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Introduction
There is a general notion that the occurrence of extreme events has changed over these recent 

years and is anticipated to continue to change in terms of intensity, frequency and complexity of 

the risks. These recent changes are mainly attributed to global warming and natural modes of 

interannual and interdecadal variability, such as the El Niño phenomenon (Katz 2010; Katz, 

Parlange & Naveau 2002; Towler et al. 2010). The anticipated climate-induced changes are of 

major concern as they have the potential to render our estimates biased and/or useless, particularly 

those estimates based on traditional approaches that do not take climate changes into consideration. 

These probable climate changes can also cause negative societal impacts and disruptions, for 

instance, destruction of schools, children dropping out of schools leading to early marriages, 

particularly for girls, and thus creating a vicious poverty circle in the community (Katz 2010; 

Mudavanhu 2014). According to Katz (2010), previous studies in extreme value theory have 

shown that the frequency of all forms of extreme events, whether in the form of a single value or 

a sequence of annual maxima, is more sensitive to variations in the scale parameter (or, in 

particular, the standard deviation) than to the location parameter (or mean) of a distribution. 

Cooley (2009) wrote a commentary on the potential application of statistics of extremes to climate 

change based on the previous work of Wigley.

The annual maximum series (AMS), also known as block maxima, has long been employed to 

estimate the distribution of extreme events such as flood flows, precipitation and wind speeds. The 

time-homogeneous generalised extreme value (GEV) distribution, which uses standard properties 

of the likelihood function, has traditionally been used in designing flood estimation (Coles 2001; 

Maposa et al. 2014b; Towler et al. 2010). The use of a stationary GEV distribution assumes that 

climate changes and all other variables that may affect the validity of the estimation of design 

floods remain constant over time. In his wisdom, Gumbel (1941:187), the statistician and pioneer 

in the application of statistics of extremes to hydrology and other various fields, cautioned that:

In order to apply any theory we have to suppose that the data are homogeneous, i.e., no systematical 

change of climate and important change in the basin have occurred within the observation period and 

that no such change will take place in the period for which such extrapolations are made. (Katz 2010:71; 

Katz et al. 2002:188)

In this article we fit a time-dependent generalised extreme value (GEV) distribution to annual 

maximum flood heights at three sites: Chokwe, Sicacate and Combomune in the lower 

Limpopo River basin of Mozambique. A GEV distribution is fitted to six annual maximum 

time series models at each site, namely: annual daily maximum (AM1), annual 2-day maximum 

(AM2), annual 5-day maximum (AM5), annual 7-day maximum (AM7), annual 10-day 

maximum (AM10) and annual 30-day maximum (AM30). Non-stationary time-dependent 

GEV models with a linear trend in location and scale parameters are considered in this study. 

The results show lack of sufficient evidence to indicate a linear trend in the location parameter 

at all three sites. On the other hand, the findings in this study reveal strong evidence of the 

existence of a linear trend in the scale parameter at Combomune and Sicacate, whilst the scale 

parameter had no significant linear trend at Chokwe. Further investigation in this study also 

reveals that the location parameter at Sicacate can be modelled by a nonlinear quadratic trend; 

however, the complexity of the overall model is not worthwhile in fit over a time-homogeneous 

model. This study shows the importance of extending the time-homogeneous GEV model to 

incorporate climate change factors such as trend in the lower Limpopo River basin, particularly 

in this era of global warming and a changing climate.
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Without loss of generality, it is easy to understand that the 

assumption of homogeneity of climatic conditions and other 

important changes in the basin cannot hold forever. In 

other words, it is inevitable that climatic conditions change 

over time. The traditional fitting of the time-homogeneous 

GEV distribution also assumes that the observations are 

independent and identically distributed (i.i.d.). According to 

Katz et al. (2002), stationarity implies identicalness and not 

necessarily independence.

Dr Walter J. Ammann, chairman of the recent International 

Disaster and Risk Conference held in Davos, Switzerland, 

24–28 August 2014, attested that the scope, intensity and 

complexity of risks as well as the frequency of natural hazards 

such as floods, earthquakes and forest fires are on the rise in 

these recent years (IDRC Davos 2014). The increase in the 

frequency of floods is also supported by a unique survey of 

139 national meteorological and hydrological services carried 

out by the World Meteorological Organisation in 2013, which 

revealed that floods were the most frequently experienced 

extreme events worldwide over the course of the decade 

2001–2010 (Mudavanhu 2014; WMO 2013). Floods and 

droughts account for 90% of all the people who are affected 

by natural disasters (Mudavanhu 2014; Smakhtin 2014). 

