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Abstract 

Background 

Loss of CpG dinucleotides in genomic DNA through methylation-induced mutation is 

characteristic of vertebrates and plants. However, these and other eukaryotic phyla show a 

range of other dinucleotide frequency biases with currently uncharacterized underlying 

mutational or selection mechanisms. We developed a parameterized Markov process to 

identify what neighbour context-dependent mutations best accounted for patterns of 

dinucleotide frequency biases in genomic and cytoplasmically expressed mRNA sequences of 

different vertebrates, other eukaryotic groups and RNA viruses that infect them. 

Results 

Consistently, 11- to 14-fold greater frequencies of the methylation-association mutation of C 

to T upstream of G (depicted C→T,G) than other transitions best modelled dinucleotide 

frequencies in mammalian genomic DNA. However, further mutations such as G→T,T (5-

fold greater than the default transversion rate) were required to account for the full spectrum 

of dinucleotide frequencies in mammalian sequence datasets. Consistent with modeling 



predictions for these two mutations, instability of both CpG and CpT dinucleotides was 

identified through SNP frequency analysis of human DNA sequences. Different sets of 

context-dependent mutations were modelled in other eukaryotes with non-methylated 

genomic DNA. In contrast to genomic DNA, best-fit models of dinucleotide frequencies in 

transcribed RNA sequences expressed in the cytoplasm from all organisms were dominated 

by mutations that eliminated UpA dinucleotides, observations consistent with cytoplasmically 

driven selection for mRNA stability. Surprisingly, mRNA sequences from organisms with 

methylated genomes showed evidence for additional selection against CpG through further 

context-dependent mutations (eg. C→A,G). Similar mutation or selection processes were 

identified among single-stranded mammalian RNA viruses; these potentially account for their 

previously described but unexplained under-representations of CpG and UpA dinucleotides. 

Conclusions 

Methods we have developed identify mutational processes and selection pressures in 

organisms provide new insights into nucleotide compositional constraints and a wealth of 

biochemical and evolutionarily testable predictions for the future. 
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Background 

One of the most striking compositional abnormalities in DNA sequences of mammalian and 

other vertebrate genomic DNA sequences is the marked under-representation of CpG and 

over-representation of CpA and TpG dinucleotides. This compositional abnormality was first 

recognized over 50 years ago [1-3] and is now generally accepted to result directly from the 

mutagenic effect of methylation of cytosine (mC) bases in CpG dinucleotides. mC is more 

likely to deaminate to thymine [4,5] so depleting CpG dinucleotides and increasing the 

frequencies of TpG and CpA on the opposite strand through mismatch repair. 

In more general terms, dinucleotide compositional abnormalities reflect either context-

sensitive differences in mutation rates (as in the case of DNA methylation and CpG under-

representation) or specific selection for or against certain dinucleotides. As an example of the 

latter, the UpA dinucleotide is targeted by RNA-degrading enzymes and its presence in an 

RNA sequence accelerates its degradation in the cytoplasm. UpA composition therefore 

modulates protein expression from mRNA through its influence on transcriptome turnover 

[6,7]. The widespread suppression of UpA dinucleotides in mRNA sequences may therefore 

reflect selection for increased stability in the cytoplasm. 

In spite of these two well known examples, it remains unclear whether the combination of 

mutational biases against CpG in genomic DNA and selection against UpA in mRNA 

accounts for the complex pattern of over- and under-representation of each of the 16 

dinucleotides in vertebrates. Secondly it remains unexplained why the degree of CpG under-

representation is inversely proportional to the G+C content of the underlying sequence, 

although it has been speculated that there are differences in the accessibility of genomic DNA 

in high and low G+C regions to deamination [8,9]. Thirdly, the observation made many years 

ago that many RNA viruses under-represent CpG dinucleotides despite the absence of a 



specific (methylation-dependent) mutational pathway for RNA has remained unexplained 

[10-12]. Patterns of CpG and UpA under-representation among viruses infecting hosts with 

different degrees of host genomic DNA methylation have remained similarly unexplored. 

Finally, eukaryotes with non-methylated genomes show different patterns of dinucleotide 

representation (such as elevated frequencies of ApA in ecdysozoa) for which neither a 

mutational nor a selectionist mechanism has yet been proposed. 

Using data from a range of eukaryotes with different methylation patterns, Simmen showed 

that the degree of over-representation of CpA and TpG dinucleotides were in proportion to 

the expected frequency created by C→T transitions in methylated DNA [13]. In Duret and 

Galtier [14], an explicit mathematical model was developed to investigate whether frequent 

CpG-context dependent mutations could account for the suppression in frequencies of TpA in 

human DNA sequences. Assignment of an elevated C→T transition rate reproduced the CpG 

deficit (and G+C dependence) observed in mammalian DNA and indirectly depleted TpA 

dinucleotide frequencies. However, this model failed to account for the full extent of TpA 

depletion observed in human DNA sequences and the model was not applied to investigate 

the effect of this single mutational bias on other dinucleotide frequencies, such as TpG and 

CpA that also show compositional biases. How well this model might fully recreate the 

dinucleotide profile of human DNA remains unresolved. 

In the current study we have developed an extended model of sequence evolution that allows 

separate mutation rates for each type of transition and transversion in each dinucleotide 

context against a background, separately optimized mean transition / transversion ratio (κ). 

This model generalizes Duret and Galtier’s model [14], in which κ was fixed at 2.1 and only 

one context dependent mutation, (C→T, G) was allowed to take a higher mutation rate. (This 

rate was based on observational data available at the time of the study on sequence variability 

in human DNA sequences.) Our approach in contrast allowed up to 48 (or 96 for RNA) 

different dinucleotide context dependent mutations and optimised rates to maximise the fit 

between model predictions and observed frequencies of all 16 dinucleotides. In the specific 

case of analysing human DNA, the mutation C→T, G and a transition rate of around 12 were 

discovered by the modelling rather than being imposed a priori. This analysis was also 

extended to the corresponding mRNA sequences to investigate whether additional or 

different mutational or selection pressures were exerted in cytoplasmically expressed 

sequences. 

Modelling was extended to other mammalian DNA and mRNA datasets, organisms showing 

different patterns or largely absent genomic DNA methylation (fish, insects, nematodes) and 

mammalian RNA viruses in which the phenomenon of CpG under-representation has been 

previously described [10,11]. Modelling was naturally restricted to processes showing global 

effects on DNA composition and was unsuited for modelling effects of genome modifications 

with specific functional roles. The latter include the recently discovered role of DNA 

methylation in the gene expression and development pathways of the honey bee (Apis 
mellifera) and other insects [15,16] that possess primarily non-methylated genomes. 

Modelling was also restricted to mutational processes or selection operating in dinucleotide 

contexts. While methylation (and associated mutations) primarily occurs in a CpG context in 

vertebrates and where studied in other eukaryotic groups, plant genomes are additionally 

heavily methylated (50-80%) in the CpA/T/CpG trinucleotide context [17]. As this 

potentially exerts a significant additional mutational pressure on plant genomic DNA and 

cannot be modelled, the analysis of plant genome sequences was excluded from the current 

study. 



