
�1 (24)

F (CDRt�2) = (1 + exp[� 75:862
(�)

CDRt�2=�CDRt�2 ])
�1 (25)

�̂" = 0:875, SK = �0:20(0:13), EK = 0:82(0:01), JB = 6:61(0:04), ARCH(1) = 1:16(0:28),

ARCH(4) = 4:01(0:40), AIC = �0:130, BIC = 0:091.

Figure 4 shows the two logistic transition functions (25) and (24) against �yt�1 and

CDRt�2, respectively. Each circle represents an observation. For the function governed

by the indicator of the current depth of the recession, the transition from zero to one is

almost instantaneous at zero. The transition in the other function starts roughly at zero
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change in the growth rate of real GNP, while the transition is completed at a change in

the growth rate of one percentage point.

- insert Figure 4 around here -

The model thus distinguishes between four di�erent regimes, depending on whether the

level of real GNP is below or above its previous high and whether growth is accelerating

or not, which suggests the following interpretation of the four regimes.

� �yt�1 < 0; CDRt�2 < 0. The economy is in expansion (recall that CDRt as de�ned

in (20) measures the distance in the level of real GNP relative to the previous all

time high), but growth is declining.

� �yt�1 > 1; CDRt�2 < 0. The economy is in a strengthening expansion, as growth is

accelerating.

� �yt�1 < 0; CDRt�2 > 0. The economy is in a worsening contraction.

� �yt�1 > 1; CDRt�2 > 0. The economy is in a contraction, but is improving given

the positive change in growth.

The fourth regime more or less corresponds with the recovery phase identi�ed by Sichel

(1994), in which growth is strong immediately following a trough.

Figure 5 shows the distribution of the observations across the di�erent regimes. When

we take model (23), it is seen that the bulk of the observations is in regime 1, while the

remaining observations are evenly distributed over the other three regimes.

- insert Figure 5 around here -

Figure 6 shows the classi�cation according to regime in a slightly di�erent way. The

graph shows again the quarterly growth rates of US real GNP, augmented with symbols

which represent the di�erent regimes. Observation t is classi�ed as belonging to a certain

regime if the weight given to the corresponding model for prediction of the next observation

is larger than 0.5.

- insert Figure 6 around here -

4.2 US Unemployment Rate

In general, evidence for asymmetry in the unemployment rate has been somewhat more

convincing than for output series. Neft�ci (1984) suggests that increases in the aggre-

gate unemployment rate are steeper than decreases. Sichel (1989) identi�es a mistake in

Neft�ci's analysis, and is not able to reject symmetry with a corrected procedure. Roth-

man (1991) considers industrial sector unemployment rates and does �nd indications of
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steepness. Neft�ci (1993) shows that conventional linear models are able to replicate the

observed patterns in the unemployment rate only with very small probability. Escribano

and Jorda (1996) also reject linearity for these disaggregate unemployment rates using

tests against STAR-type nonlinearity. Peel and Speight (1996) succesfully estimate SE-

TAR models for (logistically transformed) unemployment rates. Rothman (1997) estimates

several nonlinear models for the aggregate unemployment rate and examines their useful-

ness for (long-term) forecasting. He �nds that several nonlinear models perform superior

to a linear model. A particular interesting result for our purposes is that Sichel (1993)

shows that the US unemployment rate exhibits both steepness and deepness characteristics,

which is taken as a �rst indication of the possible existence of multiple regimes. Similarly,

McQueen and Thorley (1993) focus on growth rates surrounding peaks and troughs and

obtain fairly strong evidence in favor of sharpness in the unemployment rate by using a

three-state Markov process to characterize the change in the unemployment rate.

The unemployment rate we consider in this section represents the percentage of US

males aged 20 and over without a job, and is constructed by taking the ratio of the series

LHMU and LHMC from Citibase. The series is sampled at a monthly frequency and covers

the period January 1948 until July 1996. The same series is analyzed by Hansen (1997)

using SETAR models8. The series is graphed in Figure 7, where circles indicate individual

peaks and troughs as dated by the NBER9.

