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Modelling nature-like fishway flow around unsubmerged

obstacles using a 2D shallow water model

Tien Dung Tran1 • Jacques Chorda2 • Pascale Laurens2 •

Ludovic Cassan2

Abstract In the scope to create efficient nature like fish ramps using large-scale

roughness elements, the present study is an audit of modelling such complex 3D free

surface flows using an industrial 2D code solving shallow water equations. Validation

procedure is based upon the comparison between numerous experimental measurements

and numerical runs around large-scale roughness patterns disposed on the flume bottom in

order to determine what 2D reliable numerical results can be expected. In this paper, we

focused on cases of unsubmerged obstacles. The results demonstrate that 2D shallow water

modelling using an industrial code such as TELEMAC-2D can be a convenient way for the

hydraulic engineer to help design a nature-like fishway. This article emphasizes the lim-

itations due to 2D depth integration of velocities and turbulence modelling and gives the

domain of validity of the method.

Keywords ADV measurement � Fishway � Turbulence model � Shallow water �
2D modelling

1 Introduction

Flow around large-scale roughness, in which the size of bed elements has the same order of

magnitude as the depth of flow, is of great interest, particularly for fish passage technology.

So, modelling such complex 3D free surface flows using an industrial 2D code solving

Saint Venant equations may appear at first as a challenge. Nevertheless, due to the complex

setting-up and to excessive CPU time consumed by 3D free surface codes, the interest for a
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2D Saint Venant code remains timely. A similar approach using a 2D depth integrated

model with comparison to measurements performed at Pprime Institute (Poitiers) was

made by [7] with vertical slot fishways (VSF). Different from nature-like fishways (NLF),

VSF consist of a sequence of pools connected by narrow vertical slots [8, 23, 24, 29]. To

protect fish from unsuitable velocities, the total hydraulic head is divided into limited

waterfalls localized at each slot, the water drop equalling the product of the longitudinal

slope times pool length. [7] showed that the results of such numerical modelling were

satisfactory as long as the longitudinal bottom slope does not exceed 10 % and excepted

local zones having an appreciable vertical velocity component (plunging jet at slot

passage).

Flow through NLF can be sketched as a free surface flow across an array of more or less

arranged obstacles. Such flows generate great complication because they associate sepa-

ration flow effects around obstacles with wakes interactions and possible transcritical

zones. A dominant characteristic of such free surface flows is a strong agitation level and

diphasic zones particularly for large longitudinal slope values. Instabilities are often

observed along the wakes. So, the 3D nature of such flows appears as dominant (interactive

wakes, horse shoe vortex) and they were investigated by many authors experimentally [11,

19, 21, 33] and numerically [15, 18, 28, 30, 32]. 3D industrial free surface codes do exist

nowadays (MIKE3D, FLOW3D, STARCCM?, FLUENT...) but an efficient modelling

necessitates using very big adaptive meshes and so CPU time consuming. Also, volume of

fluids method, due to small cell sizes to capture free surface deformation, drastically

increases the CPU time. So, the hydraulic engineer having a limited time to test several

configurations and design an efficient nature-like fishway will be interested using a 2D

shallow water industrial code like TELEMAC-2D.Nevertheless, the modeller has to be

aware of the limitations due to underlying assumptions and hypotheses, such as hydrostatic

pressure distribution and moreover due to the intrinsic nature of the flows under

consideration.

The purpose of this paper is then to determine the ability of a 2D code to model flow

through NLF and its limitations. We shall describe at first the experimental setup and the

configurations tested. Then, the numerical model description and its procedure are given.

The 2D depth averaged shallow water equations are solved using the code TELEMAC-2D.

