
University of Massachusetts Amherst

From the SelectedWorks of Chris Sutherland

Winter December 30, 2014

Modelling non-Euclideanmovement and
landscape connectivity in highly structured
ecological networks
Chris Sutherland, University of Massachusetts - Amherst

Angela Fuller
J. Royle

Available at: https://works.bepress.com/chris-sutherland/4/

http://www.umass.edu
https://works.bepress.com/chris-sutherland/
https://works.bepress.com/chris-sutherland/4/


Modelling non-Euclideanmovement and landscape

connectivity in highly structured ecological networks

Chris Sutherland, Angela K. Fuller and J. Andrew Royle

Summary

1. Movement is influenced by landscape structure, configuration and geometry, but measuring distance as per-

ceived by animals poses technical and logistical challenges. Instead, movement is typically measured using

Euclidean distance, irrespective of location or landscape structure, or is based on arbitrary cost surfaces. A

recently proposed extension of spatial capture-recapture (SCR)models resolves this issue using spatial encounter

histories of individuals to calculate least-cost paths (ecological distance: Ecology, 94, 2013, 287) thereby relaxing

the Euclidean assumption. We evaluate the consequences of not accounting for movement heterogeneity when

estimating abundance in highly structured landscapes, and demonstrate the value of this approach for estimating

biologically realistic space-use patterns and landscape connectivity.

2. We simulated SCR data in a riparian habitat network, using the ecological distance model under a range of

scenarios where space-use in and around the landscape was increasingly associated with water (i.e. increasingly

less Euclidean). To assess the influence of miscalculating distance on estimates of population size, we compared

the results from the ecological and Euclidean distance based models. We then demonstrate that the ecological

distancemodel can be used to estimate home range geometry when space use is not symmetrical. Finally, we pro-

vide amethod for calculating landscape connectivity based onmodelled species-landscape interactions generated

from capture-recapture data.

3. Using ecological distance always produced unbiased estimates of abundance. Explicitly modelling the strength

of the species-landscape interaction provided a direct measure of landscape connectivity and better characterised

true home range geometry. Abundance under the Euclidean distance model was increasingly (negatively) biased

as space use was more strongly associated with water and, because home ranges are assumed to be symmetrical,

produced poor characterisations of home range geometry and no information about landscape connectivity.

4. The ecological distance SCR model uses spatially indexed capture-recapture data to estimate how activity

patterns are influenced by landscape structure. As well as reducing bias in estimates of abundance, this approach

provides biologically realistic representations of home range geometry, and direct information about species-

landscape interactions. The incorporation of both structural (landscape) and functional (movement) compo-

nents of connectivity provides a directmeasure of species-specific landscape connectivity.

Key-words: abundance, animal movement, dendritic ecological network, density, ecological dis-

tance, functional connectivity, habitat network, stream distance, structural connectivity

Introduction

Animal movement is a feature of almost all ecological and evo-

lutionary theory and is the result of complex and, in many

cases, difficult to observe interactions between individuals and

their environment. Organisms typically use areas closely asso-

ciatedwith their specific habitat requirements rather thanmov-

ing indiscriminately through heterogeneous landscapes

(Ricketts 2001; Bender&Fahrig 2005). This is particularly true

in highly structured landscapes where movement can be deter-

mined exclusively by the spatial configuration and geometry of

the habitat (Beier & Noss 1998; Fagan 2002; Grant, Lowe &

Fagan 2007). However, measuring distances as perceived by

animals (i.e. ecological distance) poses both logistical and tech-

nical challenges. Instead, arbitrarily defined, or statistically

convenient, models of animal movement based on Euclidean

distance, and that lack biological realism, are often adopted

when movement is not the primary inference objective (Zeller,

McGarigal &Whiteley 2012).

The effects that highly structured habitat networks can have

on biological processes such as demography, population and

community structure, extinction, movement, and connectivity

have been demonstrated both theoretically (Fagan 2002) and



empirically (Grant, Green & Lowe 2009; Grant et al. 2010)

using dendritic ecological networks (DENs: e.g. stream, cave,

hedgerow and transport networks). Grant, Lowe & Fagan

(2007) describe this as a conceptual shift from a lattice network

approach towards acknowledging the natural structure of eco-

logical networks. However, describing patterns in linear net-

works has a strong focus on measuring distance strictly along

linear features (‘within-network’ movement), whereas move-

ment away from the linear feature (‘out-of-network’ move-

ments) are considered secondary in importance (Rissler,

Wilbur & Taylor 2004; Ver Hoef, Peterson & Theobald 2006;

Grant, Lowe & Fagan 2007). The DEN approach is therefore

limited in application, especially when movement within a net-

work is associated with rather than restricted to landscape fea-

tures. Terrestrial species using riparian corridors are perhaps

the canonical example of such a case. Understanding the bio-

logical processes that play out in spatially structured ecological

systems requires bridging the conceptual domains of node-

based lattice networks and branch-based linear networks

(Grant, Lowe & Fagan 2007; Beier, Majka & Spencer 2008;

Swan&Brown 2011).

