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Dynamics using Kane’s method
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Abstract Dynamic behaviour of parachutes is highly complex and characterised by non-

linear, time dependant Fluid Structure Interaction, which is computationally intensive and

hence not a viable option for incorporating into trajectory simulations. The paper describes

modelling of ”Computationally efficient, High Fidelity Multi-Body” Parachute - Elastic

Riser - Payload system, capable of simulating trajectory from parachute deployment to

parachute separation. The differential equations of motion, including the kinematical and

kinetic relationships are derived using the matrix form of Kane’s method, which avoids

the typical complexity involved in symbolic derivations, available in published literature.

The developed model is validated with published literature results formulated using Newton

Euler method and simulation results demonstrating the typical characteristic motion of the

system during descend are presented.

Keywords Multi-body dynamics · Parachute Riser Payload System · Kane’s method ·
generalized coordinates · Parachute opening transients · Equations of motion

1 Introduction

Parachute systems are widely used in various fields nowadays, such as spacecraft recovery,

planet probe landing and rapid aerial delivery of equipment and supplies [10]. A typical de-

celeration system for spacecraft recovery consists of clustered parachute system comprising

of different kinds of parachutes, which deploy in a predetermined sequence to bring down

the velocity of spacecraft to safe levels at the instance of splash-down whilst maintaining

the stability of the system.

Available literature like Fallon(1991) [2], Guglieri(2012) [4], Ibrahim and Engdahl(1974)

[8] and Paul et al.(2016) [13], have modelled multi-body Parachute Payload system using

Newton-Euler method with varying degrees of freedom and validated their model with actual

flight data. But this formulation involves deriving the internal constraint forces, which tends
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to become tedious when the complexity of system increases, as in case with multi-chute sys-

tem. Analytical methods like Euler-Lagrange method on the other hand requires calculating

the derivatives of a scalar Lagrange term, which can be very complex for large systems and

can lead to the issue of intermediate swell as reported by Duan(2006) [1]. Kane’s method

is extensively used in the literature to model multi-body systems, attributable to its use of

generalized speeds. It results in a simplistic vectorial form of equations of motion involving

partial velocity and accelerations, describing the system on a whole and eliminating the need

of deriving constraint forces and moments. Stoneking(2013) [15] has presented an alterna-

tive matrix form of Kane’s equation which is amenable to be used numerically, facilitating

the modelling of multiple interconnected bodies. But, matrix expressions to model variable

mass systems is not provided, which has been adressed in this paper.

Ke et al.(2009) [10] presented an algorithm to model and simulate the general parachute-

payload system including the parachute opening transients and contact forces, using the an-

alytical form of Kane’s equation. This paper describes the modelling of a Parachute Riser

Payload System (PRPS) consisting of rigid payload and rigid parachute linked using an

elastic riser having a non-zero mass using matrix form of Kane’s equation. This high fi-

delity model is capable of simulating the parachute dynamics from parachute deployment

till parachute separation, including the parachute opening transients where the PRPS acts

as a constant mass system with variable mass bodies. Analytical expressions for fore-body

wake effects and energy modifications due to apparent mass have also been included to make

the model more realistic.

1.1 Notations

The notations used in this paper for representation of vector quantities in different reference

frames are stated below, following the standards used in Pal(2020) [12].

– BCA denotes the Direction Cosine matrix of frame A with respect to frame B.

– Cω⃗A/B and Cα⃗A/B denote the angular velocity and angular acceleration respectively of

frame A with respect to frame B expressed in frame C.

– C r⃗p/o, C v⃗p/o and Ca⃗p/o denote the position, linear velocity and acceleration vectors of

the point p from point o expressed in the frame C.

– AF⃗B
name is the force vector identified with name acting on body B expressed in the frame

A.

– The moment vector denoted as AM⃗
B/o
name, is the moment vector identified with name acting

on body B about the point o, expressed in the frame A.