- insert Figure 7 around here -

The cyclical behaviour of the unemployment rate can be characterized as steep in-

creases during recessions, followed by slow(er) declines during expansions. The existence

of a recovery phase would imply that the decline in the unemployment rate is larger in

months immediately following a trough than in later stages of the expansion. This in

fact can be observed from Figure 7. The decline in the unemployment rate appears to

start somewhat slow after a high (which corresponds with a trough in the business cycle),

accelerates after roughly six months, and then declines again. The mean growth rates

in quarters surrounding peaks and troughs is also shown in Figure 8, which con�rms the

above observations.

- insert Figure 8 around here -

It is also clear that, especially after 1970, the unemployment rate does not return to

previous lows during expansions. This might be interpreted as (circumstantial) evidence

8Our analysis cannot easily be compared with Hansen (1997) though, because he considers the series

only from January 1959 onwards and uses a di�erent method to detrend the series.
9These peaks and troughs di�er from the reference business cycle turning points, as the unemployment

rate is, on average, leading at peaks and lagging at troughs.
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for a rise in the natural rate of unemployment. This natural rate has been a heavily

debated concept, and no consensus has been reached how to properly account for it, see

for example Staiger et al . (1997) and other papers in the same issue of the Journal of

Economic Perspectives for some recent viewpoints. As this is not the main subject of our

analysis, we adopt a fairly simplistic approach and linearly detrend the unemployment rate

to obtain the cyclical component, cf. Escribano and Jorda (1996) and Rothman (1997).

Obviously, the method of detrending might inuence any subsequent analysis, but this

point is beyond the scope of this paper10.

Both the Akaike and Schwarz criteria indicate that an �fth-order AR model is appro-

priate for the detrended series, which is estimated as follows,

yt = 0:153
(0:043)

+ 1:093
(0:041)

yt�1+ 0:112
(0:062)

yt�2� 0:081
(0:062)

yt�3� 0:025
(0:062)

yt�4� 0:123
(0:041)

yt�5+ "t; (26)

�̂" = 0:201, SK = 0:99(0:00), EK = 7:68(0:00), JB = 1518:16(0:00), ARCH(1) = 10:63(0:00),

ARCH(4) = 13:03(0:01), LB(8) = 7:84(0:17), LB(12) = 31:82(0:00), AIC = �3:198; BIC =

�3:153:

The model appears to show all kinds of shortcomings, as the residuals su�er from

skewness, excess kurtosis, heteroskedasticity and serial correlation. We next calculate

the tests against STAR nonlinearity. As we are concerned with the behaviour of the

unemployment rate over the business cycle, we are interested in medium-term movements.

The month-to-month unemployment rate exhibits considerable short-term uctuations,

especially in the last months of expansions, as shown by Figure 7. In essence this makes

the monthly rate unsuitable as indicator of the business cycle regime, see Birchenhall

et al (1996) and Neft�ci (1984) for more elaborate discussions of this point. For that

reason, we concentrate on the use of lagged quarterly unemployment rates as potential

transition variable, as well as changes in this medium-term rate11. We denote as xt the

average unemployment rate during the quarter up to and including month t, i.e., xt =

(yt + yt�1 + yt�2)=3. Table 3 displays p-values of the LM-type tests, which indicate that

linearity can be con�dently rejected. For sake of completeness, test results with monthly

rates as transition variable are also reported. We (somewhat arbitrarily) select the change

in the quarterly unemployment rate lagged one month as transition variable. Interestingly,

the test sequence which is employed in the speci�cation procedure for STAR models of

Ter�asvirta (1994) indicates that an exponential or `quadratic logistic' function (as given in

(3) and (4), respectively) might be most appropriate. For reasons discussed earlier, we do

not want to restrict a multiple regime model a priori, and hence proceed with estimating

a LSTAR model.

10See Falk (1986) and Canova (1994) for more discussion on the inuence of detrending procedures on

analysis of the cyclical component.
11Note that Hansen (1997) uses even longer di�erences of the unemployment rate as threshold variable.
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- insert Table 3 around here -

The estimation of the two-regime LSTAR model con�rms the results of the LM-type

tests: depending on the starting values for the parameters, either a model with a threshold

of approximately �0:34% (and a fast transition between the two regimes) or a model with

a threshold of approximately 0:58% (and a fairly gradual transition) is obtained. The

complete estimation results are not shown here to save space but are available on request

from the corresponding author. The p-values corresponding to the tests for remaining

nonlinearity of Eitrheim and Ter�asvirta (1996) and the LM-type tests against an MRSTAR

alternative developed above are shown in Table 4. Evidently, both models are not able to

capture all the nonlinearity in the dynamics of the unemployment rate series. Note that

the tests reject the null hypothesis most convincingly if the same variable, the quarterly

unemployment rate lagged one period, is used in the second transition function as well,

see the rows labelled xt�1 in Table 4.

