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Abstract

We describe a new approach to modelling the appearance of structures in grey-level
images. We assume that both the shape and grey-levels of the structures can vary from one
image to another, and that a number of example images are available for training. A 2-D
image can be thought of as a surface in 3 dimensions, with the third dimension being the
grey-level intensity at each image point. We can represent the shape of this surface by
planting landmark points across it. By examining the way such collections of points vary
across different examples we can build a statistical model of the shape, which can be used to
generate new examples, and to locate examples of the modelled structure in new images.
We show examples of these composite appearance models and demonstrate their use in
image interpretation.

1 Introduction

In order to accurately locate structures in images we must have good models. Struc-

tures of interest can often vary in shape and grey-level appearance because they are

flexible, are imaged under different conditions, or natural variations are present. On

approach is to use deformable models which can accommodate this variation, pre-

ferably in a compact manner. In this paper we address the problem of building mo-

dels to represent the appearance of such variable image structures an using them in

image interpretation. Various approaches to modelling shape and shape variation

have been described by Yuille et al. [2], Kass etal. [1] Hinton, Williams and Revow

[3], Staib and Duncan [4], Pentland and Sclaroff [5], Karaolani et al. [6], Nastar and

Ayache [7], Grenander et al. [8] and Mardia et al. [9]. Marchant [10] has shown how

Finite Element Methods can be used to add grey-level information to shape models.

Grenander and Miller [11] also describe models which represent both the shape and

intensity information.

A 2-D image can be thought of as a surface in 3 dimensions, with the third dimension

being the grey-level intensity at each image point. The image appears as a mountain-

ous landscape, with each structure in the image represented as a series of mountains

and valleys. In order to model a structure, we can model these 3-D shapes. This can

be achieved by placing a series of labelled 3-D landmark points across the image sur-

face. Given a set of examples of such structures, each labelled with landmarks,, we

can find the mean shape from the mean position of each landmark, and find the main

ways in which the shape tends to vary by examining the statistics of the point posi-

tions. This approach to modelling 3-D shape is an extension of earlier work on 2-D
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shape (Cootes et al. [12]) and has been successfully used with 3-D volume data

images (Hill et al. [13]). In our current work, however, the third dimension is the

image intensity, so variations in this dimension cause the grey-levels of the structures

to change. We describe the model building approach, give some examples of models

and show how they can be used to locate examples in new images.

2 Building Models of the Image Surface

2.1 Representing the training set.

We assume that a number of example images are available containing the structure

we wish to model. We will use a model of an eye as a simple example. Figure 1 shows

a number of examples of an eye, taken from different images of the same face.

Figure 1 : Examples of eye images Figure 2 : Base landmark points and

triangulation.

On each example we place a number, no, of labelled landmark points. Each labelled

point represents the position of a particular part of the structure, a corner, a point

of high intensity and so on, and must be placed in the same way on each structure

(see Cootes et al. [12]). We choose the landmarks to represent significant parts of

the structure, and to give a reasonably even spread across the surface of the structure

to be modelled. Figure 2 shows the placement of landmarks used for the eye.

In order to represent the grey-levels in the internal areas of the structure we usually

require a greater density of points. We have generated more internal points by first

triangulating the original points, then adding additional points at the mid-point of

each connecting arc (Figure 3). A new, denser triangulation can be generated (Fig-

ure 4), and the process repeated to obtain any desired density of points. The triangu-

lation algorithm must not add any arcs outside the original boundary (many algo-

rithms force a convex boundary). The algorithm we used is described in Appendix

A.

The triangulation algorithm is not robust to movements of the points - small changes

in position of the points can lead to a different set of connecting arcs (Figure 5). Since

we intend increasing the density of points by adding additional ones along the arcs,
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Figure 3 : Interpolated points Figure 4 : Denser triangulation for

(one on each connecting arc) eye example, formed by connecting

on eye example pairs of new points.

we cannot simply apply the technique to each set of data points independently, as

the points generated would no longer be equivalent from one example to another.

Instead we only apply the triangulation algorithm to the mean configuration of land-

marks. This mean is generated by aligning the sets of examples so that they overlap

as much as possible , then calculating the mean of each co-ordinate for each land-

mark point. We record the list of connecting arcs, and the new connecting arcs gener-

ated at each level of the triangulation. This data allows us to apply equivalent tri-

angulations to every example, and to generate internal points in a consistent manner.

B A

(a)
(b)

Figure 5 : Example showing instability of triangulation algorithms. In (a)

A and C are closer than B and D, so an arc is generated connecting

them. In (b) point B has moved a small distance inward, making BD

smaller than AC, so a different diagonal is created.

For each example we now have a larger set of n points fa, yi) (i = O..n-1). Note that

they can all be generated from linear combinations of the original no landmark

points. This data can give us information about the shape of the structure, but to

obtain information about its grey-level appearance we must sample the image at

each point to get the grey-level intensity at that point, k (Figure 6). Because the

points need not have integer co-ordinates, we use bilinear interpolation of the image

data to calculate the It. Each point becomes a triplet, fa, yi, k), which can be con-

sidered as a point in a 3-D space. Each set of n points describes the shape of a surface

in this 3-D space. We have a set of examples, and can use the 3-D shape model simi-

lar to the one described by Hill et al [13] to represent their mean and allowable vari-

ation.