Turbulence closure uses the classical two equations k � � closure model. In this paper, we

focused about the cases of unsubmerged obstacles which appear more consistent with 2D

depth averaged modelling. A comparison of computed water levels and velocities with

measurements performed at the ‘‘Institut de Mécanique des Fluides de Toulouse’’ (IMFT),

France, using optical methods and acoustic Doppler velocimetry, permitted to audit the

numerical results. Turbulence modelling is necessary to fit the flow structure and, more-

over, the turbulent kinetic energy is an important parameter to ensure suitable hydraulics

for fish [22]. The validity of the k - � closure model for a depth integrated 2D model is

discussed for the present flow. Concerning the results, a special attention was paid to detect

maximum velocity and turbulent kinetic energy. This last parameter is of great interest

because its spatial distribution significantly affects the improvement relative to fish passage

efficiency. Indeed the fishes have to find resting zones in the cylinders wakes to be able to

pass the fishway by successive steps. Other parameters such as Reynolds shear stress and

eddy size have been proven to be important in tests with some species [26, 27] but are not

considered in this paper.



2 Experimental set up

Experimental laboratory results come from tests conducted in a tilting flume at the IMFT.

The channel is 1 m wide and 7 m long, it is supplied by a centrifugal pump with a

maximum discharge of 100 l/s. The roughness elements (wooden cylinders: diameter

12 cm - height 15 cm ) have been regularly distributed at various concentrations C on a

smooth or rough bottom. This last bottom corresponds to pebbles with sizes ranging from

30 to 50 mm. A previous experimental study [5] determined existing relationships between

flow discharge and relative submersion for bottom slopes varying from 1 to 9 % and

obstacles concentrations of 13 and 16 %. The concentration C is the ratio D2=axay where
D is the diameter of cylinders, ax and ay are the distance between cylinder in the longi-

tudinal and transversal directions respectively (see Fig. 1). Velocity profile measurements

were performed using an acoustic doppler velocimeter (ADV) with a 3D probe giving the

three velocity components at a sampling rate of 50 Hz, the (u, v, w) values corresponding

to time-averaged measurements on 180 s. The averaged water depth h is obtained by

shadowgraphy method using a 2K*2K video camera [5] and local water level measure-

ments were made with a point gauge (precision 1 mm). The lateral averaged free surface

position is measured with a frequency of 3 Hz. For each configuration, 600 pictures are

averaged and integrated in the longitudinal direction to get the water depth. A configu-

ration is defined by concentration C, discharge Q and slope S values. For each configu-

ration an averaged velocity between cylinders, Vg, can be calculated with the following

expression [5]. In the present paper measurements are only compared to numerical results

for the configurations corresponding to unsubmerged obstacles (Table 1). In this table,

P refers to the energy dissipation rate per unit volume which is commonly used for design

and calculated as P ¼ qgQSay

axayh
¼ qgV0haxSay

h
¼ qgSV0.

Vg

V0

¼ 1

1�
ffiffiffiffiffiffiffiffi

ay
ax
C

q ð1Þ

Fig. 1 Definition of lines used to

plot results. Each black point

represents the location of an

ADV measurement. Stars

markers (P1, P2, P3 and P4)

indicate the location of vertical

profiles



with V0 ¼
Q

Bh
the bulk velocity.

We defined the experimental velocity magnitude as: V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2 þ w2
p

In order to characterize the flow pattern around a cylinder, the Froude number is based

on Vg (F ¼ Vg=
ffiffiffiffiffi

gh
p

) [5].

The measurement zone corresponds to a flow equilibrium between gravity and dissi-

pation. The velocity is measured 3 cm above the bed—Note that for rough cases, the

bottom level depth origin is located above the stones crests. The measurement vertical

position is imposed by ADV downlooking probe and by the distance between the probe and

the measurement cell (5 cm).

3 Numerical modelling

3.1 Phenomena modelling

TELEMAC-2D [9, 12, 14, 20] provides hydrodynamic variables such as flow depth (h),

depth-integrated velocity components (u, v) along X and Y directions, and turbulent

kinetic energy (k) at every node of an unstructured triangular mesh. It solves continuity and

momentum Saint Venant equations expressed in a non-conservative form using the finite

element method. The intrinsic limitations of this code reside in the shallow water

hypotheses and mainly on hydrostatic pressure distribution assumption and vertical com-

ponent of velocity vector having a minor order of magnitude relative to horizontal ones.

Turbulence modelling is obtained through classical k � � closure model in its depth-

integrated form [25], the pertinence of which will be discussed.