On the larger genomic scale, we obtained evidence both for mutational processes acting on 

genomic DNA beyond simple methylation-induced hypermutation and for a range of 

additional likely selection pressures on mRNA that centre around the elimination of UpA 

dinucleotides. The existence of this selection pressure and its occurrence in RNA viruses 

provides evidence for a series of novel compositional constraints in the cytoplasm on viral 

RNA. Specific dinucleotides may be selected against to escape currently uncharacterized 

self/non-self recognition mechanisms that are coupled to the interferon system (in mammals) 

and potential parallel defence mechanisms in other eukaryotic phyla. 

Results 

Patterns of dinucleotide frequencies in genomic DNA and mRNA 

Ratios of observed to expected frequencies of dinucleotides were computed for DNA 

genomic sequences of several different eukaryotes and their corresponding mRNA 

sequences. DNA datasets were restricted to sequences that were non-transcribed since mRNA 

sequences encoded by genomic DNA that enter the cytoplasm may be subject to additional 

selection pressures. These represent a relatively small component of mammalian DNA 

sequences (H. sapiens, P. troglodytes and M. musculus in the current study; 1.2-2.0%) but the 

proportion of cytoplasmically expressed sequences was much larger in other vertebrates and 

other eukaryotic phyla (6.5% - 28%). 

As anticipated, frequencies of CpG dinucleotides in non-transcribed genomic DNA 

sequences from eukaryotic genomes showing extensive methylation (H. sapiens, and D. rerio 

[zebra fish]; Figures 1A, 1B) were substantially lower than expected from their G+C content. 

No such reduction was evident in DNA sequences of the mosquito, A. gambiae (Figure 1C) 

whose genome is largely unmethylated. Results from other mammals (P. troglodytes and M. 
musculus) were in practical terms identical to human DNA sequences) while other organisms 

without methylation of genomic DNA sequences (Caenorhabditis elegans [a nematode], 
Drosophila melanogaster [fruit fly]) showed no under-representation of CpG dinucleotides 

(data not shown). 

Figure 1 G+C composition (x-axis) and frequencies of CpG and TpA (or UpA) 

dinucleotides in representative organisms with methylated (H. sapiens, D. rerio) and 

non-methylated genomes (A. gambiae), labelled in panels. Symbols for CpG and UpA 

dinucleotide frequencies (blue and red dots respectively; see inset box) and were expressed as 

the ratio of observed frequency / frequency expected from mononucleotide (base) 

composition of the fragment. 

G+C contents of the subset of mRNA sequences were higher than non-cytoplasmically 

expressed sequences (Figure 1D, 1E, 1F). Several further differences between DNA and 

mRNA sequences were apparent in their dinucleotide compositions and their relationship 

with G+C composition. For example, for sequences with a given G+C content, UpA under-

representation was greater in mRNA sequences than genomic sequences of humans (Figure 

1A, 1D; p < 10
-10

 by Student t-test [Additional file 1: Table S1]). Even more evidently, UpA 

frequencies followed a quite different relationship with G+C content in A. gambiae and CpG 

frequencies in mRNA were substantially higher than in genomic DNA (Figure 1C, 1F). These 

observations are consistent with the existence of additional selection pressures on the subset 

of sequences expressed as mRNAs. 



Compositional biases extended to other dinucleotides in humans (Figure 2A, 2B) and other 

organisms (Additional file 2. Figure S1). Several instances of compositional asymmetries are 

evident in complementary dinucleotides in mRNA sequences, such as the higher frequencies 

of UpC dinucleotides compared to GpA and in the UpG/CpA and GpG/CpC pairs (Additional 

file 2: Figure S1B). 

Figure 2 Observed / expected CpG and UpA frequencies in (A) human DNA and (B) 
mRNA sequences as a function of G+C content. Frequencies of each dinucleotide 

predicted from mutational models with 1, 2 and 4 parameters (1p, 2p and 4p, labelled 

according to the inset box) were superimposed on observed distributions of CpG and UpA 

dinucleotides (blue and red dots respectively; see inset box). Quadratic lines of best fit 

through observed distribution (black lines) were matched to model predictions over a G+C 

composition range from 20%-80%. 

Fitting the mutational model to observed dinucleotide frequencies 

Observations of differing dinucleotide representations in DNA and mRNA sequences and the 

asymmetries between complementary pairs in mRNA justified the development of separate 

mutational models for DNA and mRNA sequences. To investigate which context dependent 

substitutions could account best for the pattern of dinucleotide under- and over-representation 

in each sequence dataset, we developed a Markov process parameter estimation method. This 

evaluated every possible substitution with each upstream and downstream neighbouring base 

and an associated mutation rate that maximized the fit between modelled and observed 

dinucleotide frequencies. The degree of fit was quantified by calculation of root mean square 

(RMS) distances between modelled frequencies for sequences of different G+C contents and 

those of a sample of actual sequences. 

For RNA, there were 96 possible context-dependent mutations, while the symmetry of DNA 

allowed 48 (eg. C→T,G is formally equivalent to C,G→A; see Methods). For both datasets 

separate optimization of transition / transversion ratios (κ) represented an additional 

parameter applied to mutations that was incorporated into the modelling process. The 

parameters that produced the lowest RMS distance for all 16 dinucleotides was selected. 

Since the model was fitted to sequences with a range of G+C contents, RMS distances are 

additionally influenced by how well the model reproduces the marked G+C dependence in 

the frequencies of certain dinucleotides (such as CpG and UpA). 

Having identified the context-dependent mutation, its rate and κ that best fitted the 

observational data, the mutation (although not its rate) was fixed and the analysis repeated to 

find a second context-dependent mutation that in combination with the first and a re-

optimised value of κ, created the greatest further reduction in RMS distances. This procedure 

was repeated with further context-dependent mutations until there was no further reduction in 

RMS distance. Fitting two parameters to human DNA and mRNA sequences led to a better 

match between the model predictions for UpA and CpG dinucleotide frequencies (red and 

blue lines respectively) across a range of G+C compositions than achieved using one 

parameter. Using four parameters provided a better match than two and indeed modelled CpG 

and UpA frequencies very closely matched the quadratic line of best fit through the 

observational data (grey lines; Figure 2). 

Matches between model predictions and observed frequency data extended to other 

dinucleotides in human DNA sequences and in most cases also successfully reproduced 



relationships between dinucleotide frequencies and G+C content (Additional file 2: Figure 

S1A). Similarly close fits between modelled and observational data for the 16 dinucleotides 

were observed for human mRNA sequences (Additional file 2: Figure S1B). Model 

predictions additionally reproduced the observed differences in frequencies of self-

complementary dinucleotides (such as CpA and UpG), represented as red/yellow/white and 

dark blue/light blue/white filled symbols. 