According to Munich Re (2013), the natural catastrophic 

statistics for the year 2013 was dominated by floods that 

caused billions of American dollars in losses. In Arya, Boen 

and Ishiyama (2014), the Director-General of UNESCO, Irina 

Bokova, stated that:

Every year, more than 200 million people are affected by 

natural hazards, and the risks are increasing – especially 

in developing countries, where a single major disaster can 

set back healthy economic growth for years. As a result, 

approximately one trillion dollars have been lost in the last 

decade alone. This is why disaster risk reduction is so essential. 

Mitigating disasters requires training, capacity building at all 

levels, and it calls for a change of thinking to shift from post-

disaster reaction to pre-disaster action – this is UNESCO’s 

position. (p. 6)

Although it is clear from literature that the intensity and 

frequency of floods have increased over the recent years, it 

is not clear whether the magnitudes of floods, that is, flood 

heights, have also increased. If the magnitudes of flood 

heights have increased over the years, it is expected that the 

location parameter of the GEV, which is associated with the 

mean estimate of the distribution, should increase with 

increase in time. On the other hand, if there is no gradual 

increase in flood heights over the years and the sporadic 

extremely high floods are nearly or purely random, then 

we expect the scale parameter, which is associated with 

dispersion from the central location, to vary with time 

(Figure 1). Based on literature cited in the study, there is 

overwhelming evidence of covariates such as long-

term trends or cycles in recent years attributed to man-

made activities, which may lead to global warming and 

atmosphere–ocean circulation patterns such as the El Niño 

phenomenon, which undermine the long-held traditional 

assumption of stationarity (Towler et al. 2010; Vasiliades, 

Galiatsatou & Loukas 2015). Evidence of non-stationarity is 

exhibited in Figure 1 at all the three sites: Chokwe, 

Combomune and Sicacate of the lower Limpopo River of 

Mozambique. However, a visual inspection of Figure 1 

shows no apparent trend. Figure 1 reveals that in the year 

2000 flood height was a very rare extreme event at all the 

three sites.

Source: Authors’ own construction

FIGURE 1: Time series plots of annual daily maximum (AM1) flood heights (in metres) at the three sites: (a) Chokwe (1951–2010), (b) Combomune (1966–2010) and 
(c) Sicacate (1952–2010) along lower Limpopo River of Mozambique.
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The present study considers a non-stationary time-dependent 

GEV distribution model whose location and scale parameters 

are expected to vary linearly or nonlinearly with time 

(Figure 1), whilst the shape parameter remains constant over 

time. This investigation is carried out for the lower Limpopo 

River basin (LLRB) of Mozambique. Detailed studies on the 

goodness of fit of the time-homogeneous GEV distribution in 

the basin are found in the studies by Maposa, Cochran and 

Lesaoana (2014a) and Maposa et al. (2014b). In the present 

study, we advocate for a statistical modelling approach based 

on maximum likelihood (ML) estimation in the possible 

presence of covariates. These covariates can be in the form of 

trends, cycles and physical variables such as El Niño (Katz 

et al. 2002). The covariate of particular interest in the present 

study is the trend. To the best of our knowledge, no similar 

work in the previous studies relating to statistics of extremes 

in a changing climate have been done for the LLRB of 

Mozambique.

According to Katz et al. (2002), although the probability 

weighted moments, also known as L-moments, are more 

popular in the application of hydrological extremes compared 

to ML estimation mainly because of their computational 

simplicity and better performance for small samples where 

ML is often inconsistent, the probability weighted moment 

technique has the demerit of being unable to readily 

incorporate covariates (see also Ferreira & De Haan 2015). 

On the other hand, the application of ML technique in 

the presence of covariates is straightforward in both 

block maxima and peaks-over-threshold (POT) approaches 

(Katz et al. 2002).

The outline of the rest of the article is such that Section 2 

presents the research methodology, Section 3 presents the 

results and discussion of the findings, and finally Section 4 

gives the concluding remarks.

Research methodology
The section presents the sequential steps taken to sort the 

data into the block maxima series (Ferreira & De Haan 2015), 

briefly discuss the probability framework of block maxima 

including the extension of time-homogeneous GEV model to 

linear and quadratic trend models.