2.2 Building 3-D Surface Models from Sets of Examples.

The example shapes are aligned so that they overlap as much as possible. We allow

a rigid rotation, scaling and translation in the x-y plane, and a scaling and translation
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Image Intensity

(between pixel

values obtained

using bilinear in-

terpolation)

X2 JC3JC4

Figure 6 : Intensity information is gathered at each point

in the / direction. A least squares technique can be used to align any two sets of la-

belled points, to minimise the distance between equivalent points on different

shapes. An iterative approach can be used to align together a whole set of shapes.

Every shape is first aligned with the first shape in the set. The mean is calculated,

and this is also aligned with the first shape. Each shape is then re-aligned with the

mean, and the mean recalculated and aligned with the first shape. After a few iter-

ations the process converges.

Each structure is then represented by a set of aligned points, fa, y,, U), which can be

formed into a single 3n dimensional vector :

where X. is a proportionality constant to allow for x andy being measured in different

units to the grey-level intensity.

We apply a Principal Component Analysis to the set of example vectors. This in-

volves calculating the mean and the covariance matrix about that mean. The eigen-

vectors of the covariance matrix corresponding to the largest eigenvalues describe

the main ways in which the samples vary from the mean. Every example can be ap-

proximated using

x + Pb (2)x =

where x

P

is the mean set of points,

is a 3n x t matrix, the columns of which are the t orthonormal unit eigen-
vectors of the covariance matrix corresponding to the largest eigenva-
lues. Each column describes a mode of shape variation in the data, the
first being the most significant,

b is a set of t model parameters.

By varying the model parameters b = (bj , b2 ,... bt) within certain limits which can

be learnt from the statistics of the training set, we can generate new examples of the

3-D shape, similar to those in the training set. Varying each parameter causes

changes to both the position of each landmark and the intensity value at that land-

mark.

Given such a 3-D shape x we can generate the image structure it represents by plot-

ting /, at each point fa, yi). If necessary we can interpolate between landmark points

on the 3-D surface to fill in internal grey-levels in the 2-D image structure.
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3 Examples of Models

3.1 Model of Eye

A model was trained on 10 examples of images of a left eye taken from a series of

images of one persons face (Figure 1). Nine landmarks were placed on each image,

as shown in Figure 2. The sets of points were aligned and the mean shape calculated.

The triangulation algorithm was applied, and points were interpolated along each

arc. This was repeated twice to get a total of 345 points. Equivalent sets of points

were interpolated for each of the 10 examples. At every point in each example the

intensity was sampled (using bilinear interpolation) and a model was built from this

data. The relative importance of intensity to x,y values, X, was set at 0.25.

Figure 7 shows the mean appearance. Figure 8 shows the effects of varying each of

the first four model parameters by ± 4.0 standard deviations of their values across

the training set. Changing the parameters varies both the shape of the model and

the intensities across its area (though the effect is subtle in this example). For in-

stance the first parameter varies the overall brightness of the iris, and controls the

intensity of the highlight in the upper right area. The third parameter varies the

shape of the model, with only small changes in intensity. The examples in the original

training set are all quite similar, so there is little variation in the model.

Figure 7: Mean model instance

3.2 Model of Banana

In order to examine the ability of the model to capture both shape changes and vari-

ations in grey-levels due to changes in lighting conditions, several images were taken

of a set of bananas, illuminated by spotlights from different directions (Figure 9). The

bananas were selected from several bunches (though all were from the same planta-

tion). 33 points were marked on each banana in each training image. A triangulation

was applied to the mean shape, and two iterations of the interpolation procedure

were used on each example to produce 369 points. A model was trained on these,

with the relative importance of intensity tox,y values, X=0.25. Figures 10 to 12 show

the effects of varying the first 5 model parameters between ± 4.0 standard deviations

of their values across the training set. Mode 1 (Figure 10) mainly affects the shape

of the model. Other modes combine small shape variations with shading variations.

Mode 2 (Figure 11) shows the effect of the illumination coming from different sides

and mode 3 (Figure 12) shows a general lightening and darkening.
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t = -4oi

(Contrast variation + small shape change)

(Variation in highlight on top right)

(Shape change)

Figure 8 : Effect of varying each of first four model parameters of eye model

within ±4 standard deviations (other parameters being set to zero).

Figure 9 : Some of the bananas used to train

model.

Figure 10 : Effect of varying the first model parameter within ±4.0 s.d.s.

(All others 0) (Shape and overall intensity change)
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Figure 11 : Effect of varying the second model parameter within ±4.0 s.d.s.

(All others 0) (Illumination angle change)

Figure 12 : Effect of varying the third model parameter within ±4.0 s.d.s.