Modelling was extended to DNA and RNA datasets for the other organisms (data from a fish 

and an insect are shown in Additional file 2: Figure S1C, S1D, S1E and S1F). Similarly close 

fits between modelled and observed frequencies were observed at each using up to 4 

parameters. The main difference from human sequences was the much more restricted range 

of G+C contents of both DNA and mRNA sequences in each that made fitting the data to 

G+C compositional trends less relevant. 

Quantifying model error 

To quantify how well our model fitted the observational data, RMS distances between the 

observed dinucleotide frequencies and those predicted by the model were calculated for all 16 

dinucleotides. These were then compared with the corresponding minimum RMS distances 

between the observed dinucleotide frequencies and a separate quadratic model of each 

dinucleotide. These quadratic models yield the best possible fit to the data and lowest 

possible RMS value. Any other model will have higher RMS values and the amount by which 

its RMS values are above the quadratic models’ RMS values shows the error in the model. 

We refer to this as the baseline corrected model error and this is used in the presentation of 

the RMS results. As an example, the best fit model data for mammalian DNA using 3 

mutation rates had a RMS distance for all 16 dinucleotides of 0.0378 while quadratic best fit 

data showed a RMS distance of 0.0275. The baseline-corrected model error was therefore 

0.0103 (0.0378 – 0.0275). The calculation of baseline corrected model errors therefore 

excludes measurement errors associated with dinucleotide frequency measurements of often 

relative short nucleotide sequences. 

The effect of sequence length on RMS calculations can be visualised by comparison of the 

degree of scatter of dinucleotide frequencies of human mRNA sequences (mean length of 

approximately 2463 bases) with that of the much longer DNA sequences (50,000 bps; Figures 

1A, 1D, 2A, 2B). To more formally demonstrate the relationship between RMS scores and 

sequence lengths, human DNA sequences of lengths ranging from 400,000 to 500 bps were 

generated and model error estimated for each dataset using separate modelling to minimum 

values (Additional file 3: Figure S2 in Supplementary Data). An empirical relationship 

between sequence length and RMS distance can be represented as: 

( )0.42
RMS distance  2.2 /  length   0.0095= +  

 

The intercept with the y-axis of 0.0095 therefore represents model error for DNA fragments 

of infinite length (ie. not attributable to sampling error). For DNA fragments of 50,000 bps in 

length, sampling error can be estimated to contribute 0.0329 to RMS distances, while for 

human mRNA sequences, sampling error was three times higher at 0.0994. These values are 

close to RMS distances calculated from lines of best fit to the data (0.0275 and 0.0972 

respectively). This close match for human sequences was reproduced in corresponding 

datasets for other organisms (Additional file 4: Table S2). 



Effectiveness of context-dependent mutational rate modelling 

Model errors for the first four most influential mutations and the minimum value were 

calculated for human, fish and insect datasets (Figure 3). All values were baseline corrected 

by subtraction of RMS scores of quadratic lines of best fit through observational data 

(uncorrected RMS scores are shown in Additional file 5: Figure S3). For non-cytoplasmically 

expressed human DNA sequences, corrected model errors fell from an initial value of 0.228 

(no context-dependent mutations) to 0.0024 (minimum value achieved with 9 parameters; 

Figure 3A). The two most influential context-dependent mutations were C→T,G (model error 

reduction to 0.100) followed by G→T,T (0.019) with minimal proportionate reductions using 

further mutations. These model error reductions correspond to the successively better fits 

between modelled and observed frequencies for human DNA and mRNA for UpA and CpG 

dinucleotides displayed in Figure 2. Both the mutations and their mutation rates were highly 

reproducible on replicate sampling of DNA sequences (Additional file 6: Table S3). 

Similarly, for organisms such as the three mammalian species in which we suspect similar 

mutational biases and selection pressures may exist, the identities of the first three context-

dependent mutations were with one exception identical while model error reductions, values 

of κ and mutation rates were highly similar (Table 1). 

Figure 3 Model errors (y-axis) for mutational models with between 1 to 4 context-

dependent mutational biases for vertebrate (human, D. rerio) and non-vertebrate (A. 
gambiae) DNA and mRNA sequences. Minimum RMS distances for up to 16 additional 

mutational biases are shown as a dotted line. Model error reductions for alternative 

mutational biases are shown as unfilled circles. Mutations that remove CpG and T/UpA are 

shown in pink and blue inset boxes respectively. All model error values have been baseline 

corrected by subtraction of RMS scores of quadratic lines of best fit through observational 

data. 

Table 1 Comparison of the first three context-dependent mutations and mutation rates 

in three mammalian species 

Seq. Species κ Corrected model error 1
st
 Rate 2

nd
 Rate 3

rd
 Rate 

DNA H. sapiens 3.1 0.0135 C→T,G 12.06 G→T,T 6.16 A→G,T 1.42 

P. troglodytes 4.6 0.0134 C→T,G 11.29 G→T,T 6.01 A→G,T 1.30 

M. musculus 4.6 0.0117 C→T,G 14.33 G→T,T 4.30 C→G,A 2.20 

RNA H. sapiens 1.7 0.0249 C→U,G 10.26 U,A→C 9.53 C→A,G 9.40 

P. troglodytes 1.6 0.0265 C→U,G 10.17 U,A→C 11.93 C→A,G 10.00 

M. musculus 1.6 0.0183 C→U,G 10.84 U,A→C 9.48 C→A,G 10.73 

A further insight into the robustness of these predictions was obtained by plotting out 

baseline corrected model error for 2
nd

, 3
rd

 and 4
th

 ranked alternative context-dependent 

mutations. For human DNA, C→T,G and G→T,T led to a substantially greater reduction 

than alternatives despite their frequent similarities in their effects on sequence composition. 

For example, 2
nd

 and 3
rd

 alternatives to C→T,G also eliminated CpG residues from sequences 

(shaded pink boxes; Figure 3A). The same findings were obtained on analysis of DNA 

sequences of other mammalian genomes (M. musculus and P. troglodytes; data not shown). 



Context-dependent mutations and single nucleotide polymorphism (SNP) 

frequencies 

The consistent prediction in mammalian datasets of the G→T,T mutation, ranked second, 

was unexpected and did not correspond to any characterized mutational bias in mammalian 

genomes. To investigate whether there was greater mutability of the GpT dinucleotide in 

human DNA sequences, we compiled a large dataset of approximately 45 million SNPs 

compiled from the NCBI dbSNP database and compiled frequencies of each possible 

mutation (ie. A↔C, A↔G, …..G↔T) subdivided into groups according to the base 

downstream of the SNP (3′ dinucleotide context). These frequencies were normalized by 

frequencies of each dinucleotide and of each mutation in the human SNP dataset to calculate 

the influence of dinucleotide context on mutation frequencies. As expected, SNP mutations 

showed a strong preference for the first ranked C→T,G mutation (8.6x expected frequency) 

predicted from modeling and additionally the C→A,G and C→G,G alternative mutations 

(3.5x and 4.0x respectively; Figure 4). Consistent with the second ranked mutation detected 

on modelling, consistently elevated mutational frequencies were observed in the GpT 

dinucleotide (1.6x – 1.8x) although in this case there was a less clear bias among the three 

possible mutations for the G↔T transversion predicted in the model. The instability of GpT 

identified by SNP analysis supports the prediction of an elevated G→T,T mutation rate 

identified by modelling and by the under-representation of GpT in human (Additional file 2: 

Figure S1A; ≈80% of expected value) and in other mammalian sequence datasets (data not 

shown). 