Spatial capture-recapture models (SCR: Efford 2004; Bor-

chers & Efford 2008; Royle & Young 2008) offer a natural

and flexible framework for investigating a wide range of eco-

logical processes while simultaneously modelling space use.

However, a major criticism of the approach is that almost

all applications of SCR use encounter probability models

based on Euclidean distance that imply symmetric and sta-

tionary home ranges, irrespective of an individual’s location

or the surrounding landscape structure. Royle et al. (2013)

proposed a model for jointly estimating density and land-

scape connectivity using patterns of spatial encounters of

individuals to calculate least-cost paths, and by doing so,

estimate ‘ecological’ distance rather than assuming Euclidean

animal movement (the ecological distance model). Cost sur-

faces, although widely used in ecology, are usually user-

defined based on expert opinion, or arbitrarily selected and

subjected to post hoc sensitivity analysis (Beier & Noss 1998;

Zeller, McGarigal & Whiteley 2012). It would be preferable

to use parametric models to explicitly quantify such cost sur-

faces using empirical data (e.g. using landscape genetics data:

Hanks & Hooten 2013). The promise of the approach of Ro-

yle et al. (2013) is that capture-recapture data, perhaps the

most commonly collected ecological monitoring data, can be

used to directly estimate parameters of cost functions. More-

over, the ability to measure ecological distance in this way is

exactly analogous to describing landscape connectivity, that

is, ‘the degree to which the landscape facilities or impedes

movement’ (Taylor et al. 1993), a linchpin of biological con-

servation (Tischendorf & Fahrig 2000).

Royle et al. (2013) demonstrated that misspecifying the

SCR encountermodel using Euclidean distance results in nega-

tive bias in estimates of abundance due to unmodelled hetero-

geneity in encounter probability. However, the simulations

were conducted using two semi-structured landscape configu-

rations (systematic and fragmented) using only a single, low

cost parameter value relating activity to landscape structure. It

is yet unclear whether the ecological distance model performs

equally well when the landscape is highly structured (e.g.

stream or road networks, habitat corridors). Moreover, it is

important to understand the relationship between such biases

in abundance estimates and the degree to which animal move-

ment is associated with landscape features (i.e. the degree of

violation of the Euclidean distance assumption). To address

these issues, we simulate SCR data across a range of scenarios

where movement is increasingly associated with water in a

complex river network to investigate how different levels of

species-landscape association, which results in varying degrees

of violation of the Euclidean assumption, affect estimates of

population size in a highly structured riparian network. We

then demonstrate the utility of the model by using model esti-

mates to derive biologically interesting metrics of home range

geometry (shape and size), effective distances and, most impor-

tantly, of landscape connectivity.

Methods

A STANDARD SCR MODEL

The general setting for a spatial capture-recapture analysis is

that there exists a population of I individuals, each having an

activity centre with easting (E) and northing (N) coordinates

Si = (si,E,si,N). The goal is to estimate the number of individu-

als (or activity centers) within a region of interest S, which is to

say we wish to estimate density: D ¼ N=jjSjj, where jjSjj is

the area of S. We assume that activity centres are distributed

uniformly throughout the region of interest:

Si �UniformðSÞ:

The population is subjected to sampling via a collection of

j = 1,. . .,J detectors or traps resulting in observations yi,j,

which are the encounter frequencies of individual i = 1,. . ., I at

trap j across K sampling occasions. In most SCR studies,

observations are assumed to be binomially distributed with

sample sizeK (the number of sampling occasions):

yi;j �BinomialðK; pi;jÞ;

where pi,j is the encounter probability of individual i in trap j

which depends on the distance between the trap location (xj)

and the individuals activity centre (si) as follows:

pi;j ¼ p0 � e�a1deucðxj;siÞ
2

: eqn 1

This is the bivariate normal encounter model where logit

(p0) = a0 is the baseline encounter probability, a1 = 1/(2r2)

controls the shape of the function, and deuc(xj,si) is the Euclid-

ean distance between trap j and the activity centre of individual

i. Parameters a0 and a1 are parameters to be estimated. This is

the standard SCRmodel which is based on Euclidean distance

(SCReuc). Use of SCReuc implies that home ranges of all indi-

viduals are stationary (i.e. home ranges are identical regardless

of location), and that space use is symmetrical around an activ-

ity centre regardless of local landscape structure. Although

many other encounter models exist, they are all based on

Euclidean distance, and imply symmetric and stationary mod-
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els of space use, and therefore the use of ecological distance