3.2 Model description

The model reproduces at full scale the geometry of the flume used during the experimental

part of the study: length 7 m, width 1 m . The various patterns of unsubmerged circular

cylinders for tested concentrations correspond to internal solid walls. The bottom was

modelled as a friction zone parameterized by a Manning coefficient: n = 0.0167 m�1=3s for

smooth and n = 0.0333 m�1=3s or 0.10 m�1=3s in order to represent the pebbles effects. The

flow is computed for C = 6, 9, 13, 18 and 23 %, Q ¼ 10, 20, 30, 40, 50, 70 and 90 l/s, S = 1,

2, 3, 4, 5, 6, 7, 8 and 9 %. For C = 6 and 9 %, the wake is unsteady, then the values are

averaged over 30 s. All these simulations are performed to obtain the stage-discharge

relationship of the fish pass for a given configuration.

Table 1 Hydraulic conditions for ADV measurements

Exp C (%) Slope

(S) (%)

Q (ls-1) Bed h(mm) Vg(ms-1) F n (for 2D)(m-1/3s) P (W/m3)

E1 16 1 20 Rough 99 0.34 0.34 0.033 19.8

E2 16 2 40 Smooth 124 0.54 0.48 0.016 63.3

E3 16 3 50 Smooth 129 0.65 0.58 0.016 114.1

E4 16 5 50 Rough 110 0.76 0.73 0.033 222.9

E5 16 5 50 Smooth 100 0.83 0.83 0.016 245.2



3.3 The mesh

The 2D triangular unstructured grid must not have a too coarse mesh size particularly

around cylinders where large flow depths deviations and intense velocity gradients occur.

Several mesh size distributions were tested including large density around cylinders and

coarser elsewhere. After several tests, the preferred grid size, offering the optimum ratio

between quality of results and computing time, was a grid of size elements d with 9 mm B

d B 30 mm, hereafter named ‘standard’ grid. For this grid, the total number of nodes used

to model the geometries varies from about 19,500 to 21,000, depending on plots con-

centration value (see Fig. 2). So, a relative coarse meshing was chosen to build the

‘standard’ grids used to run the numerous simulations cases. In section ‘velocity distri-

bution’, we shall discuss what improvement on water depth, velocities, turbulent kinetic

energy would be expected using a ‘fine’ grid having a high nodes uniform density with

about 830,000 nodes and cell size d: 1 mm B d B 5 mm (about 9 h of CPU time with 8

parallel processors).

3.4 Initial and boundary conditions

The boundary conditions used were a prescribed constant discharge at the model inlet and a

depth-discharge relation at the outlet, with values corresponding to the experimental set-

tings. At each time step, the outflow was calculated hereafter from the depth values at the

outlet nodes using a rating curve relation issued from IMFT measurements [5].The outlet

velocity distribution was considered as uniform. It must be noted that, due to blocking

effect of the plots rows, the downstream boundary condition has no significant influence on

the measurement zone corresponding to a flow equilibrium between gravity and dissipa-

tion. Concerning the wall velocity boundary condition, applied to lateral sides but also

cylinders contours, the usual adherence condition leads to use a very dense mesh. Fol-

lowing [4, 10] who suggest to apply a weak wall condition, a free slip condition was

imposed to velocity. For 2D depth-integrated equations, it must be verified that bottom

friction is dominant relative to lateral wall friction. The best way to test validity of this

weak condition is to verify that computed flow depths fit with experiments. The given

results are relative to a gravity-dissipation equilibrium flow zone, the same as for

measurements.

Fig. 2 Local view of the ‘standard’ (a) and ‘fine’ (b) grids



4 Results

4.1 Water surface elevation

The water surface elevation is measured along section 1-1 (see Fig. 3) for the hydraulic

conditions with C ¼ 13 %. The water profile is reproduced quite well by the 2D model up

to a slope equal to 5 %. At steeper slope, the presence of a dry zone in the wake can

explain significant local differences even if the mean water depth is estimated reasonably

well by the model. The water elevation at the upstream side of cylinder is also under

estimated by the fact that model assumptions are clearly not verified i.e the pressure is not

hydrostatic and the velocity is strongly disturbed.