Figure 4 Frequencies of SNPs (y-axis) occurring in each dinucleotide context (x-axis) 

compiled from approximately 45 million SNPs in human genomic DNA sequences. 
These were categorised by mutation type and by the base downstream of the SNP (3′ 

dinucleotide context). Frequencies of SNPs were normalised to those predicted from 

dinucleotide frequencies and transition and transversion rates measured in the whole SNP 

dataset. 

Mutational biases in mRNA sequences 

Differences in dinucleotide composition between human non-cytoplasmically expressed 

genomic DNA sequences and mRNA sequences were reflected in different best-fit mutational 

models between DNA and RNA sequences (Figure 3). The composition of mRNA sequences 

is influenced by mutational pressures operating on the underlying DNA sequences, as well as 

possible mutational biases introduced by RNA polymerase II and by selection pressures in 

the cytoplasm. While the most influential mutation was C→U,G, along with alternatives that 

also removed CpG dinucleotides, the second (and alternatives) all removed UpA 

dinucleotides, a mutational or selection pressure absent in mammalian DNA sequences. 

mRNA showed further mutations that removed CpG and UpA dinucleotides, consistent with 

a greater, possibly cytoplasmically-driven selection pressure to remove these two 

dinucleotides (see Discussion). Evidence for greater complexity of the mutation and/or 

selection pressures operating on mRNA sequences was provided by the greater number of 

mutations needed to reduce model error and larger minimum value from the best fitted 

model. 

For DNA sequences of other species, mutations removing CpG dinucleotides were found 

among those with methylated genomes (D. rerio; Figure 3C along with the sea squirt, C. 
intestinalis) as expected but were entirely absent among A. gambiae sequences (Figure 3E) 



and other organisms with non- or weakly-methylated genomes (D. melanogaster, C. elegans; 

data not shown). mRNA sequences from all species showed a predominance of mutations that 

removed UpA, consistent with widespread cytoplasmically driven selection against this 

dinucleotide. 

To compare mutational and/or selection pressures operating against CpG and UpA 

dinucleotides in different organisms, modelled mutation rates (−fold excess over default 

values) were calculated for the most influential mutations that remove these in each species 

(Figure 5). This analysis confirmed the absence of mutational or selection pressures against 

CpG dinucleotides in DNA or mRNA sequences in any of the organisms with non-

methylated genomes (ecdysozoa). In contrast, selection against UpA dinucleotides was 

universal in mRNA sequences of all organisms examined and occurred at an optimized rate 

that was invariably several fold higher than observed in corresponding DNA sequences. 

Mutations removing TpA was indeed absent in all mammalian datasets and in C. intestinalis 

among the first four parameters that were most influential in reducing model error. 

Figure 5 Mutation rates for sequence changes that remove CpG and UpA dinucleotides 
in different eukaryotes. (A) Rates for mutations removing CpG dinucleotides among the 

first three parameters for genomic DNA and mRNA sequences of different eukaryotes (B) 

Mutations removing UpA dinucleotides. Zero values indicate that mutational biases were not 

detected. Abbreviations: HS: H. sapiens; Pt: P. troglodytes; Mm: Mus musculus; Dr: D. rerio; 

Ci: C. intestinalis; Ce: C. elegans; Ag: A. gambiae; Dm: D. melanogaster. 

Unexpectedly, greater mutational rates in mRNA sequences compared to non-cytoplasmically 

expressed DNA sequences were also observed for CpG dinucleotides, where modelled rates 

were consistently higher (despite the existence of the methylation-induced mutational 

pathway operating on genomic DNA sequences of vertebrates). The existence of an 

additional selection pressure imposed on cytoplasmically expressed sequences was consistent 

with the existent of two mutations rather than one (C→U,G [1st parameter] and C→A,G [3
rd

 

parameter]) in human mRNA sequences and in other mammalian mRNA datasets (P. 
troglodytes, M. musculus; Table 1; Figure 3B). 

Modelling mutational and selection biases in mammalian RNA viruses 

RNA viruses replicate in the cytoplasm of a wide range of eukaryotes and are potentially 

susceptible to the same selection pressures observed in host mRNA sequences. To investigate 

this, dinucleotide compositions in complete genome sequences from a wide range of RNA 

and small DNA viruses infecting mammals and insects were calculated. Consistent with 

previous analyses [10], most classes of RNA virus and small DNA viruses showed evidence 

of marked CpG suppression (Figure 6) and a wide range of under-and over-representation of 

other dinucleotides (Additional file 7: Figure S4A, S4B). None were apparent among insect 

viruses. RNA viruses were subdivided into groups based on the configuration of their 

genomic RNA (based on the Baltimore classification) and potential exposure to the 

cytoplasm. RNA viruses with single stranded genomes (positive or negative sense) and 

reverse transcribing viruses (eg. retroviruses) showed similar degrees of CpG suppression 

that was related to their G+C composition, while no comparable suppression was observed in 

dsRNA viruses (Figure 6; green filled circles p < 10
-10

; Additional file 1: Table S1). These 

observations provided tentative evidence that RNA viruses that expose their genomic RNA 

sequences to the cytoplasm are subject to similar selection against CpG as was evident in 

mRNA sequences. Insect viruses of any configuration showed no CpG under-representation. 



Figure 6 CpG dinucleotide frequencies among different classes of RNA and small DNA 
viruses infecting mammals and insects. Viruses were divided into groups based on the 

genomic composition: RNA+: positive strand RNA viruses; RNA-: negative strand RNA 

viruses; rtRNA: reverse transcribing viruses (Retroviridae, Hepadnaviridae and 

Caulimnoviridae); dsRNA: double-stranded RNA viruses; ssDNA: single stranded DNA 

viruses as indicated in the inset box. 

To investigate whether the suppression of CpG in RNA viruses was a response to similar 

mutational and selection pressures observed in their hosts’ mRNA sequences, 420 animal 

positive- and negative- sense viruses were analyzed using the 96 parameter mutational model 

(Figure 7; uncorrected RMS scores are shown in Additional file 8: Figure S5). As observed 

among mRNA sequences of their hosts, the main context-dependent mutations that reduced 

model error were those that eliminated CpG and UpA dinucleotides, prominently represented 

among both the first choice and alternative mutations. 

Figure 7 Baseline corrected model errors (y-axis) for mammalian RNA viruses using 

mutational models with 1 to 4 context-dependent mutational biases (labeled under 

graph line) and minimum values using up to 8 additional mutational biases (dotted line). 
Model errors for alternative mutational biases are shown as unfilled circles. Mutations that 

remove CpG and UpA are shown in pink and blue boxes respectively. 