(see below) as an alternative distance measure is directly appli-

cable to them all.

A MODEL FOR NON-STATIONARY HOME RANGES

A model proposed by Royle et al. (2013) uses an identical for-

mulation of the encounter model above with the exception that

Euclidean distance, deuc(xj,si), is substituted with length of the

least-cost path, dlcp(xj,si). This allows a relaxation of the Euclid-

ean assumption implied when using traditional encounter mod-

els. Calculating least-cost paths requires that a landscape V be

discretised into pixels vp, each of which has associated covariate

values z(vp) corresponding to some measure of the landscape

(e.g. percent cover, distance from a feature, elevation etc.).

We make the distinction between the region of interest S, and

the cost covariate surface V, because it is not necessary for the

resolution of both to be identical, although the resolution of

V must be at least as fine as that of S. Now, given a discrete

landscape V, let Lt;t0

w ¼ ft; v1;w; . . .; vmw;w; t
0g denote the

w = 1,. . .,Wth path, consisting of any set of adjacent kings

neighbourhood cells, ðvp;w; vpþ 1;wÞ 2 Lt;t0

w , that connect any

two points υ and υ
0. Each path Lt;t0

w therefore consists of mw

line segments connecting mw+1 cells from cell center to cell cen-

ter, and the cost weighted distance is the product of the dis-

tance (path length) and the associated cost (see Eq. 2 below).

Evaluating all reasonable paths, the one that incurs the lowest

cumulative cost is considered the least cost path:

dlcpðt; t
0Þ ¼ min

L1 ;...;Lw

Xmþ1

p¼ 1

costðvp; vpþ 1Þ � deucðvp; vpþ 1Þ:

eqn 2

For a given covariate/cost surface we identify the least cost

path using Dijkstra’s (path finding) algorithm, implemented in

theR packagegdistance (van Etten 2012).

Following Royle et al. (2013), we define the cost function

[cost(vp,vp + 1)] as a log-linear function of the average of the

two covariate values:

log½costðvp; vpþ 1Þ� ¼ a2
zðvpÞ þ zðvpþ 1Þ

2
: eqn 3

This formulation of the SCR model involves estimating the

additional parameter, a2, which is a parameter that defines the

resistance surface, R ¼ expða2VÞ, through which least cost

paths are chosen. Moreover, a2 is a direct measure of species-

and landscape-specific connectivity and has a convenient and

biologically intuitive interpretation that, when a2 = 0, that is,

when there is no landscape resistance, the cost function evalu-

ates to exp(0) = 1 and distance is exactly Euclidean, and, as a2

increases, the landscape becomes more structured and the least

cost path becomes increasingly associated with preferred land-

scape features.

This is the model for non-stationary home ranges using eco-

logical distance [SCRecol, see also Royle et al. 2013). Parame-

ters a0, a1 and a2 are estimated using maximum likelihood and

least cost paths are evaluated at each iteration of themaximum

likelihood optimisation. The use of maximum likelihood also

allows formal comparisons to bemade betweenmodels SCReuc

and SCRecol using AIC. We note that it is also straightforward

to extend the cost function to include more than one covariate,

or even to define alternative, user defined cost functions (see

van Etten 2012).

SIMULATION STUDY: A RIPARIAN HABITAT NETWORK

We assess the consequences of misspecifying the model of

space use with Euclidean distance by comparing estimates of

abundance from the two models described above (SCReuc vs.

SCRecol), when space use is increasingly associated with water

in a linear habitat network (i.e. as a2 gets increasingly larger

than 0). The focus on a riparian species in a river network pro-

vides a general, and biologically appealing, setting whereby

movement has an association with the structure of the land-

scape. This is in contrast to the restrictive cases where move-

ment is considered to be symmetrical around an activity centre

and therefore can bemeasured in Euclidean distance (Raabe &

Gardner 2013), or the dendritic network approach where dis-

tance along the stream is often the focus (Fagan 2002; Grant

2011; Van Looy et al. 2014). As a motivating example, con-

sider otters (Van Looy et al. 2014) that move in and around

river networks and not strictly along the water.