Fine mesh does afford a substantial improvement relative to standard mesh results (see

Fig. 4). Although computed water depths for the case C ¼ 13 %, S ¼ 5 %, Q ¼ 50 l/s still

differ from measurements points at upstream (stagnation zone at points 4–8) and down-

stream (wake) vicinity of cylinders as an intrinsic limitation due to 2D modelling, a

significant improvement is observed at the contraction zone between two rows of cylinders

(points 1–11) and mainly into accelerated zone (points 2–10). This result is important for

fish passage as it permits to better predict hydrodynamic zones having smaller depths and

so higher velocities. But it must be emphasized that the presented case corresponds to the

Fig. 3 Water surface profiles along section 1-1, for C=13 % and smooth bed



largest Froude number for this concentration. For smaller Froude, the free surface defor-

mation is lower, then the difference between 2 meshes is reduced.

4.2 Velocity distribution

Velocities u are measured along vertical profiles with C = 16 % and smooth bed cases at 4

points as illustrated in Fig 1. Point P1 lies in the contracted zone located between 2

cylinders, point P2 lies in the âĂIJacceleration zoneâĂİ, points P3 and P4 are located in the

downstream of the cylinder. These are the 4 points for which the depth- integrated mod-

elling showed limitation in the simulation (especially in the case of great discharge and

slope greater than 5 %). However at the points P1, P3 and P4, there is a relative agreement

between the velocity u measured in experimental data and TELEMAC-2D. Figure 5

Fig. 4 a Water surface profiles along section 1-1 with fine and standard meshes and b diagram of

measurement points

Fig. 5 Vertical velocity distribution for C = 16 %, S = 3 % and Q = 40 l/s and smooth bed. a Velocity

component along X direction and b velocity component along Y direction



showed that the vertical velocity is distributed quite uniformly with deviations for low z/h

values behind each cylinder; hence, the use of vertically integrated TELEMAC-2D

modelling to simulate the nature-like fishway is suitable, except for low z/h values behind

each cylinder. The vertical velocity w at the 2 points P1 and P2 has a negative value (see

Fig. 5b) due to the contraction along the z axis and horizontal expansion in the flow in this

zone. The water surface slope in this zone is great (plunging jet). The velocity profile at P3

and P4 are consistant with the recirculating zone identified by [1] behind a single cylinder.

Vertical velocities are directed upward at the end of resting zone and they are equal to

15 % to the velocity between cylinder. Influence of this velocity on the fish rest has to be

analysed in further studies to validate the passability. Nevertheless we will see that the 2D

modelling of this zone is satisfactory for the most part.

The experimental velocity magnitude V is compared to simulations on the Fig. 6. The

horizontal velocity distribution is considered in 4 sections 1-1; 3-3; 4-4 and 5-5 as shown in

Fig. 1, sufficient to evaluate the velocity of critical points. The velocities are normalized

using the averaged velocity value between cylinder given by (Eq. 1). As a consequence, the

simulated velocity does not reach unity value because, as described in previous section, the

computed water depth is over estimated. However the Fig. 6 shows that the horizontal

velocities between TELEMAC-2D and ADV data are in good agreement. In the region

between two cylinders, the variations of TELEMAC-2D and ADV values are very close

with relative small deviation. The major discrepancies appear at points located in decel-

eration (upstream part of plots) and wake zones. The TELEMAC-2D velocity value

decreases significantly when entering the deceleration zones (points where X/D = 3.8) and

vice versa, the ADV value decreases significantly in the wake zones at X/D = 0.9 or Y/D =

0 and 2.3. In these areas, the distribution of velocity u along vertical is not uniform and

velocity component w increases, hence, the limitation of the depth integrated model versus

measurement data becomes much clearer compared to the ADV 3D measurement data.

Along section 1-1, it can be seen that: the maximum velocity Vmax occurs in the range of

X/D = 2.8 to 3.2. Due to the attachment of the flow around the cylinder, the velocity Vmax is

Fig. 6 Velocity magnitude in section 1-1, section 3-3, section 4-4 and section 5-5



also found at points Y/D = 0.8 and 1.5 (section 3-3). While the ADV maximum velocity is

also found at the two points above, the TELEMAC-2D velocity increased steadily and

reached its maximum at point X/D = 2.8 (section 1-1).