(All others 0) (Shape change)

4 Using Models in Image Search
Image search usually involves finding the translation, rotation, scale and model

shape parameters required to give the best fit between a model instance and the

target structure in the image. This requires a definition of the 'quality of fit'.

Suppose the current instance of the model in its local co-ordinate frame is given by

x (generated from the shape parameters, b, using Eq. 2). The the positions of the

points in the image frame is given by

X = M(s,e,sz)[x] + X, (3)

where Xc = (xa Yc, na ..., Xc, Yc, A/C)
r

M(s, 6, sz)[.] performs a rotation by#, a scaling in x-y by s and a scaling

in / by sz.

(XC,YC,XIC) is the position of the centre of the model in the image

frame.

If the image intensity at (x,y) is I(x,y) then we can measure the quality of fit of a model
instance using

F
 = - (4)

By minimising F we find the best fit of the model to the image.

4.1 Global Search using a Genetic Algorithm

One approach to this minimisation is to use a Genetic Algorithm (GA) to search the

parameter space (Xc, Yc, IC6, s, sz, bu ..., b,). The GA controls a set of many possible

solutions, and combines pairs of promising ones to improve the overall quality. After
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a number of generations the solutions converge to an estimate of the global optimum

solution [13].

We have implemented a version of the GA to choose the model parameters which

minimise F for a given image, hopefully locating instances of the model in the image.

For instance Figure 13 shows the location of the best fitting model found using the

Genetic Algorithm to search around the vicinity of the eye in a new image (A popula-

tion of 50 was used, and about 50 generations were required for the results shown).

Figure 14 shows the appearance of this best fitting model. It demonstrates that as

well as locating the position of the eye, the model has fitted itself to the intensity

pattern, for instance showing the highlight in the upper right area of the iris.

Figure 13 : Location of model found by Figure 14 : Appearance of best

Genetic Algorithm search. fitting model.

5 Discussion and Conclusions
The method we describe gives a way of generating a flexible model which combines

both the shape and grey-level appearance of structures in an image. The model re-

cords both the mean appearance of the structure and the ways its shape and grey-

levels can vary, based on the original training examples. Although not clearly dem-

onstrated above, we believe it will be able to model the way that variations in shape

cause variations in shading.

An alternative approach to modelling shape and grey-level appearance is to use

independent models for each. Craw and Cameron [14] and Lanitis et al [15] both

first locate a set of landmarks in an image, then deform the image so that the land-

marks move to their mean model positions. Statistical models are built from the

grey-levels in important areas of the deformed images. In this approach the inde-

pendence of the shape of the object from the grey-levels means that relationships

between shading and shape may not be effectively captured.

The choice of the parameter relating grey-level values to x-y coordinates, A., is not

easy. Large values of X give priority to variations in grey-level appearance - the first

modes will be predominantly intensity variations. Small values give priority to shape

variations - the first modes will vary shape. The choice of the most suitable value

will depend on the nature of the application. If discrimination between different ob-

jects is required, X. should be set so as to bring out the most discriminating modes

of variation, whether they be predominantly shape or intensity based. It should be

possible to choose a value for X. depending upon the amount of variation in the train-

ing set.



487

We have demonstrated that the models can be used to locate structures in images

using a Genetic Algorithm to control the search. Since the new models include more

information than our earlier models representing the shape and grey-levels in re-

gions around the boundary [ 12], it is hoped that they may provide a more robust esti-

mate of object location.
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Appendix A : Triangulation Algorithm

We require a triangulation of a set of points, with the restriction that the connecting

arcs should not stray outside a (possibly concave) boundary. Standard techniques (eg

Delaunay triangulation) will fill in concave sections to produce a convex hull.

We implemented a variation of the greedy triangulation algorithm. This is not the

most efficient approach, but is relatively simple, and in our problem speed is not too

important, since the triangulation is only done once, during the training stage.

We assume that we have a set of n points, and that the boundary of the set of points

is defined by a series of arcs, marked clockwise between the external points (Figure

15).

Invalid arc.

Boundary

TMdarc

Valid region

Boundary: 0-1-4-7-6-0

Figure 15 : A set of points with boundary Figure 16 : Any arc to be added at a
marked clockwise. boundary must lie inside the boundary.

We first calculate the lengths of the n(n-l)l2 possible connecting arcs between the

points, nj. This list is sorted into ascending order. The arcs defined in the boundary

are recorded as the initial set of arcs. Each arc in the sorted list, starting with the

shortest, is then examined to see if it is suitable for adding to this set of arcs. It is

accepted if

• It intersects none of the current set of arcs, except at a point.

• It does not lie outside the boundary.

The second criterion need only be checked if both ends of the arc are boundary

points. If one is not, the arc must cross a boundary arc and will fail the first test.

To test whether an arc lies inside the boundary, one need only check that its angle

is inside a range defined by the two boundary arcs at one of the end points (Figure

16).
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The algorithm terminates when all possible arcs have been considered. The set of

arcs which were accepted defines the triangulation.
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