We generated a discrete ‘distance-to-water’ surface consisting

of 32,745 100 m9 100 m cells (extent = 17�7 km 9 18�57 km)

by calculating the distance from the centroid of each cell to the

nearest stream (Fig. 1). We then simulated a population of

N = 200 individuals with activity centres (s) that were uniformly

distributed as outlined above (Fig. 1). Using a trapping array

consisting of 64 traps arranged in a regular grid on approxi-

mately the inner 10 km 9 10 km square (Fig. 1), spatial

Fig. 1. A visual representation of the riparian network used in our sim-

ulation study. Blue lines represent the stream network, red points show

64 traps arranged in a regular trapping grid in the central

10 km910 km2 and the landscape is classified as a ‘distance-to-stream’

surface where the light grey to dark grey gradient denotes farthest to

closest distance to water respectively (legend in kilometers). For

demonstrative purposes, the black crosses are a single realisation of

N = 200 randomly generated individual activity centers.
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encounter histories were simulated from model SCRecol setting

parameter values to a0 = �1, r = 1�4, and K = 10, across a

range of costs controlling how structured the landscapewas, and

therefore how strongly space use was associated with water:

a2 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (see above for parameter def-

initions). Simulations were carried out assuming individuals

could be detected inmultiple traps in any occasion but only once

at each trap in each occasion.We conducted 500 simulations for

each of the a2 scenarios.

We fitted models SCReuc and SCRecol to the simulated data

using likelihood analysis implemented in R using the inte-

grated likelihood functions provided as supplementary mate-

rial. We note that, while SCReuc can be analysed using

likelihood methods implemented in the R packagesecr (Ef-

ford 2013), or using Bayesian methods (Royle et al. 2014),

SCRecol cannot currently be analysed using either due to the

iterative calculation of the least-cost paths. For consistency

and completeness, we provide R functions to implement both

models and aworking example as supplements.

DERIV ING BIOLOGICAL METRICS

Home range size and shape

The kernel of the encounter probability model is directly

related to space use (Royle et al. 2014), and as such, the

expected probability that an individual with activity centre

si uses any su 2 S cells can be derived by evaluating the SCRecol

encounter model at the maximum likelihood estimates (mle)

for a1 and a2 and setting p0 = 1. We refer to this probability as

Pr(g[su,si]) and make the distinction between cell use (g) and

imperfect encounters within a cell (y). The approximate H%

home range size can therefore be derived by computing the num-

ber of cells that meet the condition Prðg½su; si�Þ � ð1�H=100Þ

andmultiplying that by the area of a single pixel of the covariate

surface, a:

HRH% ¼ a
X

si2S

IðPrðg½su; si�Þ �
H

100
Þ: eqn 4

Here, IðPrðg½su; si�Þ �H=100Þ is an indicator function that

equals one when the condition is satisfied and zero otherwise.

Home range geometry can then be visualised by simply plot-

ting this spatially indexed binary surface.

Landscape connectivity

The natural extension of the home range estimator above is to

consider the probability of cell use given any number of activity

centers s, and for all cells in the landscape, which is a direct

measure of landscape connectivity. Cell-specific connectivity

values, CðsuÞ, are calculated by computing the expected cell-

specific probability of use, as above, but for any particular set

of activity centres. Here we define two useful measures of con-

nectivity. First, potential connectivity, CPðsuÞ, which is the

expected probability of using cell su when each cell in S con-

tains a single individual activity centre:

CPðsuÞ ¼
X

si2S

Prðg½su; si�Þ: eqn 5

Second, because cell specific density estimates are an output

from the SCReuc model, this can be extended further to calcu-

late realised connectivity, CRðsuÞ, which is the potential connec-

tivity, calculated above, weighted by the model estimated

density in each cellD(si):

CRðsuÞ ¼
X

si2S

Prðg½su; si�Þ �DðsiÞ: eqn 6

Relative frequency of use

When a2>0 the frequency of use of any point on the landscape

(e.g. a pixel) at a given distance, say d, from an activity centre si

is determined not by Euclidean distance but by the effective dis-

tance given the cost surface. Here, we derive an intuitive mea-

sure to first compare the effective distances of a point located d

km away from an individual’s activity centre in two directions

around a hypothetical stream section, df; (i) along the water

(least resistant, r = 0), and (ii) perpendicularly away from the

water (most resistant, r = 1). Then, evaluating the encounter

probabilitymodel for these two distances, we compute the rela-

tive frequency of use,F , for the points:

F r ¼ e
�â1d

2
f ; eqn 7

where

df ¼ d� e â2 ðr:dÞ=2: eqn 8

Evaluating the above for both r = 0 and r = 1 for any value

of d and taking the ratio, F r¼ 0=F r¼ 1, provides a measure of

howmuchmore frequently a point along the stream is expected

to be used than a point the same Euclidean distance away

from the stream. For example, when a2 = 3 and for a point

d = 1 km away from the stream (i.e. r = 1), F ¼ 4�48,

whereas for a point the same Euclidean distance along the

stream, and which incurs no additional cost, F ¼ 1. There-

fore, the use frequency of a point away from the stream is

1/4�48 = 0�22 times the frequency of a point along the stream

and highlights the potential for home range asymmetry.

Simulation results

In simulations where a2 = 0, least-cost path distance is exactly

Euclidean distance and is reflected in the comparable and neg-

ligible bias in estimated abundance (N̂) across both models

(c. 0%, Table 1, Fig. 2). Increasing values of a2 generate space

use patterns that are more closely associated with the water

which increases the degree of home range asymmetry. The flex-

ibility of model SCRecol to account for such asymmetry

resulted in practically unbiased estimates of abundance for all

values of a2 (<3% in all cases). However, because of the Euclid-

ean assumption, the encounter probability model of SCReuc is

misspecified and resulted in extremely negatively biased (up to

69%bias) estimates ofN that increasedmarkedly with increas-

ing a2 values (Fig. 2). In fact, even at low cost values (a2 = 2)
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bias in Nwas extreme (>15%).While the lack of bias in N̂ using

SCRecol is encouraging, it was expected given that it was the

data-generating model, although it is encouraging that the bias

remains low even in extreme cases of home range asymmetry.

Similarly, estimates of a2 generated from model SCRecol

were unbiased and well estimated across all scenarios (Table 2).

Although N was fixed at 200 in each simulation, introducing

increasing levels of structure to the landscape resulted in fewer

individuals detected, and of those detected, fewer unique loca-

tions per individual detected (Table 2). This reduction in data

quality (i.e. reduced sample size), while expected given the

simulation study settings, demonstrates that even when SCR

data are limited and space use is strongly influenced by land-

scape structure, the model can generate reliable estimates of

the landscape resistance parameter a2.

To demonstrate how home range geometry can be estimated

using model SCRecol, and to evaluate the performance of both

models in recovering simulated home range statistics, we gen-

erated two individual activity centres within our riparian land-

scape (Ind. 1 and Ind. 2; Fig. 3). Using the data generating

values and the activity centres of these two simulated individu-

als, we computed and visualised the true H ¼ 95% home

range shape and size as outlined above. We then compared

those to the home range shape and size generated using maxi-

mum likelihood estimates from both distance models

(heuc = [a0,a1,(a2�0)] and hecol = [a0,a1,a2]) for the same two

individuals. For a2 = 0, movement is Euclidean and, as

expected, both models predict home range shape and size close

to the true value (Table 1, Fig. 3). For all non-zero values of a2,

home range shapes and sizes remained well characterised using

Fig. 2. Estimated abundance under both the Euclidean distance model

SCReuc (left) and the ecological distance model SCRecol (right) based on

data simulated using increasing values of the cost parameter a2

(a2 = 0,. . .,10). Results are based on 500 simulations of each cost scenario

and show that bias in estimatedN is negative and increases as a2 increases.

Table 1. Simulation results from fitting both a Euclidean distance SCRmodel, SCReuc, and the least-cost path distance SCRmodel, SRCecol to sim-

ulated data. Simulated SCR data were generated using model SCRecol with fixed parameters a0 = �1, r = 1�4 (and hence a1 = 0�26), K = 10, and

varying values of a2. Values for a2 were integer values 0,. . .,10, where increasing values represent increasing cost associated with moving away from

water (0 is ‘no cost’ and is equivalent to Euclidean distance). Summary statistics are provided for the estimators forN. We also compare the derived

95%home range size (km2) for two individuals with randomly selected activity centers (Ind. 1 and Ind. 2, see also Fig. 3) based on themaximum like-

lihood estimate of a1 using the approach described in the text (seeHome range size and shape).