- insert Table 4 around here -

Hence, an MRSTAR model cf. (5) is estimated with the autoregressive parameters in

the third regime, �3, restricted to zero.

yt = [( 0:053

(0:399)

+ 1:182

(0:427)

yt�1 + 0:001

(0:259)

yt�2 � 0:344

(0:201)

yt�3 + 0:162

(0:361)

yt�4 � 0:068

(0:139)

yt�5)

�(1� F1(�xt�1)) +

(� 0:053

(0:018)

+ 0:763

(0:113)

yt�1 + 0:204

(0:092)

yt�2 + 0:120

(0:092)

yt�3 + 0:027

(0:126)

yt�4 � 0:141

(0:065)

yt�5)

�F1(�xt�1)]� [1 � F2(�xt�1)]

+( 0:073

(0:069)

+ 1:212

(0:116)

yt�1 + 0:056

(0:155)

yt�2 � 0:296

(0:158)

yt�3 + 0:039

(0:170)

yt�4 � 0:049

(0:103)

yt�5)

�F1(�xt�1)� F2(�xt�1) (27)

F1(�xt�1) = (1 + exp[� 25:303

(48:857)

(�xt�1 + 0:381

(0:065)

)=��xt�1 ])
�1

(28)

F2(�xt�1) = (1 + exp[� 3:490

(0:162)

(�xt�1 � 0:308

(0:007)

)=��xt�1 ])
�1

(29)

�̂" = 0:192, SK = �0:14(0:09), EK = 2:25(0:00), JB = 123:51(0:00), ARCH(1) = 2:34(0:13),

ARCH(4) = 18:22(0:00), AIC = �3:227, BIC = �3:061.

The estimates of the thresholds in the two transition functions indicate that a three

regime classi�cation of the unemployment rate is appropriate, with the regimes 1, 2, and 3

corresponding to recovery, moderate and contraction phases, respectively (since unemploy-

ment is countercyclical, a rise in the unemployment rate corresponds with a contraction of

the economy). The estimates of the parameters  show that the transition from the recov-

ery to moderate regime is almost instantaneous a around a change in the unemployment
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rate of �0:38% in the previous quarter. The transition from moderate to contraction

is more gradual, centered around a change of 0:31% in the previous quarter. The two

transition functions are shown in Figure 9.

- insert Figure 9 around here -

Note that the shapes of the transition functions do not necessarily contradict the results

of McQueen and Thorley (1993), who obtain evidence supporting the hypothesis that peaks

are more round than troughs. They however focus on the probabilities of transition from

the contraction to expansion phase and vice versa, which is not comparable with the

transition functions in the MRSTAR model. To obtain an impression of the implications

of the MRSTAR model for such transition probabilities one would have to consider the

long-term properties of the model, for example by means of impulse response functions.

Finally, Figure 10 shows the classi�cation of the observations in the di�erent regimes

for a selected time period. It can be observed that the regimes correspond fairly well with

division of a cycle in a contraction regime, a fast-growth recovery regime immediately

following a trough and a moderate-growth regime during the rest of the expansion.

- insert Figure 10 around here -

5 Concluding remarks

In this paper we have explored possibilities to extend the basic STAR model to allow for

more than two regimes. We have shown that this can be done by writing the model such

that the di�erent models which constitute the STAR model appear explicitly. A (speci�c-

to-general) speci�cation procedure was proposed and a new LM test for nonlinearity was

developed, which can be used to test for the presence of multiple regimes. Alternatively,

this test might be used as a diagnostic tool in order to test the adequacy of a �tted STAR

model, complementing the tests of Eitrheim and Ter�asvirta (1996). The applications of

the MRSTAR model to post-war US real GNP and US unemployment rate demonstrate

that a multiple regime characterization of the business cycle might indeed be useful.