Discussion 

Modeling mutational processes 

This study investigated several unresolved issues in previous analyses of dinucleotides and 

the context-sensitive mutational and selection biases. Specifically, are simple processes such 

as the elevated C→T transition frequency upstream of G residues arising from methylation 

necessary and sufficient to account for the spectrum of skewed dinucleotide frequencies 

observed in mammalian genomic DNA sequences? A previous investigations of dinucleotide 

composition of genomic sequences in a range of eukaryotic phyla showing different degrees 

of methylation and CpG under-representation demonstrated (despite previous reports to the 

contrary; eg. [18]) that the observed CpA/TpG over-representation arose in direct proportion 

to the loss of CpG dinucleotides [13]. Using a modeling method on which the current study 

was based, Duret and Galtier [14] further showed that assigning an elevated C→T,G rate 

upstream of G residues reproduced the G+C relationship with CpG under-representation in 

human genomic DNA and, rather counter-intuitively, additionally reproduced the G+C-

dependent depletion of TpA dinucleotides also observed in human DNA sequences [14]. 

Despite the title of that study however, the actual depletion of UpA is proportionately greater 

in genomic DNA than could be modelled and the further effect of this primary mutational 

bias on other dinucleotide representations was not analyzed. A further problem with this 

hypothesis is that UpA deficiencies are equally pronounced among organisms that lack 

methylation of genomic DNA and show no suppression of CpG frequencies (eg. A. gambiae - 
Additional file 2: Figure S1E). 

In the current study, we have substantially expanded the modelling process to allow multiple 

mutational biases and rates and used model error calculations to allow each to be 

systematically optimized rather than empirically assigned. The method proved robust, with 

minimal variability in predicted mutations and mutational rates of human DNA when 



different random selected samples were analyzed (Additional file 6: Table S3) or on 

comparison of mammalian genomic DNA and RNA datasets where selection pressures are 

expected to be similar between species (Table 1; Figure 5). We do acknowledge, however, 

that finding the simplest combination of context-dependent mutations and associated 

mutational rates that fits the observational data is not necessarily the actual underlying 

biological process. However the mutational models we have discovered are compelling in 

their simplicity, efficiently account for observational data with a minimum of parameters and 

predict context-dependent mutations and rates that are both biologically plausible and 

consistent with results and inferences made from different approaches [19-22]. This applies 

particularly to mammalian DNA datasets where the use of just two mutations reduced 

baseline corrected model error to close to zero. Furthermore, the optimized mutational rate 

for the C→T,G transition was comparable to estimates based on different methods. For 

example a 12-fold higher rate compared to other transitions was reported using a simple 

equilibrium model [22]. More recent maximum likelihood approaches that incorporate the 

C→T,G transition rate in human genomic DNA as a separate parameter to standard 

substitution models for likelihood-optimization, arrive at mutational rates ranging from 8.5 

(TF model; [19]) to 9.2 [21], similar to the modelled 11.0x – 12.1x rates we derived for 

mammalian DNA (Table 1). 

One unanticipated finding that supports the validity of the modelling method was the 

reconstruction of the relationship between the under-representation of CpG and TpA (and 

other dinucleotides) with G+C content. Quadratic lines of best fit through observational data 

superimposed almost exactly on model predictions using 4 or fewer parameters Figure 2 and 

Additional file 2: Figure S1). This provides a simpler explanation than hypotheses that 

propose different susceptibilities of high and low G+C content DNA to methylation and 

deamination or different selection pressures operating on CpG islands that contain higher 

proportion of coding sequences [23]. For example, one widely discussed model argues that 

genomic DNA with a low G+C content is more susceptible to methylation-induced mutations 

that eliminate CpG dinucleotides [8,9]. The effect of replacing C with T further reduces G+C 

composition in these regions encouraging further methylation and elimination of CpG 

dinucleotides. The theory provides a compelling explanation for the existence of alternating 

regions of low C+G content and heavily methylated DNA interspersed with CpG-rich islands 

(particularly in warm-blooded animals where elevated temperatures potentially contributes to 

the accessibility of low G+C DNA to methylation). However, we have found that precisely 

the same relationship emerges from a model in which G+C content had no influence on 

methylation rate. 

Compared to this simple, single parameter modelling previously reported of human DNA 

[14], at least one further mutation and better optimized C→T,G mutation rate and κ 

(transition / transversion) ratio was required to reproduce the steeper positive (CpG) and 

negative (TpA) gradients between dinucleotide representation and G+C content. In the case 

of TpA, the use of two parameters additionally reproduced the degree of under-representation 

of TpA observed in genomic sequences that was not effectively modelled in the original 

study. 

Previous investigation and modelling of mutations that create dinucleotide frequency biases 

have typically concentrated specifically on CpG and its under-representation in mammalian 

genomes. There is therefore a dearth of published information to corroborate predictions for 

other dinucleotides and among other organisms without genomic methylation. There is for 

example little information on the potential existence of the highly influential G→T,T 



mutation identified in mammalian DNA sequences, C→T,T in D. rerio and G→A,A among 

ecdysozoa. The GpT dinucleotide is depleted in mammalian DNA sequences as well as in 

eubacterial and mitochondrial genomes [24], and consistent with the greater than expected 

frequency of SNPs involving this dinucleotide in a large scale analysis of human SNP data 

(mean 1.7-fold; Figure 4). This mutational bias is indeed visible although uncommented on in 

previous SNP analyses of human and mouse sequences [25,26]. Together these findings are 

consistent with a greater mutability of this dinucleotide predicted by the model. 

Differential selection on expressed mRNA sequences 

In contrast to previous studies, investigation of mutational and/or selection biases was based 

on genomic sequences separated into expressed directly as mRNA sequences and DNA 

sequences that are non-transcribed. This differentiation was particularly relevant for 

organisms with high proportions of coding and other expressed sequences in their genomes 

(eg. A. thaliana; at least 28%). This differentiation revealed several differences both in their 

dinucleotide frequency biases and in the optimised models for their underlying mutational 

and selection biases. 

The first observation was that dinucleotide frequency biases were often distinct between 

genomic DNA and mRNA sequences, even though the latter sequences necessarily 

incorporate mutational processes operating on genomic DNA. The proportionately greater 

under-representation of UpA dinucleotides for a given G+C content observed in mRNA 

sequences has been previously described [7], although this phenomenon extends to several 

other dinucleotides which show even greater compositional differences (such as GpA and 

CpA in human mRNA; Additional file 2: Figure S1B). Further evidence that different 

selection may be operating on mRNA sequences was indicated by frequent asymmetries in 

complementary dinucleotides, such as CpA and UpG that could not have originated through 

mutational biases occurring on genomic DNA (where they are effectively symmetrical). 