a2

N̂

95%HR size (km2)

Ind. 1 Ind. 2

Mean SD %bias %coverage Truth Estimate Truth Estimate

SCReuc

0 199 �85 9 �05 �0�08 95 33 �77 33 �15 33 �77 33 �11
1 190 �79 11 �95 �4�61 90 21 �65 20 �01 17 �06 19 �94

2 168 �30 13 �42 �15�85 42 15 �33 15 �35 11 �01 15 �41

3 143 �57 13 �97 �28�21 3 11 �25 13 �15 7 �76 13 �10
4 125 �22 14 �04 �37�39 0 7 �98 11 �76 6 �22 11 �72

5 107 �79 13 �24 �46�10 0 5 �53 10 �86 5 �25 10 �87

6 93 �48 13 �18 �53�26 0 3 �70 10 �16 4 �55 10 �21

7 81 �37 12 �27 �59�31 0 2 �45 9 �65 3 �94 9 �62
8 74 �03 12 �18 �62�99 0 1 �46 9 �15 3 �27 9 �18

9 67 �78 12 �33 �66�11 0 0 �64 8 �90 2 �78 8 �91

10 63 �91 11 �51 �68�05 0 0 �08 8 �77 2 �20 8 �82

SCRecol

0 199�41 9�03 �0�29 95 33�77 33�35 33�77 33�05

1 198�99 12�34 �0�51 96 21�65 21�61 17�06 17�03

2 200�12 15�99 0�06 95 15�33 15�33 11�01 10�98

3 199�71 19�80 �0�14 96 11�25 11�22 7�76 7�74
4 200�76 24�06 0�38 94 7�98 7�98 6�22 6�22

5 201�57 27�16 0�78 95 5�53 5�45 5�25 5�23

6 202�40 29�36 1�20 96 3�70 3�59 4�55 4�48
7 200�84 32�69 0�42 96 2�45 2�27 3�94 3�85

8 202�13 35�98 1�06 95 1�46 1�34 3�27 3�21

9 203�06 38�32 1�53 96 0�64 0�49 2�78 2�68

10 205�49 39�80 2�75 95 0�08 0�06 2�20 2�13
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model SCRecol (Table 1, Fig. 3). Importantly, SCRecol allows

home range geometry to change according to an individuals’

location and surrounding landscape (Ind. 1 vs. Ind. 2 in Fig. 3

and Table 1; red line in Fig. 3). Because the Euclidean distance

model can only reproduce symmetrical home ranges which are

the same for individuals irrespective of location, as movement

becomes more associated with the water (i.e. less Euclidean),

the model overestimates home range size (Table 1) and poorly

characterises the home range shape (black line in Fig. 3).

To demonstrate the calculation of landscape connectivity

metrics, we computed potential and realised connectivity sur-

faces for a single simulated SCR data with a2 = 3. Using the

resulting connectivity surfaces, areas of high connectivity

(green in Fig. 4a,b) and low connectivity (white in Fig. 4a,b) in

the landscape can be easily identified. Interestingly, despite

streams not being physically connected, areas of high connec-

tivity can be maintained by out-of-network movements in

areas with a high density of branches in close proximity (Fig.

4a,b).

Discussion

A general feature of capture-recapture (CR) methods is nega-

tive bias in abundance estimates associated with unmodelled

heterogeneity in capture probability (Otis et al. 1978). The

novelty of spatial CR is the development of an explicit model

of space use to account for an important source of heterogene-

ity – variation in the distances between individuals and traps

that affects capture probability (Efford 2004; Borchers & Ef-

ford 2008; Royle & Young 2008; Royle et al. 2014). However,

such models are based exclusively on Euclidean distance and

have attracted some criticism because they largely ignore the,

often complex, structure of the landscape. Perhaps more fun-

damentally though, as measures of ecological distance and

Euclidean distance diverge, Euclidean distance provides pro-

gressively poorer measures of effective distance, and distance-

related capture heterogeneity remains unaccounted for. As

such, misspecification of the model for space use is likely to

result in biased estimates of abundance (Royle et al. 2013).

Our simulations show that this is indeed the case. When space

use is more strongly associated with landscape structures, and

home ranges become increasingly asymmetric and non-station-

ary, estimates of abundance based on Euclidean distance mod-

els become more negatively biased (Fig. 2). The flexibility of

the ecological distance model, SCRecol, allows the strength of

the association between space use and landscape structure to

be estimated directly for data. Space use can therefore be mod-

elled in terms of ecological distance using estimated least cost

paths, ultimately providing better estimates of abundance.