The transverse distribution (sections 4-4 and 6-6) in the downstream cylinder also

reveals an under estimation of the velocity which is probably due to both an over esti-

mation of the water depth and the dissipation from the turbulence model. As far as the

ability of fish to pass is concerned, the 2D model is quite sufficient since maximum

velocity is one of the main criteria used for fishway design. Also, the velocity in the resting

zone are better reproduced and proves that 2D modelling is pertinent to evaluate flow in

this zone.

Velocity above the pebble bed is smaller than with a smooth bed, possibly due to the

higher velocity gradient involved by rough flow. The vertical distribution becomes less

uniform than smooth flow.

In order to test mesh density influence on velocities, ADV measurements versus

computation results are successively compared with the ‘standard’ mesh and the ‘fine’

mesh. The longitudinal velocity component u along the Sect. 2 is given for the case

C=16 %, S = 5 %, Q = 50 l/s on Fig. 7. This concentration and slope correspond to the

upper limit of the validity range as explained further. It appears that the mesh density does

not impact the results except that maximal velocity value at contraction zone between the

two cylinders is nearer to measurement with fine mesh. The computed velocity decreasing

at upstream part is much greater than measurements but similar for the two meshes.

Downstream of the cylinder, similar values and order of magnitude are compatible with

measurements in the wake. The error due to the mesh is then inferior to 10 % which is not

significant for fish passage. Moreover the CPU computation time for fine mesh is not

compatible for a design process.

4.3 Turbulent fields

Turbulent kinetic energy k is more sensitive to mesh density and results obtained for

C=16 %, S = 5 % , Q = 50 l/s case with ‘fine’ mesh present a systematic higher turbulence

level than those obtained with the ‘standard’ mesh (see Fig.7b). The measured peak (0.2

m2s�2) is not reproduced in all cases.

These comparisons show that increasing mesh density does not improve significantly

the quality of numerical results and that the 2D modelling intrinsic limitations remain

dominant. For example, the numerical model underestimates the turbulence kinetic energy

Fig. 7 Longitudinal velocity component u (a) and Turbulent kinetic energy k (b) along section 2-2:

measurements and numerical results with two meshes



in the wake whereas the k is higher than experiments in front of the cylinder. However, the

averaged value of k is reasonably reproduced between cylinder which allows to calculate a

dissipation rate close to the experimental value and then reproduce the stage-discharge

relationship (Fig. 8). Let us note that the turbulence peak for E5 experiment corresponds to

an hydraulic jump which appears when the maximum Froude number becomes higher than

1 [5]. The magnitude of the turbulent kinetic energy is consistent with the experimental

correlation from [2] even if the present measurements are weaker. The difference can be

due to the fact that the dimensionless correlation are established for submerged conditions

where the averaged velocity is relatively higher than for emergent conditions.

K-epsilon models permit to deal with complex flows and provide accurate solutions for

a wide range of industrially relevant flows [17], its main default resides in misfitting for

non-isotropic flow conditions or if strong instabilities develop. [6] tested three depth

averaged turbulence models: mixing-length model (MLM), k-epsilon, and Algebraic

Reynolds-Stress Model (ARSM) [25] and observed that the k-epsilon and ARSM models

reproduced fairly well the size of recirculating regions. Nevertheless, problems can be

located in flow zones with separation and reattachment zones along a short distance such as

these encountered along cylinders and their wakes. K-epsilon model limitations are par-

ticularly due to Boussinesq hypothesis implying that Reynolds stresses are aligned with

velocity gradient as expressed by the Reynolds stress expression

u0iu
0
j ¼

2

3
kdij � 2mTSij ð2Þ

The eddy viscosity mT and the rate of strain tensor Sij with i, j = indices corresponding to

x,y components, u0i = turbulent velocities fluctuations, k = turbulent kinetic energy and dij =

Kronecker symbol are given by

mT ¼ Cl

k2

e
ðCl ¼ 0:09Þ ð3Þ

With � = turbulent dissipation rate

Sij ¼
1

2

oui

oxj
þ ouj

oxi

� �

ð4Þ

Fig. 8 Turbulent kinetic energy magnitude at a section 1-1 and b section 3-3



The anisotropy tensor defined by

aij ¼
u0iu

0
j

k
� 2

3
dij ð5Þ

can be evaluated using Eq. (1) as

aij ¼ �2
mT

k
Sij ð6Þ

The physical limitations are [31]