Study sites and data

Mozambique National Directorate of Water, the authority 

responsible for water management in Mozambique in the 

Ministry of Public Works and Housing, provided the data 

used in the study. The data are hydrometric daily flood 

heights (in metres) recorded at the sites Chokwe (1951–2010), 

Combomune (1966–2010) and Sicacate (1952–2010), which 

are hydrometric stations for the lower Limpopo River of 

Mozambique (Maposa et al. 2014a, 2014b). The three sites are 

such that Combomune is located in the upper part of the 

basin about 162 km from the border with South Africa and 

Zimbabwe, Chokwe is located in the middle of the basin 

about 130 km downstream of Combomune and Sicacate 

is further downstream of Chokwe in the lower part of the 

basin on way to the sea.

Moving sums and block maxima
The raw data at the three sites were originally recorded as 

daily flood heights (or water levels). The data records at 

some sites stretch back to as far as 1930s. However, because 

of missing values, the records used in the study are for the 

period 1951–2010 for Chokwe, 1966–2010 for Combomune 

and 1952–2010 for Sicacate (Figure 1). In order to obtain 

AMS, sequential steps were taken to obtain the highest flood 

peak in each hydrological year (or block). Further steps 

were taken to obtain annual maximum (AM) flood heights of 

the moving sums of 2, 5, 7, 10 and 30 days. Finally, the 

following AM time series models were obtained: annual 

daily maximum (AM1), annual 2-day maximum (AM2), 

annual 5-day maximum (AM5), annual 7-day maximum 

(AM7), annual 10-day maximum (AM10) and annual 30-day 

maximum (AM30). The procedure to obtain these cumulative 

AM time series models was necessitated by the need to 

investigate whether the cumulative annual floods have any 

significant effect on the long-term linear or quadratic trend 

in location, scale or both.

In statistics of extremes, there are two fundamental approaches 

used in flood frequency analysis, namely, block maxima (or 

AMS) and POT (or partial duration series) (Ferreira & De 

Haan 2015). The approach used in the study is block maxima. 

In hydrological studies, when sample sizes are large, it is 

natural to block observations by years (Ferreira & De 

Haan 2015; Maposa et al., 2014b). The data used in this study 

have sufficiently large AM records extending over 40 years at 

each site. In flood frequency analysis, the block maxima 

approach is commonly used ahead of POT when data records 

have sufficiently large sample sizes and the data quality is 

adequate (Ferreira & De Haan 2015). The GEV distribution 

arises naturally when modelling block maxima, whereas for 

POT the generalised Pareto distribution is commonly used 

(Ferreira & De Haan 2015).

Extreme value models
Comprehensive details of probability framework of block 

maxima and the practical reasons for using block maxima 

over POT are given by Ferreira and De Haan (2015). Dombry 

(2013) proved the consistency of ML estimators when using 

block maxima approach.

We are already familiar with the background of extreme 

value theory, beginning with the limiting distributions of 

Fisher and Tippett (1928) and advanced theory and 

applications in Coles (2001). Let (X
i
)

i≥1
 be i.i.d. random 

variables with common distribution function F ∈ D(Gξ) and 

corresponding normalisation sequences of constants a
m
 > 0 

and b
m
 such that:

+ = ∈ℜ
→∞

ξlim ( ) ( ),  ,F a x b F x x
m

m

m m
 [Eqn 1]

http://www.jamba.org.za


Page 4 of 9 Original Research

http://www.jamba.org.za Open Access

where ξ is the extreme value index. Let M
k,m

 = max (X
(k−1)m+1

,…, 

X
km

), k ≥ 1, hence, n = m × k observations are divided into k 

blocks of size m, where n is the total number of observations 

(Ferreira & De Haan 2015). Then there exists a non-degenerate 

function G such that for a fixed block length m ≥ 1, the variables 

(M
k,m

)
k≥1

 are i.i.d. with distribution function Fm such that:

lim

( ),  as , ,

, ( )−





= +

→ → + ∞ξ

→∞
P
M a

b
F a x b

G x n k m

k m m

m
m

m

m m

 [Eqn 2]