Ecological networks with linear geometries such as streams

have been shown to constrain local patterns of movement

(dendritic ecological networks DENs: Grant, Green & Lowe

2009, Grant et al. 2010) and it is likely that most species are

subjected to similar constraints related to associations with

preferred habitats (Swan & Brown 2011). The ecological dis-

tance model represents a general model of space use for which

the Euclidean and dendritic models can be considered special

cases: Euclidean distance is equivalent to SCRecol with a2 = 0,

whereas strictly stream distance (dendritic) is equivalent to

SCRecol with a2 ≫ 0. This flexibility is appealing because no

restrictive assumptions need to be made about the geometry

(a) (b) (c)

Fig. 3. Having obtainedmle’s of parameters a1 and a2 undermodel SCRecol and a1 undermodel SCReuc, it is possible to compute and visualise home

range extent and geometry for any activity centre on the landscape. Here we randomly select 2 activity centers (Ind. 1 and Ind. 2) and, using mle’s

from a single realisation of simulated SCRdata, compare the true 95%home range geometry (grey shaded area), to that estimated under the SCRecol

(red contour line) and SCReuc (black contour line)models. The figure shows estimated home ranges of Ind. 1 and Ind, 2 for simulations where a2 = 0

(a), a2 = 4 (b), and a2 = 9 (c).

Table 2. Simulation results for the performance of the estimator of the

resistance parameter a2 under model SCRecol across a range of known

values (a2 2 1; 2; 3; 4; 5; 6; 7; 8; 9; 10). The summary statistics are the

simulated mean, standard deviation (SD) and % bias (%bias) of â2
based on 500 simulations of each of the a2 scenarios. Also provided are

simulation average encounter history summaries of: the mean number

of individuals observed at least once (ntotal), the number of individuals

observed at least 2 unique spatial locations (nloc[ 1
), and the average

number of unique spatial locations each nloc[ 1
individual was observed

at (lloc).

a2

â2 Sample size (n)

Mean SD %bias ntotal nloc[ 1
lloc

0 0�03 0�04 – 144�52 118�85 5�71

1 1�00 0�09 0�00 113�85 86�44 3�97

2 2�00 0�16 0�00 90�28 60�60 3�27
3 3�02 0�28 0�01 73�26 45�71 2�91

4 4�00 0�40 0�00 60�90 34�93 2�75

5 5�04 0�53 0�01 50�66 27�61 2�64

6 6�08 0�64 0�01 43�27 22�55 2�56
7 7�16 0�76 0�02 37�46 18�87 2�51

8 8�16 0�91 0�02 33�28 16�30 2�46

9 9�23 1�21 0�03 30�52 13�85 2�42

10 10�11 1�39 0�01 27�34 12�02 2�40
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of individual home ranges and a2 can be estimated directly

using widely collected (spatial) capture-recapture data. When

data are insufficient to estimate a2, the model will simply

reduce to the Euclidean distance model, however, when esti-

mable it is a direct measure of the strength of species–land-

scape interactions. We do note, however, that it is

encouraging that the model provided robust estimates of a2

even when data were relatively sparse, that is, low numbers of

detected individuals and few spatial recaptures, and space use

is strongly influenced by the structure of the landscape (Table

2). As a result, it is possible to derive biologically realistic

characterisations of home range geometries (shape and size)

that are both location specific (i.e. are non-stationary) and

that explicitly incorporate information about surrounding

landscape structure (i.e. can be asymmetric). The ability to

estimate ecological distance represents a liberating model

development that allows specific hypotheses to be tested about

space use and the strengths of associations with landscape fea-

tures while also providing estimates of population density.

We compared abundance and home range estimates from

the Euclidean and ecological distance based models using a

stream network and a range of possible landscape cost values

that represented movement with varying degrees of associa-

tion with water (from none to extremely strong). It is unclear

what values of a2 would be expected in a natural setting, and

therefore, difficult to say how cautionary our findings should

be in terms of biased inference when the model is misspecified.

However, a preliminary analysis of a small data set collected

on a semi-aquatic riparian specialist species produced values

of a2 	 3�5 which, based on our simulations, would produce

substantially biased estimates if unaccounted for (A. Fuller ,

C. Sutherland, M. Hare and J.A. Royle, unpublished data).

Interestingly, bias in N̂ from our simulations in the highly

structured stream network was lower than reported by (Royle

et al. 2013) in semi-structured ‘fragmented’ or ‘gradient’ habi-

tats using very similar simulation settings and specifically,

a2 = 1 (22% and 30% respectively vs. 4�5%). The suggestion

that landscape configuration may also influence the magni-

tude of bias lends more support for the ecological distance

model because it explicitly accounts for the structure/configu-

ration of the landscape.