� 2

3
� aij\

4

3
for i ¼ j ð7Þ

jaijj � 1 for i 6¼ j ð8Þ

In 2D depth-integrated cases, the three coefficients are

a11 ¼ �2
mT

k

ou

ox
ð9Þ

a12 ¼ �2
mT

k

1

2

ou

oy
þ ov

ox

� �

ð10Þ

a22 ¼ �2
mT

k

ov

oy
¼ �a11 ð11Þ

The coefficients calculated from the results obtained with TELEMAC-2D k-epsilon

modelling, show that the above-mentioned limits are respected, except at the upstream and

downstream vicinity of the cylinders. So, the numerical results do not present elsewhere

physically a priori unrealistic features (Fig. 9). This is not a sufficient proof of the model

validity but a necessary one [16]. In fact we shall notice that water heights, velocity and

kinetic turbulence energy field departures such as observed at the âĂIJnozzleâĂİ and

wakes of the cylinders (in section 1-1) correspond to zones having a strong level of

anisotropy. These zones also present typical 3D flow features such as horse-shoe vortices

and noticeable vertical velocities which would only be resolved by 3D modelling, which is

out of scope of our purpose which is to have a 2D efficient model knowing its limitations.

Fig. 9 Isotropy coefficients a11 a âĂŞ a12 b reveal limitation zones in blue or red colours



4.4 Stage-discharge relationship

In order to validate the 2D shallow water model in a large range of configurations

(6%\C\23%, 1%\S\9%), the simulations are compared to the experimental corre-

lations from [5]. In this paper, the stage-discharge relationship is expressed with two

coefficients which allows to separate bed and drag force. To this end, the momentum

balance is written for the water volume in one cell around one cylinder (Eq. 12).

Cd

Ch

D

V2
g

gh
þ 1� rCð ÞaCf

V2
g

gh
¼ 2S 1� rCð Þ ð12Þ

Where a is the spatial correction coefficient, r is the ratio between the cylinder area in the

x, y plane and D2, Cd is the drag coefficient and Cf is the bed friction coefficient. For the

numerical results the value of Cf is computed by taking the averaged value of the bed shear

stress provided by the calculation and depending on the Manning coefficient. The exper-

imental measurement [5] allows to define the variation of the drag coefficient as a function

of concentration, non-dimensional water depth (h� ¼ h=D) and Froude number, F.

Cd ¼ Cd0fCðCÞfFðFÞfh�ðh�Þ ð13Þ

Where Cd0 is the drag coefficient of a single, infinitely long cylinder with F\\1. The

corrective function fCðCÞ is used to model the sheltering effect and fh�ðh�Þ is needed to

reproduce the bed influence on flow structure around the cylinder. The drag coefficient, Cd,

resulting from simulation is calculated with Eq. 12, the inlet discharge and the averaged

water depth on a cell. Cd values are depicted without corrective functions fh�ðh�Þ and fCðCÞ
in Fig. 10. It must be emphasized that fFðFÞ is not an experimental correlation but cor-

responds to the theoretical acceleration due to the vertical contraction and supercritical

transition. Firstly, it can be observed that the bed friction and drag force are correctly

separated by Eq. 12 since the same trend of Cd is observed for the three Manning coef-

ficients. Unlike the experimental values, the numerical simulations are not corrected

fh�ðh�Þ=1 and fCðCÞ ¼ 1. Nevertheless they have have similar trends as the function F from

experiments. This fact appears logical since wake-bed interaction on flow structure is not

taken into account by the 2D model. Similarly, the sheltering is not well reproduced but it

has a little influence on discharge computation. When the flow transition occurs in the flow

Fig. 10 Drag coefficient

comparison between numerical

values (points) and experimental

correlation (solid line)



the velocity is near the critical value which explains the decrease of Cd as a function of

F [5]. But this transition occurs for a lower F value in experiments than for simulation.