As suggested by Eqn (2), an approximation of the 

distribution of M
k,m

, or the distribution function Fm, is the 

GEV distribution with parameters a
m
, b

m
 and ξ estimated by 

the ML method in the study (Dombry 2013; Ferreira & De 

Haan 2015). The GEV cumulative distribution function, G, 

is given in Eqn (3) as:

( )

exp 1 , 1 0, 0,

exp exp , , 0

1

G x

x x

x
x

µ,σ,ξ;

ξ
µ

σ
ξ

µ
σ

ξ

µ
σ

ξ

=

− +
−

















+
−

> ≠

− −
−



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





∈ℜ =














ξ−

 [Eqn 3]

where µ, σ and ξ are the location, scale and shape parameters, 

respectively. The model in Eqn (3) is the time-homogeneous 

GEV model. We shall call it model M
0
 and it shall be used as 

the reference model such that all other extended models are 

compared to it for their significance.

The log-likelihood function for the GEV in Eqn (3) for the 

case ξ ≠ 0 is given by Eqn (4):

( , , ; ) log 1 1

log 1 1

1 1

1

∑ ∑

µ σ ξ σ ξ

ξ
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σ
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x x

i

k

i

k

 [Eqn 4]

where k is the number of blocks (years) and x is AM.

Now consider the time-dependent GEV model, call it M
1
, 

with a linear trend in the location and the scale parameter 

such that µ(t) = µ
0
 + µ

1 
t, log σ(t) = σ

0
+σ

1 
t, and ξ(t) = ξ where 

t is time in years, then the general model is given in Eqn (5):
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[Eqn 5]

The log-likelihood function of model M
1 
for the case ξ ≠ 0 is 

given in Eqn (6) as:

( , , , , ; , ) log 1 1
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 [Eqn 6]

with the usual replacement when ξ = 0. The R package ismev 

is used to estimate the parameters of the GEV models 

(Heffernan & Stephenson 2015; R Core Team 2013).

In the present study, we also propose three more models, 

M
2
, M

3
, and M

4
. Model M

2
 has a linear trend in the location 

parameter such that µ(t) = µ
0
+ µ

1
(t), σ(t) = σ and ξ(t) = ξ, and 

hence model M
2
 and its log-likelihood are of the form G(µ(t), σ, 

ξ; x, t) and l(µ
0
, µ

1
, σ, ξ; x, t). As for the other two models, M

3
 has 

a linear trend in the scale parameter and M
4
 has a nonlinear 

quadratic trend in the location parameter such that µ(t) = µ, 

log σ(t) = σ
0
 + σ

1
t, ξ(t) = ξ and µ(t) = µ

0
 + µ

1
t + µ

2
t2, σ(t) = σ, ξ(t) = ξ 

for models M
3
 and M

4
, respectively. The model for M

3
 and its 

log-likelihood are of the form G(µ, σ(t), ξ; x, t and l(µ, σ
0
, σ

1
, 

ξ; x, t), respectively, whilst the model for M
4
 and its log-

likelihood are of the form G(µ(t), σ, ξ; x, t) and l(µ
0
, µ

1
, µ

2
, σ, 

ξ; x, t), respectively.

Model choice

One important question to answer is whether the non-

stationary model provides an improvement in fit over the 

time-homogeneous model M
0
; that is, is it worthwhile to have 

the non-stationary model? The ML estimation of nested 

models uses a simple procedure called the deviance (D) 

statistic to compare one model against the other. In the study, 

the time-homogeneous GEV model, M
0
, is a special case of 

the time-dependent models M
1
, M

2
, M

3
 and M

4
. In general, 

consider M
0
 ⊂ M

i,∀i=1,2,3,4
, then we define deviance statistic, D, 

as in Eqn (7):

2 ,0 0D l M l M
i i{ }( ) ( )= −  [Eqn 7]

where l
i
(M

i
) and l

0
(M

0
) are the maximised negative log-

likelihood for models M
i,∀i=1,2,3,4

 and M
0
, respectively. D has a 

chi-square (c2
k,a) asymptotic distribution, with k degrees of 

freedom tested at α (=0.05 or 5%) level of significance, where 

k is the difference in dimensionality (or difference in number 

of parameters) of Mi and M
0
. Thus, D is compared to critical 

values of χ2
k,α, where D > c2

k,α suggests that model M
i
 

explains substantially more of the variability in the data than 

model M
0
.