Mutational models developed for mRNA sequences showed several further differences from 

those optimised for genomic DNA sequences of the same organism. Most prominently was 

the evidence in all species examined for strong selection against the UpA dinucleotide, 

ranked first or second in order of influence. In contrast, selection against UpT was either 

absent (mammalian species, C. intestinalis) or substantially weaker in genomic DNA 

sequences (Table 1, Figure 5). Best fitting mutations that removed UpA residues were usually 

transitions (eg. U→C,A) but showed no evidence of context dependence that would be 

expected for a mutational bias. Similarly, among the species investigated, the 96+1 parameter 

(asymmetric) model generated similar numbers of upstream and downstream-base 

conditioned mutations, such as U,A→C in mammalian mRNA and D. rerio and U,A→G in 

A. gambiae (Table 1, Figure 3). This contrasted with the strict dependence of methylation-

induced transitions on a downstream G residue in DNA sequences. 

Selection against UpA dinucleotides in cytoplasmically-expressed sequences might be 

expected given the role of the UpA dinucleotides as a recognition motif for RNAseL and 

other RNA degrading enzymes [6,7,27]. For example, human mRNA sequences expressed in 

the cytoplasm of CHO (hamster) cells showed greater degradation rates in proportion to 

frequencies of UpA residues in the cytoplasm [6]. Although there is little information on 

degradation pathways of mRNA sequences in invertebrates, the observation that UpA is 

consistently under-represented throughout eukaryotic phyla provides some evidence for the 

existence of comparable regulatory mechanisms [7]. As suggested many years ago, the 

suppression of UpA dinucleotides among RNA viruses infecting mammalian, plant and insect 



cells (Figure 6; [10,11]) may therefore represent their specific adaptation to evade RNA 

degradation during their replication cycle. In the current study, further evidence for specific 

selection against UpA dinucleotides was provided by the mutational model for positive- and 

negative-strand animal viruses in which mutations removing UpA residues were ranked 

second behind those removing CpG (Figure 7). 

Selection against CpG dinucleotides in expressed RNA sequences 

Mutations eliminating CpG residues were also highly influential in reducing model error for 

mRNA sequences and ranked 1
st
 or 2

nd
 in species with methylated genomes (Figure 3). 

Although these arise (at least in part) from mutational biases in the underlying genomic 

sequence, modelled mutational rates were invariably higher in mRNA sequences (Figure 5). 

Furthermore, in C. intestinalis, CpG depletion was best modelled by mutations that were 

dependent on the upstream base (eg. C,G→A; Figure 3 and data not shown). These 

observations provide evidence that additional, likely selective rather than mutational 

pressures against CpG dinucleotides are exerted on RNA sequences expressed in the 

cytoplasm. The existence of this selection pressure operating independently of DNA 

methylation induced mutation is supported by our finding of mutational biases against CpG 

dinucleotides among RNA viruses (Figure 7) in which conventional deamination and 

mutation as a consequence of methylation cannot occur. This selection process may underlie 

the prominent under-representation of CpG dinucleotides in many classes of RNA virus 

[10,11] infecting mammals and plants to extents comparable to those observed in their hosts’ 

mRNA sequences (Figures 2, Additional file 7: Figure S4A, S4B; [28]). Prominent 

exceptions to CpG under-representation are viruses with dsRNA genomes (Figure 6) and 

many of the helical-classed plant viruses (data not shown). In these, however, RNA genomic 

sequences remain packaged within virions throughout their replication cycle and they 

therefore may not be subject to the same selection pressures operating on exposed RNA. 

It could be argued that host cell defences against viral infections that mutate their RNA 

genomes may account for the various under- and over-representations of specific 

dinucleotides. Of these, members of the APOBEC family deaminate cytosines in single-

stranded DNA and RNA potentially in specific sequence contexts [29] although those 

identified (C,C->U and U,C->U) would not create the dinucleotide biases in RNA viruses and 

of course the action of APOBEC is specific to retroviral genomes, not the RNA viruses 

modelled in the current study. A different RNA editing enzyme that is interferon-induced and 

known to be active against RNA viruses is adenosine deaminase acting on RNA 1 (ADAR1). 

However, its mutagenic effect is not known to be dependent on dinucleotide context [30] and 

therefore similarly cannot create the frequency biases observed. 

Although the nature of the selection against CpG dinucleotides remains poorly understood 

and has not been investigated functionally, there are a number of tantalizing clues towards the 

existence of mechanisms coupled to innate immunity that recognize RNA with CpG motifs 

[28,31,32]. There may be, for example, RNA-degrading enzymes that recognise CpG motifs, 

analogous to UpA targeting by RNAseL and other RNA degrading enzymes that influence 

mRNA half-lives in the cytoplasm (see above). Alternatively, CpG dinucleotides in viral 

RNA may be selected against as they may serve as targets for currently uncharacterized 

pathogen recognition receptors couple to interferon or other cell defence pathways [12]. The 

induction of interferon-β in macrophages exposed to synthetic RNA oligonucleotides 

containing CpG residues [33] may be an example of this process, functionally and perhaps 



evolutionarily related to Toll-like receptor 9 that recognizes non-methylated CpG 

dinucleotides in DNA sequences. 

Further evidence that the presence of CpG dinucleotides in viral sequences either activate or 

are targets of cell defence mechanisms is provided by the observation that polioviruses with 

artificially elevated CpG frequencies in their genomic RNA were markedly attenuated and 

replicated to titres several orders of magnitude lower than wild type virus in in vitro cell 

culture [34-36]. Intriguingly, cellular genes coding for proteins induced as part of the innate 

response to infection, such as type 1 interferons, show substantially greater depletion of CpG 

dinucleotides than other genes of similar G+C composition [31], suggesting that this 

adaptation is required for effective gene expression in a hostile cytoplasmic environment. 

Mammals (and potentially other vertebrates) and plants with their methylated genomes and 

associated depletion of CpG may therefore have independently co-opted this dinucleotide as a 

marker of self/non-self recognition. This potentially explains the selection against CpG in 

viruses infecting members of these eukaryotic phyla [28]. The existence of such recognition 

systems may in turn have placed additional selection pressures on host expressed mRNA 

sequences to evade these viral countermeasures. 

Conclusions 

The findings in the current study provide the first comprehensive analysis of context-

dependent mutational biases and selection pressures in organisms with both methylated and 

non-methylated genomes. The finding of pressures operating on genomic DNA in addition to 

the previously described C→T,G mutation in mammals, a set of quite different biases in non-

methylated genomes and additional selection pressure operating on sequences expressed as 

mRNAs in all organisms provides a series of predictions that can be directly analyzed in 

biological studies. The evidence obtained for selection pressures against UpA and CpG 

dinucleotides in mRNA sequences of methylated organisms provides a coherent explanation 

of their under-representation in cytoplasmically replicating RNA viruses which has eluded 

previous analyses [10]; [11]. It provides exciting new insights into the process of self / non-

self recognition that underlies host innate immunity to viral pathogens. 