Then the validity of 2D model is truly limited by the Froude number. The Cd extracted

from experiments of [3] also presents a good agreement with the 2D model for the

unsubmerged conditions. To obtain, the Cd value, the Eq. 12 is used. When the submerged

conditions occurs the drag coefficient strongly decreases in comparison to the emergent

case (Cd\0.9 in Fig. 10).

The validity of 2D simulation is finally estimated by comparing the calculated discharge

(Qmodel) with experimental correlation (Qexp) in the same configuration. For F\ 0.7

(Fig. 11), the averaged error is 8 % and the standard deviation is equal to 15 %. To

conclude, the 2D model provides a good approximation, albeit with a sizable deviation, of

the stage discharge relationship for F\ 0.7 which is the hydraulic condition of nature-like

fish passes. The model user has to check if the Froude number calculated is in the validity

range. Predictions of velocities and kinetic energy in certain areas only provide a first guess

for passability estimation.

4.5 Implications for fish passage

The shallow water model has been used to define areas of low speed and low turbulence

which can increase passage efficiency. The previous results show that the maximum

velocity is located at the cylinder edge and can be estimated by Vg. The resting area can

also be determined by focusing on zone where velocity is lower than a limit velocity

depending on fish species. Herein the resting zone is defined by V=Vg\a (where a can

vary from 0.1 to 0.7) because the hydraulic condition are described independently of a

specific fish species. These zones are in the cylinder wake, the width is almost equal to

D and the length L depends mainly on the Froude number as shown on Fig. 12.

The zone is limited by the following cylinder rows which justifies that L is normalized

by ax. The Fig. 12 shows that L is less influenced by F in the range of validity (F\ 0.7).

This remark is confirmed by the ADV measurement. On the Fig. 6, the longitudinal profile

of V=Vg is identical for all Froude number. This figure proves that the variation of L is

linear as a function of a since V=Vg / X=D. As a consequence the resting area can be

determined by simulation as a function of the criteria a and slightly corrected if F[ 0.6.

Fig. 11 Relative model

discharge error



In order to confirm that this area is a possible resting zone, the spatial averaged k is

calculated from simulations. The turbulent kinetic energy is normalized by the total kinetic

energy between cylinder. The turbulent intensity is defined by:

I ¼ 2

3

k

V2
g

!ð1=2Þ

ð14Þ

The turbulent intensity is depicted on Fig. 13 for simulation with an intermediate

Manning coefficient (n ¼ 0:033m�1=3 s). As the ADV measurements, the intensity is

between 20 and 30 % for higher water depth depending on the criteria. When h/D is low,

the turbulent energy is provided by the bed friction model whereas when h/D is higher,

k tends to the value provided by the flow around cylinders. Between these two limits, the

evolution is almost linear which allows to estimate a priori the turbulent energy. The ADV

measurements are consistent with the simulation results even if the discrepancy can be

explained by the vertical heterogeneity of k.

Fig. 12 Length of the resting

zone as a function of the Froude

number

Fig. 13 Spatial averaged

turbulent intensity in the resting

zone as a function of the

waterdepth



5 Conclusion

Velocity measurements in the nature-like fish passes represented by various surface

piercing cylinders configurations have been performed in a large range of geometrical

characteristics. A flow pattern has been identified and analyzed in order to study possible

fish passage characteristics of this hydraulic structure. Considering the 3D free surface flow

complexity such as encountered around obstacles, 2D modelling did not appeared at first as

a fitting tool. Numerous shallow water simulations were performed in order to analyze if

this 2D model can reproduce this particular free surface flow. A special attention was given

to the turbulent model to explain discrepancy between experiments and numerical results.

Finally, it was shown that a 2D depth integrated model can help the designer of the NLF.

Indeed, in a specific range of slope ( S\ 7 %), cylinder concentration (6 %\C\ 20 %)

and a Froude number less than 0.7, the numerical model provides maximum velocity and

turbulent properties which are considered compatible with fish passage. As a consequence,

the 2D model, which is quite easy to use, appears to be an available engineering tool for

taking into account special geometrical configuration and adapting design to a fish species.

2D modeling should be used to investigate design options and lead to a more detailed

examination (e.g. 3D modeling) of a final design for NLF.
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