Results and discussion
In order to avoid presenting too many tables in the article, 

only tables for the AM1 time series data are presented for 

each of the three sites Chokwe, Combomune and Sicacate in 

Tables 1, 2 and 3 respectively. The results for the AMS moving 

sums for each site are only discussed in detail if there 

is discrepancy with the AM1 results, else they are simply 
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mentioned if there is consistency. The interested reader can 

obtain results for the AMS moving sums upon request from 

the corresponding author. The order of the models is 

maintained for the AMS moving sums, for example, for AM2 

time series data model M
1
 still refers to a time-dependent 

GEV model with a linear trend in both the location and scale 

parameters as in AM1.

Chokwe models

Consider the pair of models (M
0
, M

1
) from Table 1, where M

0
 is 

taken as the reference model, c2
2,0.05

 = 5.991, D = 2(−125.802−

(−126.313)) = 2(126.313−125.802) = 1.022 and the likelihood 

ratio test for m
1
= 0 has p-value = 0.4928 and for σ

1
= 0 has 

p-value = 0.1676 Because D is too small compared to the critical 

value (5.991) and the likelihood ratio test is not significant at 

the 5% level of significance (p-value > 0.05) for both the location 

and scale parameters, it clearly shows that the non-stationary 

model is not important and does not give any improvement 

in fit over the time-homogeneous GEV model. Similar 

insignificant results were obtained for the AMS moving sums 

AM2, AM5, AM7, AM10 and AM30 for model M
1
.

The other pairs from Table 1, (M
0
, M

2
) and (M

0
, M

3
), have 

D = 0.01 and 1.022, respectively, with a critical value of χ2
1,0.05

 = 

3.841 for both pairs. The likelihood ratio test for µ
1
 = 0 has 

p-value =0.4591 and σ
1
 = 0 has p-value = 0.1653 for M

2
 and M

3
, 

respectively, which is insignificant for both models at the 5% 

level of significance. The D statistic is again too small (< 3.841) 

for both models, implying that both models do not provide 

any improvement in fit over the time-homogeneous GEV 

model. Similar insignificant results were exhibited for the 

AMS moving sums AM2, AM5, AM7, AM10 and AM30 for 

models M
2
 and M

3
.

The quadratic model pair (M
0
, M

4
) in Table 1 has a D statistic 

value of 0.006 with a critical value of χ2
2
,
0.05

 = 5.991, implying 

that model M
4
 does not provide any improvement in fit to 

justify its importance over the time-homogeneous model. 

The likelihood ratio tests for µ
1
 = 0 and µ

2
 = 0 are also not 

significant at the 5% significance level ( p-value > 0.05). Again, 

similar results were obtained for AM2, AM5, AM7, AM10 

and AM30.

In general, the results from Chokwe showed that the 

prevailing model for the site is the time-homogeneous GEV 

model given by Eqn (3). In other words, time is not an 

important factor for the AMS data at Chokwe. The general 

model estimate for Chokwe is given in Eqn (8):

, , ; exp 1
0.081 4.248

1.785
,  

                        1
0.081 4.248

1.785
0

1 0.081

G x
x

x

i

i

µ σ ξ( ) ( )

( )

= − +
− −























+
− −

>
 [Eqn 8]

where x = x
i,∀i=1,2,…,k

 is the AM flood height. The diagnostic 

plots for the time-homogeneous model in Eqn (8) are 

presented in Figure 2. The diagnostic plots in Figure 2 show 

that the model is of good fit, with the exception of the year 

2000 flood height which falls slightly outside the confidence 

limits.

Combomune models

We start by considering the pair (M
0
, M

1
) from Table 2 with 

χ2
2
,
0.05

 = 5.991, D = 5.36, and likelihood ratio test for µ
1 
= 0 has 

p-value = 0.2570. and for σ
1
= 0 has p-value = 0.0117. These 

results show that the linear trend in location parameter is not 

TABLE 1: Annual daily maximum time-dependent generalised extreme value models for Chokwe for the period 1951–2010.
Model µ̂µ00 µ̂µ11 µ̂µ22 σ̂σ 00 σ̂σ11