Methods 

Sequences and dinucleotide frequency calculation 

DNA sequences from human (Homo sapiens), other mammals (chimpanzee [P. troglodytes], 

mouse [M. musculus]), another vertebrate (zebra fish [D. rerio]) and other animals (sea squirt 

[C. intestinalis], fruit fly [D. melanogaster], mosquito [A. gambiae] and nematode [C. 
elegans]) were the subject of the investigation. Genome sequences were obtained from UCSC 

for the following genome versions: H. sapiens - hg19; P. troglodytes - panTro3; M. musculus 

- mm9; D. rerio - danRer7; C. intestinalis - ci2; C. elegans - ce10; A. gambiae - anoGam1; D. 
melanogaster, dm3. 

Exon coordinates were extracted from UCSC using the table browser function using the 

following tables: hg19: knownGenes; panTro3: refGene; mm9: knownGenes; danRer7: 

refGene; ci2: refGene; ce10: refGene; anoGam1: refGene; dm3: refGene. Sequences 

corresponding to exon coordinates were removed and the remaining non-cytoplasmically 

expressed DNA genomic sequences were divided into 50,000 bp lengths for analysis. 



From each species, non-redundant mRNA sequences were downloaded from the 

http://www.ncbi.nlm.nih.gov/gene database, with sequences shorter than 2500 bases 

excluded. Complete genome sequences from available positive and negative stranded RNA 

viruses infecting mammals were obtained from GenBank (Additional file 9: Table S4). The 

analysis used non-redundant sequences curated in the RefSeq project comprising prototype or 

reference sequences from each virus family, and species. 

SNPs in human DNA and their immediate 5′ and 3′ bases were obtained from the NCBI 

dbSNP database (ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/rs_fasta/) on 18/01/12. 

The bases immediately adjacent to the 44,415,612 SNPs were extracted by parsing FASTA 

files, ignoring insertion/deletion polymorphisms. 

Mono- and dinucleotide frequencies and ratios of observed dinucleotide frequencies to those 

expected from mononucleotide composition (G+C content in the case of DNA sequences) 

were calculated using the program Composition Scan in the SSE package [37]. 

Modelling substitution rates in different dinucleotide contexts 

We developed a systematic model to determine optimal mutation rates in each dinucleotide 

context that best correlate with DNA and RNA composition of eukaryotic and viral 

sequences. These rates can viewed as variations from a default rate transformation matrix, Q: 
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where QYW for distinct Y and W is the default rate of transformation from nucleotide Y to 

nucleotide W. κ is the transition to transversion ratio and, for the default transformation rates 

given by the matrix Q, θ is the equilibrium proportion of G+C mononucleotides. It is 

assumed that these rates can be influenced independently by the two neighbouring 

nucleotides to Y as follows. For a given trinucleotide XYZ the mutation rate from Y to a 

different nucleotide W is given by: 

 ( ,  ,  )  ( ,  )  ( ,  )YWr X Y W Z f X Y W Q f Y W Z→ = → →  
 

where f(X, Y→W) is the factor giving the change of the mutation rate of Y→W from its 

default value when the upstream nucleotide is X, and f(Y→W, Z) is the factor when the 

downstream nucleotide is Z, and both factors contribute independently. For example if f(X, 
Y→W) and f(Y→W, Z) were changed from their default values of 1 to values 0.7 and 2, then 

the mutation rate r(X, Y→W, Z) would increase by a factor of 1.4 from its default value of 

QYW. This model generalizes Duret and Galtier’s model [14], in which κ = 2.1, f(C→T, G) = 

27.6/2.1 and the rest of factors all equal to 1.0. 

For each of the 4 nucleotides Y there are 3 possible transitions to a different nucleotide W 

giving 12 possible transitions Y→W. Since there are 4 possible upstream nucleotides X, there 

are 48 factors of the form f(X,Y→W) and since there are 4 downstream nucleotides Z there are 



48 factors of the form f(Y→W, Z), giving a total of 96 factors in the model. (Note that this is 

half the number of factors that would be needed in a model that had a factor for each of the 

12 possible transitions and each of the 16 combination of upstream and downstream 

nucleotides.) In RNA all the 96 factors in the model are independent. However in DNA there 

is strand symmetry which leads to equal rates of mutation in complementary DNA strands. 

Consequently if X’, Y’ and W’ are the complementary nucleotides to X, Y and W respectively, 

then f(X, Y→W) = f(Y’→W’, X’). Hence for DNA there are only 48 independent factors. 

For any specified set of mutational rates r(X, Y→W, Z) we can simulate the mutational 

process starting from some arbitrary compositions until an equilibrium is reached. The 

method used is as follows. 

Let dij(u) be the proportion at time u of all the dinucleotides that is dinucleotide ij, and let 

mj(u) be the proportion of all the nucleotides that is nucleotide j. In our model the mj(u) and 

dij(u) are related by: 

( ) ( ) ( )j ij ji

i i

m u d u d u= =∑ ∑   (1) 

The first sum is over all the dinucleotides ij where j is the downstream nucleotide, and the 

second sum is over all dinucleotides ji where j is the upstream nucleotide. The reason that 

these are the same is that in our model we assume an arbitrary long RNA or DNA sequence 

so every nucleotide occurs once in a dinucleotide as its upstream nucleotide and once in a 

dinucleotide as its downstream nucleotide. Each time there is a transition in our model the 

change affects equally the nucleotide where it is the upstream nucleotide and the dinucleotide 

where it is the downstream nucleotide. Hence provided the two sums are the same at the start 

of the simulation they will remain the same throughout. 

Let tijk(u) be the proportion at time u of all trinucleotides that is ijk. The trinucleotide ijk 

consists of an upstream dinucleotide ij and a downstream dinucleotide jk sharing a common 

middle nucleotide j. Following previous approaches [14] we assume that in trinucleotides the 

up and downstream dinucleotides that share a common middle nucleotide are independent. 

From this it follows that tijk(u) = dij(u) Pjk|j(u), where Pjk|j(u) is the proportion at time u of 

dinucleotide jk among all the dinucleotides whose left nucleotide is j. Since Pjk|j(u)= djk(u)/ 
mj(u), it follows that: 
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The rate of change in the proportion of dinucleotide ij is given by the equation: 
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where b((x, y), (i, j→l, k))) is the change in the number of dinucleotides xy when a 

trinucleotide ijk turns to a trinucleotide ilk, i.e., the number of dinucleotides xy in 

trinucleotide ilk minus the number in trinucleotide ijk. For example, b((C, A), (C, A→T, G)) 

= −1 since one CpA is lost by changing from CAG to CTG. Also b((T, T), (T, C→T, T)) = 2, 



and b((A, A), (G, G→T, C)) = 0. It is not difficult to recognize that the value b((x, y), (i, j → 

m, k)))can take is − 2, − 1, 0, 1 or 2. 

Let F denote the vector consisting of κ and all the factors f. For any given values of θ and F, 

the steady state dinucleotide proportions can be found by substituting (1) and (2) into (3) and 

integrating the resulting 16 nonlinear equations from an arbitrary starting composition until 

the proportions stabilize. Let dXY be the limiting proportion of dinucleotide XY and let mX be 

the limiting proportion of nucleotide X. The limiting C+G proportion, ω equals mC + mG and 

for each dinucleotide XY we can calculate the model’s prediction of the observed to expected 

dinucleotide ratio, XpYo/e, from dXY/(mXmY). (If there was no correlation between the 

nucleotides in dinucleotides then this ratio would be 1.) By tabulating C+G and the resulting 

XpYo/e for a range of values θ and interpolating we can find for any value ω of C+G� the 

model’s estimate of XpYo/e. We denote this function by MXY(ω,F). 