In addition to influencing patterns of space use locally, the

structure, configuration and/or geometry of the landscape

determines the degree of larger-scale landscape connectivity

(Isaak et al. 2014; Peterson et al. 2013; Beier &Noss 1998; Fa-

gan 2002; Ver Hoef, Peterson & Theobald 2006; Grant, Lowe

& Fagan 2007). Because a2 is a direct estimate of the species-

landscape interaction strength, the ecological distance model is

exactly a model for estimating landscape connectivity. That is,

it is an estimate of the ‘degree to which the landscape facilitates

or impedes movement’ (Taylor et al. 1993). To date, connec-

tivity models have been based on arbitrarily defined or opinion

based cost surfaces (Beier & Noss 1998; Zeller, McGarigal &

Whiteley 2012). Moreover, they generally focused on either

landscape structure (structural connectivity, e.g. Beier & Noss

1998) or animal movement (functional connectivity, e.g. Tis-

chendorf & Fahrig 2000) alone, in fact, the link between the

two is not straightforward (Goodwin & Fahrig 2002) and they

are often poorly correlated (Moilanen & Nieminen 2002;

Bender, Tischendorf & Fahrig 2003; Winfree et al. 2005). The

ecological distance approach explicitly models the relationship

between landscape structure (i.e. a2) and animal movement

(i.e. r), integrating both components of connectivity (struc-

tural and functional, Fig. 4).

We developed the link between the species–landscape inter-

action and landscape connectivity formally based on the

expected frequency of use of any cell given any particular spa-

tial configuration of individuals under the fitted model of

space use. For example, if we consider a population of N = 1

individual, the connectivity surface would be identical to that

individual’s home range (Fig. 3), which would in turn depend

its’ location. The next obvious case would be to consider a

discrete landscape where each point represents a single indi-

vidual activity centre which we call potential connectivity (CP).

This measure provides a theoretical measure of cell specific

connectivity (Fig. 4a). Animals are rarely distributed uni-

formly and identically in space however, so we provide a sec-

ond measure of connectivity that multiplies pixel specific

(a) (b) (c)

Fig. 4. Usingmaximum likelihood estimates frommodel SCRecol fitted to a single realisation of SCR data simulated using a2 = 3, potential connec-

tivity [CP, (a)], and realized connectivity [CR, (b)] were computed. The colour scale (green to white) represents the gradient in connectivity values

where green areas denote highly connected cells in the landscapewhereaswhite areas are least connected parts of the landscape.We present the scaled

connectivity surfaces (Ci=maxðCÞ) for ease of comparison of both measures. (c) the difference between Realized and Potential connectivity identifies

areas that are more (green) or less (red) utilized than expected under the fitted model. The points in (b,c) represent the single realisation ofN = 200

individual activity centres used to simulate SCRdata.
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potential connectivity (CPi ) by spatially explicit estimates of

density derived from the SCR model [D(si)], which we call

realised connectivity (CR). Realised connectivity is a metric

that integrates estimates of density, species specific space use

patterns and the structure of the landscape (Fig. 4b). An inter-

esting and potentially powerful application of this approach

is that the difference between CP and CR provides direct infor-

mation about areas that are used more or less frequently than

expected (Fig. 4c) that would be useful for prioritising land-

scape/habitat conservation and/or restoration, and even areas

for potential translocation and/or assisted migration.

Our measures of landscape connectivity are based on

expected use frequency of any part of the landscape and

are based on estimated relationships between space use and

landscape structure. This highlights the important contribu-

tion of out-of-network movements to landscape connectivity

such that connected areas are not restricted to connected

waterways, but rather, connectivity can be maintained by

movement between close proximity but distinct stream sec-

tions (out-of-network). In our example we assume a closed

population with fixed activity centres, therefore, connectivity

is based on expected local space use and provides a measure

of habitat suitability or availability. The development of

open SCR models allows dispersal to be modeled based on

variation through time of activity centre locations using a

similar distance-based model used to model space use. In

the same way we generate connectivity surfaces using a2,

dispersal based connectivity can easily be derived using an

ecological distance based model of dispersal in an open

SCR model.
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