ˆξξ Maximised negative  
log-likelihood

M0 4.248 0 0 1.785 0 -0.081 126.313
M1 4.222 -0.0003 0 2.204 -0.015 -0.041 125.802
M

2
4.294 -0.0015 0 1.787 0 -0.081 126.308

M3 4.212 0 0 2.205 -0.015 -0.040 125.802
M4 4.237 -0.0002 0.0000 1.784 0 -0.080 126.310

TABLE 2: Annual daily maximum time-dependent generalised extreme value models for Combomune for the period 1966–2010.
Model µ̂µ00 µ̂µ11 µ̂µ22 σ̂σ 00 σ̂σ11

ˆξξ Maximised negative  
log-likelihood

M0 5.163 0 0 1.660 0 -0.124 90.740
M1 5.394 -0.012 0 2.321 -0.033 -0.045 88.060
M

2
5.445 -0.011 0 1.685 0 -0.150 90.614

M3 5.034 0 0 2.268 -0.031 -0.043 88.276
M4 5.338 -0.000 -0.000 1.681 0 -0.146 90.627

TABLE 3: Annual daily maximum time-dependent generalised extreme value models for Sicacate for the period 1952–2010.
Model µ̂µ00 µ̂µ11 µ̂µ22 σ̂σ 00 σ̂σ11

ˆξξ Maximised negative  
log-likelihood

M0 6.151 0 0 3.328 0 -0.454 148.547
M1 6.901 -0.012 0 1.813 0.061 -0.682 144.306
M

2
5.499 0.025 0 3.443 0 -0.526 148.279

M3 6.675 0 0 1.966 0.055 -0.693 144.413
M4 5.887 0.000 0.0003 3.396 0 -0.499 148.373
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significant at the 5% significance level ( p-value > 0.05), whilst 

the linear trend in scale parameter is significant ( p-value 

< 0.05) in the model. In other words, the scale parameter is 

time dependent whilst the location parameter is time-

homogeneous. However, the D statistic (5.36) is less than the 

critical value of 5.991 at 2 degrees of freedom, which implies 

that the non-stationary model M
1
 is not worthwhile compared 

to the time-homogeneous GEV model in Eqn (3). The same 

conclusions were reached for the moving sums of AM2, AM5, 

AM7, AM10 and AM30.

We now consider the pairs (M
0
, M

2
) and (M

0
, M

2
) from Table 2. 

The critical value for both pairs is χ2
1,0.05

 = 3.841 with respective 

D statistic values of 0.252 and 4.928 for the two pairs. The 

likelihood ratio test for µ
1
 = 0 has p-value = 0.3092 and σ

1
 = 0 

has p-value = 0.0141 for models M
2
 and M

3
, respectively. 

These results show that model M
2
 is not significant at the 5% 

significance level ( p-value > 0.05) and is not worthwhile 

because D statistic value (0.252) is too small compared to the 

critical value (3.841). On the other hand, model M
3
 is 

significant at the 5% significance level ( p-value < 0.05) and 

provides an improvement in fit over the time-homogeneous 

GEV model because the D statistic value of 4.928 (> 3.841) is 

significantly large. Similar findings were obtained for all the 

AMS moving sums.

The nonlinear quadratic model pair (M
0
, M

4
) has a D statistic 

of 0.226, which is too small compared to the critical value of 

5.991 with two degrees of freedom. The likelihood ratio 

tests for µ
1
 = 0 and µ

2
= 0  are not significant at the 5% 

significance level ( p-value > 0.05). Thus, the nonlinear 

quadratic model M
4
 is neither significant nor worthwhile 

Source: Authors’ own construction

FIGURE 2: Diagnostic plots for the time-homogeneous generalised extreme value model at Chokwe hydrometric station: (a) Probability plot; (b) Quantile plot; (c) Return 
level plot; (d) Density plot.
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over the time-homogeneous GEV model. Likewise, the same 

conclusions were reached for all the AMS moving sums.

Overall, the final model for Combomune is the non-stationary 

model, M
3
, with a linear trend in the scale parameter of the 

GEV. The general model for Combomune is given in Eqn (9):

, ( ), ; , exp 1
0.043 5.034

exp 2.268 0.031
, 

                                1
0.043 5.034

exp 2.268 0.031
0

1 0.043

G t x t
x

t

x

t

i

i

i

i

µ σ ξ( ) ( )
( )

( )
( )

= − +
− −

−

























+
− −

−
>

 [Eqn 9]

where t
i
 = τ

i
−1965, τ

i  
= 1966, 1967, … and t

i
 = 1, 2, 3, … is time 

in years and x = x
i,∀i=1,2,…,

 is the AM flood height. The diagnostic 

plots for the time-heterogeneous model in Eqn (9) are 

presented in Figure 3. The residual probability plot suggests 

a good fit to the data.