To assess how good a fit our model is to a set of samples, the root mean square error, RMS, 

between the model and the data was calculated. Assume there are N samples and sample n 

has a C+G proportion of ωn and the o/e ratio of the XY dinucleotide is Rn,xy. Then for a vector 

of parameters F the RMS is: 
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The goal is to find the minimum value of RMS(F) and the corresponding value of the 

parameters F, which gives the best fit to the data. However we are interested in solutions in 

which only a small number of the factors, f, deviate from their default value of 1. The 

calculation is done in a series of stages. First we find the minimum values of RMS(F) for κ 

and each single factor in turn, and choose the factor that gives the best fit. Then we repeat the 

calculation allowing the values of κ and the previously selected factor and each other factor in 

turn to vary from their default values, and find which other factor allows the best reduction in 

RMS value. Then this is repeated to select at each step the best additional factor to add to the 

previously selected ones allowing at every step the re-optimisation of the values of κ and f for 

each of the previously selected nucleotides. 

The steps are shown below. Here M is the total number of parameters to vary (i.e. either 49 or 

97) and Max_K is the maximum number of parameters we want to allow to deviate from their 

default values. (In the DNA case the remaining parameters are set equal to their 

complementary parameter.) We number the parameters f0 = κ, f1 = f(A, A→C ), f2 = f(A, 

A→G ), … Variable R
Opt

 denotes the minimum value of RMS found when only the 

parameters in D are allowed to vary, and F
Opt

 the corresponding vector of parameter values. 

Initialise F = (f0,f1,f2 ,…, fM) := (2.1,1.0,1.0,…,1.0) 

S := {0};  P :={0,1,…,M}; Best_R
Opt

 = ∞∞∞∞ 

for j := 1 … Max_K 

   for i in P\S       (i.e. set P with elements of set S removed) 

            D := S ∪  i 

            ROpt
, F

Opt
 := min RMS(F) varying all parameters fi  for i ∈  D  



            if R
Opt

 < Best_R
Opt

 

         Best_R
Opt

 := R
Opt

; Best_S := D; Best_F := FOpt
 

      end if 

   end for 

   Output Best_R, Best_S, Best_FOpt
 as solution for k variable parameters 

     S := Best_S ; F := Best_FOpt
 

end for 

Although the mutation rate f(W→X, Y) is a separate parameter in the model from f(X→W, Y), 
their effects are related: setting f(W→X, Y) equal to a value v usually has a similar effect on 

the equilibrium compositions to setting f(X→W, Y) equal to the value 1/v. Consequently when 

presenting the results only the factor greater than 1 is reported. 

Strand symmetry in DNA sequences 

Models used and the information that can be obtained from modelling mutational biases and 

selection pressure depends on the nature of the nucleic acid. Studies to date have been 

performed on genomic DNA; without evident polarity in its replication in eukaryotes, the 

actual number of independent dinucleotides amounts to only 10. These are ApT, TpA, CpG 

and GpC (self-complementary dinucleotides) and the following pairs which are present in 

equal frequencies in a large enough sequence sample; ApA and UpU, GpG/CpC, CpA/UpG, 

ApC/GpU, GpA/UpC and ApG/CpU. As described above in the model description, this 

symmetry leads to mutational biases dependent on a downstream base being indistinguishable 

from a complementary bias dependent on an upstream base. Thus, the well characterised 

methylation-induced mutation, represented here as C→T,G is formally equivalent a 

complementary process on the opposite DNA strand, i.e. C,G→A. In the current study, DNA 

mutations are by convention generally presented in the former format. 

Modeling dinucleotide biases in single stranded (RNA) sequences 

For RNA sequences, different considerations apply. Mutational biases originating from 

context-dependent mutational biases will typically be symmetrical if originating from biases 

in the underlying DNA sequence from which it was transcribed, or in an RNA virus 

sequences where the same RNA polymerase transcribes sense and antisense genomic 

sequences. On the other hand, mutational biases from RNA polymerase II that transcribes 

mRNA sequences and dinucleotide composition abnormalities originating from selection in 

the cytoplasm lead to asymmetries that need to be separately modelled. As described above, 

modelling of mutational / selection biases in RNA therefore considers each dinucleotide 

separately (e.g. the frequency of UpC does not necessarily equal the frequency of GpA and as 

described in the previous section, mutations occurring in both upstream and downstream 

dinucleotide contexts have to be modelled separately, creating a total of 96 instead of 48 

model parameters. 
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Additional file 1: Table S1 Significance testing of differences in cpg and upa frequencies. 
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Additional file 2: Figure S1 Observed / expected frequencies of all 16 dinucleotides in 

human DNA (Additional file 2: Figure S1A) and mRNA sequences (Additional file 2: Figure 

S1B), D. rerio DNA and mRNA sequences (S1C, S1D) and A. gambiae DNA and mRNA 

sequences (S1E, S1F). Values (y-axis) were plotted as a function of G+C content (x-axis). 

Frequencies of each dinucleotide predicted from mutational models with 1, 2 and 4 

parameters (1p, 2p and 4p; see inset key) are superimposed on each distribution along with 

the quadratic line of best fit for each dataset generated from starting sequences ranging in 

G+C composition from 20%-80%. 

Additional_file_3 as JPEG 

Additional file 3: Figure S2 Relationship between fragment length and modelled RMS 

scores of human DNA fragments of different lengths using 4 parameters. (A) Fragment 

lengths depicted in a linear scale. (B) To estimate RMS distances for sequences without 

sampling error (ie. for sequences of infinite length), sequence lengths were transformed using 

the empirically derived transformation 1/length
0.42

 to generate a linear relationship with RMS 

distances. The intercept with the y-axis line represents the RMS score for sequences of 

infinite length (0.0095). This represents the model error for this dataset. 
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Additional file 4: Table S2 Measured and predicted minimum rms scores for dna and mrna 

datasets from different organisms. 
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Additional file 5: Figure S3 Uncorrected model errors (y-axis) using mutational models with 

between 1 to 4 context-dependent mutational biases (labelled under graph line) formatted as 

in Figure 3. 

Additional_file_6 as DOC 

Additional file 6: Table S3 Reproducibility of corrected model error and mutational rates on 
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Additional file 7: Figure S4 Observed / expected frequencies of all 16 dinucleotides of 

mammalian viral RNA sequences (see legend to Additional file 2: Figure S1). 
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Additional file 8: Figure S5 Uncorrected model errors (y-axis) for mammalian RNA viruses 

using mutational models with between 1 to 4 context-dependent mutational biases formatted 

as in Figure 3. 
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Additional file 9: Table S4 Listing of mammalian viral sequences analysed in study. 
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