This paper o�ers some possibilities for further research. Second, the e�ect of outliers

on the detection of regimes seems to be of interest, as one does not want to spuriously �t

a model which contains additional regimes only to capture some aberrant observations. It

appears that a robust estimation method for STARmodels needs to be developed to achieve

proper protection against the inuence of such anomalous observations. Alternative ways

to compare di�erent STAR models, possibly with a di�erent number of regimes might also

be explored. Perhaps it is possible to use the ideas of Koop et al. (1996) and use impulse

response analysis as a model selection device, or as a diagnostic check on the added value of

additional regimes. Alternatively, the techniques of Hess and Iwata (1997) might be used
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to examine explicitly whether the switching-regime models are capable of replicating basic

stylized facts such as amplitude and duration of expansions and contractions. Finally, it

might be worthwhile to extend the application to US real GNP to a multivariate model,

again following the ideas of Koop et al. (1996), or to model nonlinearity and time-varying

parameters simultaneously. All these issues are left for further research.
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Table 1: LM-type tests for STAR nonlinearity in US GNP1

Transition d

Variable Test 1 2 3 4 5 6

yt�d S2 0:211 0:120 0:646 0:602 0:242 0:376
S3 0:330 0:053 0:256 0:258 0:235 0:248

�yt�d S2 0:089 0:065 0:982 0:819 0:291 0:220
S3 0:074 0:248 0:971 0:840 0:287 0:460

CDRt�d S2 0:023 0:083 0:157 0:758 0:835 0:664
S3 0:022 0:014 0:123 0:498 0:645 0:564

�CDRt�d S2 0:777 0:059 0:714 0:712 0:296 0:587
S3 0:649 0:159 0:745 0:544 0:067 0:356

1 p-values for LM-type tests for smooth transition nonlinearity in quarterly

growth rate of US real GNP. CDRt measures the current depth of a recession,

CDRt = maxj�1fxt�jg � xt with xt the log of US GNP.

Table 2: LM-type tests for multiple regimes in US
GNP1

Transition Test
Variable ET1 ET3 LMMR;1 LMMR;3

yt�1 0:35 0:26 0:27 0:53
yt�2 0:35 0:06 0:16 0:15
�yt�1 0:08 0:06 0:01 0:05
CDRt�1 0:18 0:06 0:23 0:07
CDRt�2 0:18 0:32 0:12 0:61
�CDRt�1 0:56 0:56 0:22 0:41
1The entries in columns ET1 and ET3 are p-values for

the LM-type tests for remaining nonlinearity of Eitrheim and

Ter�asvirta (1996), based on �rst- and third-order Taylor ap-

proximation of the second transition function, respectively. The

entries in columns LMMR;1 and LMMR;3 are p-values for the

tests of a basic LSTAR model against an MRSTAR alterna-

tive as developed in Section 2.3, also using �rst and third-order

Taylor approximations, respectively.
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Table 3: LM-type tests for STAR nonlinearity in US unemploy-
ment rate1

Transition d

Variable Test 1 2 3 4 5 6

yt�d S2 0:439 0:686 0:712 0:566 0:657 0:437
S3 0:202 0:335 0:326 0:326 0:459 0:429

�yt�d S2 0:009 0:007 0:005 0:010 0:016 0:176
S3 0:019 0:025 0:018 0:011 0:007 0:220

xt�d S2 0:677 0:705 0:675 0:404 0:493 0:629
S3 0:304 0:356 0:377 0:334 0:473 0:675

�xt�d S2 0:001 0:006 0:001 0:003 0:011 0:114
S3 0:010 0:008 0:001 0:001 0:000 0:121

1 p-values for LM-type test for smooth transition nonlinearity in monthly,

linearly detrended, US unemployment rate. xt is the average unemployment

rate during the quarter up to and including month t, i.e., xt = (yt + yt�1 +

yt�2)=3.