Sicacate models

The model pair (M
0
, M

1
) from Table 3 has χ2

2,0.05
 = 5.991 and a 

D statistic value of 8.482. The likelihood ratio test for µ
1
 = 0 

has p-value = 0.3217 and σ
1
 = 0 has p-value = 0.0045, which 

indicates that the linear trend in location parameter is not 

significant at the 5% significance level ( p-value > 0.05), 

whereas the linear trend in scale parameter is highly 

significant ( p-value < 0.05) in the model. Because the D 

statistic value (8.482) is greater than the critical value of 5.991, 

we conclude that model M
1 
provides an improvement in fit 

over the time-homogeneous GEV model; that is model M
1
 is 

worthwhile. These findings are consistent with findings from 

AMS moving sums AM2, AM5, AM7, AM10 and AM30.

The model pairs (M
0
, M

2
) and (M

0
, M

3
) in Table 3 share a critical 

value of χ2
1,0.05

 = 3.841 with a D statistic value of 0.536 and 

8.268 for M
2
 and M

3
 respectively. The likelihood ratio test for 

µ
0
 = 0 has p-value = 0.2638 and σ

1
= 0 has p-value = 0.0013 This 

indicates that model M
2
is insignificant at the 5% level of 

significance ( p-value > 0.05) and not worthwhile (D < 3.841), 

whilst model M
3
 is highly significant at the 5% significance 

level ( p-value < 0.05) and provides an improvement in fit 

over the time-homogeneous GEV model, with a large D 

statistic value of 8.268 (> 3.841). These findings are also 

consistent with findings from all the AMS moving sums.

The nonlinear quadratic model pair (M
0
, M

4
) in Table 3 has a 

D statistic value of 0.348 with a critical value of χ2
2,0.05

 = 5.991 

The likelihood ratio test for µ
1
 = 0 has p-value = 0.4991 and 

µ
2
 = 0 has p-value < 0.0001 This implies that the linear trend 

term in the location parameter is not significant at the 5% 

level of significance ( p-value > 0.05) whilst the quadratic 

trend term in location parameter is highly significant ( p-value 

< 0.0001). However, the overall nonlinear quadratic model is 

not worthwhile because the D statistic value of 0.348 is too 

small compared with the critical value of 5.991. Again, these 

findings are consistent with findings from all the AMS 

moving sums.

We now have two competing ‘good’, non-stationary, linear, 

time-dependent models for Sicacate. To identify the most 

appropriate of these models, we rate the one with the 

smaller standard errors and the smaller p-value as the most 

appropriate model. In this case, model M
3
 has a smaller 

p-value in the slope of the scale parameter 0.0013 compared 

to 0.0045 for M
1
, and the standard errors for M

3
 are much 

smaller than those of M
1
 for example 0.47428 compared to 

0.64696 for µ̂
0
 and 0.01722 compared to 0.02249 for scale 

slope σ̂
1
 for m

3
 and M

1
, respectively. Therefore, the non-

stationary linear trend in scale GEV model for Sicacate is 

given in Eqn (10) and the alternative model is given in 

Eqn (11) as follows:
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 [Eqn 10]

where t
i
 = τ

i
 –1951, τ

i
 = 1952, 1953,… and t

i
 = 1, 2, 3,… is time 

in years and x = x
i,∀i=1,2,…,k

 is the AM flood height. The 

alternative non-stationary linear trend in location and scale 

GEV model is given as follows:

( ), ( ), ; ,

exp 1
0.682 (6.901 0.012 )

exp 1.813 0.061

1 0.682

G t t x t

x t
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i i
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 [Eqn 11]

where t
i
 = τ

i
 – 1951, τ

i
 =1952,1953,… and t

i
 = 1,2,3,… is time in 

years and x = x
i,∀i=1,2,…,k

 is the AM flood height. The diagnostic 

plots for the time-heterogeneous models in Eqn (10) and 

Source: Authors’ own construction

FIGURE 3: Diagnostic plots for the time-heterogeneous generalised extreme 
value model with a trend in the scale parameter at Combomune hydrometric 
station: (a) Residual probability plot; (b) Residual quantile plot.
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Eqn (11) are presented in Figure 4 and Figure 5, respectively. 