Table 4: LM-type tests for multiple regimes in US unemployment rate1

Transition Test Test
Variable ET1 ET3 LMMR;1 LMMR;3 ET1 ET3 LMMR;1 LMMR;3

xt�1 0:32 0:74 0:63 0:82 0:18 0:48 0:59 0:10
xt�2 0:31 0:75 0:63 0:84 0:18 0:40 0:59 0:08
xt�3 0:37 0:74 0:66 0:82 0:20 0:36 0:59 0:08
�xt�1 0:14 0:02 0:08 0:00 0:01 0:15 0:09 0:05
�xt�2 0:07 0:08 0:14 0:26 0:32 0:30 0:27 0:37

1The entries in columns ET1 and ET3 are p-values for the LM-type tests for remaining nonlinearity of

Eitrheim and Ter�asvirta (1996), based on �rst- and third-order Taylor approximation of the second transition

function, respectively. The entries in columns LMMR;1 and LMMR;3 are p-values for the tests of a basic LSTAR

model against an MRSTAR alternative as developed in Section 2.3, also using �rst and third-order Taylor

approximations respectively. The left block of test results corresponds to an estimated two-regime LSTAR

model with low value for the threshold, the right block corresponds to an estimated two-regime LSTAR model

with high value for the threshold.
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Figure 1: Weigths in MRSTAR Model

Note: Weights assigned to di�erent AR models in the sample MRSTAR model (8).
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Figure 2: Realizations of MRSTAR Model

Note: Realizations of the sample MRSTAR model (8) with 1 = 2 = 2:5, c1 = c2 = 0, "t � N(0; 1) for

di�erent combinations of autoregressive parameters. Panel a): �1 = �3 = 0:3 and �2 = �4 = 0:9, Panel b):

�1 = �2 = 0:3 and �3 = �4 = 0:9, Panel c): �1 = 0:3, �2 = 0:6, �3 = 0:6, and �4 = 0:9. The solid line is a

realization of an AR(1) with autoregressive parameter 0.6, using the same errors "t.
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Figure 3: US Real GNP, Quarterly Growth Rate

Note: The upper graph shows quarterly growth rates of US real GNP, 1947:II-1995:II. Solid circles indicate

NBER peaks and troughs. The lower graph displays average growth over the business cycles.
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Figure 4: US Real GNP, Transition Functions in MRSTAR Model

Note: Transition functions in MRSTAR model (23) for quarterly growth rates of US real GNP.

Upper graph: F (�yt�1) = (1 + exp[�6:461(�yt�1 � 0:484)=��yt�1 ])
�1.

Lower graph: F (CDRt�2) = (1 + exp[�75:862CDRt�2=�CDRt�2
])�1.
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Figure 5: US Real GNP, Distribution of Observations

Note: Distribution of observations on quarterly growth rates of US real GNP over the di�erent regimes.
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Figure 6: US Real GNP, Classi�cation of Observations

Note: Classi�cation of observations on quarterly growth rates of US real GNP in di�erent regimes. Open

circles, cubes, triangles and diamonds indicate observations assigned to regime 1 (F1 < 0:5; F2 < 0:5), 2

(F1 > 0:5; F2 < 0:5), 3 (F1 < 0:5; F2 > 0:5), and 4 (F1 > 0:5; F2 > 0:5), respectively.
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Figure 7: US Unemployment Rate

Note: Monthly US unemployment rate, males aged 20 and above, January 1948-July 1996. Solid circles

indicate NBER unemployment peaks and troughs.
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Figure 8: US Unemployment Rate, Mean growth rates surrounding peaks and troughs

Note: Mean growth rates in US unemployment rate, males aged 20 and above, January 1948-July 1996, in

quarters surrounding NBER unemployment peaks and troughs.
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Figure 9: US Unemployment Rate, Transition Functions in MRSTAR Model

Note: Transition functions in MRSTAR model (27) for monthly US unemployment rate, males aged 20

and above, January 1948-July 1996. F1(�xt�1) = (1 + exp[�25:303(�xt�1 + 0:381)=��xt�1 ])
�1 (circles),

F2(�xt�1) = (1 + exp[�3:812(�xt�1 � 0:308)=��xt�1 ])
�1 (triangles).
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Figure 10: US Unemployment Rate, Classi�cation of Observations

Note: Classi�cation in di�erent regimes of observations on detrended US unemployment rate, males aged

20 and above, January 1970-December 1984. Open circles, triangles and diamonds indicate observations

assigned to lower (F1 < 0:5; F2 < 0:5), middle (F1 > 0:5; F2 < 0:5), and upper (F1 > 0:5; F2 > 0:5) regime,

respectively.
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