The residual probability plots for both models suggest a good 

fit to the data.

The interesting findings are that whilst most studies in other 

regions have found a dominant linear trend in the location 

parameter of the GEV distribution for some rivers (e.g. Katz 

et al. 2002), the study has found no evidence of a significant 

linear trend in the location parameter of the GEV distribution 

for the LLRB of Mozambique. On the other hand, the study 

has revealed a dominant time-dependent scale parameter for 

the river at Combomune upstream and Sicacate further 

downstream. The study also revealed evidence of a highly 

significant nonlinear trend, quadratic term, in the location 

parameter at Sicacate, although the complexity of the overall 

model was not worthwhile with reference to the time-

homogeneous GEV model. The findings in the study are in 

full support of a previous study by Aich et al. (2014), who 

used a geoscientific model called eco-hydrological SWIM 

model to compare the climate change impacts on streamflow 

in four large African basins including the Niger, upper Blue 

Nile, Oubangui and Limpopo and found the Limpopo basin 

to be highly sensitive to climate change variability. The 

results obtained in the study complemented by those of Aich 

et al. (2014) explain the reason for the increased frequency of 

extreme floods in the LLRB of Mozambique, which can be 

attributed to the variability in climatic conditions. The time-

dependent GEV models developed in the study are worth 

considering by the Mozambican government and its partners, 

as well as its neighbours, in their policies and decision 

making. Chokwe Irrigation Scheme, the largest irrigation 

scheme in Mozambique is situated in the LLRB, making the 

basin the backbone of the country’s economy, which is mainly 

characterised by agriculture and fishing.

Conclusion
The study considered the use of statistics of extremes in a 

changing climate for the LLRB of Mozambique. Three 

hydrometric stations representing three sites along the lower 

Limpopo River were considered for the study. The ML 

estimation method was used to estimate the parameters of 

the GEV distribution in the presence of a trend covariate. The 

study has revealed the importance of considering non-

stationary linear and nonlinear trend models when using 

statistics of extremes in a changing climate as these models 

provide an improvement in fit over the time-homogeneous 

models. This improvement in fit is very important for 

the planning and policy-making of the government of 

Mozambique and its partners in the LLRB, where the largest 

irrigation scheme of the country is situated. The importance 

of the developed models is attributed to the fact that these 

non-stationary models take into account the reasons for 

increased frequency of floods in the basin. Once the 

government and its partners are fully aware of the reasons 

behind the increased frequency of floods in the basin, their 

planning can be much improved.

The study has successfully identified the prevailing models 

at the three sites such that Chokwe is the only site with a 

time-homogeneous GEV model. This can be attributed to the 

fact that some of the water at the site is diverted to the 

Chokwe Irrigation Scheme for irrigation purposes. The other 

two sites Combomune and Sicacate have a prevailing non-

stationary GEV model with a dominant linear trend in the 

scale parameter. The site of Sicacate has an alternative non-

stationary model with a linear trend in both the location 

and scale parameters of a GEV distribution. The prevailing 

Source: Authors’ own construction

FIGURE 4: Diagnostic plots for the time-heterogeneous generalised extreme 
value model with a trend in the scale parameter at Sicacate hydrometric station: 
(a) Residual probability plot; (b) Residual quantile plot.
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FIGURE 5: Diagnostic plots for the time-heterogeneous generalised extreme 
value model with a trend in both the location and scale parameters at Sicacate 
hydrometric station: (a) Residual probability plot; (b) Residual quantile plot.
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models established in the study are consistent with 

cumulative (or moving sums) AMS flood flows and therefore 

appear reliable to use for flood frequency analysis in the 

basin. The use of the identified time-dependent GEV models 

with a trend in the scale parameter in the basin would also 

reduce the sensitivity of the frequency of floods, which is 

known to vary with changes in the scale parameter and 

therefore lead to more reliable estimates in the frequency of 

floods.

Future studies will attempt to advance the study to consider 

non-stationary generalised Pareto distributions, Bayesian 

inference and Markov chain Monte Carlo methods in a 

changing climate for the lower Limpopo River of 

Mozambique. Covariates in the form of cycles and/or a 

physical variable such as a dummy variable indicating the 

occurrence of cyclones in the region will also be considered in 

future studies involving statistics of extremes in a changing 

climate.
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