2 Kane’s Method for Variable Mass Systems

Hurtado(2018) [7] derived the Lagrange-Cayley equations for variable mass systems from

first principles, considering the kinematic relationships due to mass variations. For a vari-

able mass multibody system, consisting of Nb rigid bodies with n degrees of freedom, the

system dynamics in Kane’s form is developed as a set of scalar equations following Kane
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and Levison(1985) [9], extended from Hurtado formulation using d’Alembert principle.

Nb

∑
k=1

[

ω⃗k
r ·

(

M⃗k − Ikα⃗k − İkω⃗k − ω⃗k×Ikω⃗k

)]

+
Nb

∑
k=1

[

v⃗k
r ·
(

F⃗k −mka⃗k − ṁk⃗vk

)]

+
Nb

∑
k=1

[

∑
j

(

v⃗k
r, j ·

(

f⃗ j,k − ṁ j,k⃗v j,k

))
]

= 0,

r = 1,2, . . . ,n

(1)

where M⃗k and F⃗k are the active moments and forces acting on kth body respectively. ω⃗k
r and

v⃗k
r are the partial angular velocity and partial linear velocity of the kth body with respect to

the rth generalized speed. α⃗k and ω⃗k are the angular acceleration and angular velocity of the

kth body about its CG, and a⃗k and v⃗k are the respective linear acceleration and linear velocity

of the CG. mk defines the mass, and Ik defines inertia tensor of the kth body in its own body

axis with respect to the CG. v⃗k
r, j is the partial linear velocity of the ejected mass from jth

ejection location of kth body with respect to the rth generalized speed, f⃗ j,k is the force acting

on the jth ejected mass from kth body and v⃗ j,k is the inertial velocity of the jth ejected mass

from kth body.

Stoneking(2013) [15] styled the matrix form of Kane’s formulation for a constant mass

rigid body system. This is extended to include variable mass effects, consistent with Equa-

tion 1 as

(
Ω T [I]Ω+V T [m]V

)
u̇ =

Ω T
(

{M}−[I]{αr}− ˙[I]{ω}−{ω}×[I]{ω}
)

+V T
(

{F}− ˙[m]{v}−[m]{ar}
)

+V T
EJ

(

{FEJ}− ˙[MEJ ]{vEJ}
)

(2)

where, Ω and V are the partial angular and linear velocity matrices, αr and ar are the re-

mainder angular acceleration and linear acceleration respectively, ω and v are the angular

velocity and linear velocity vectors, F and M are the multi-body force and moment matri-

ces, m and I are the multi-body mass and inertia matrixces and u⃗ is the column matrix of

the generalized speeds. VEJ represents the partial linear ejection velocity matrix, FEJ is the

ejected mass force matrix and MEJ is the generalized multibody ejection mass matrix.

VEJ defined in Equation 2 is a 3 dimensional array, which can result in computationally

intensive multiplication operation. Hence, a generalized reaction thrust generated as a direct

consequence of mass variation is added in M⃗k and F⃗k matrices, as described in Ge et al.(1982)

[3], simplifying Equation 2 as

(
Ω T [I]Ω+V T [m]V

)
u̇ =

Ω T
(

{M}−[I]{αr}− ˙[I]{ω}−{ω}×[I]{ω}
)

+V T
(

{F}− ˙[m]{v}−[m]{ar}
)

(3)
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3 Mathematical Modelling

3.1 Modelling of Parachute Riser Payload System

The 3-body PRPS presented in this paper is illustrated in Fig. 1, with O1, O2 and O3 being

the CG’s of payload, riser and parachute respectively. An elastic riser is attached to the pay-

load (at riser attachment point) on one end using a universal joint J1 and to the parachute (at

parachute confluence point) on other end with a spherical joint J2. From J2, the suspension

lines of the parachute fork out, with a semi oblate spheriod canopy attached to it, forming

the rigid body parachute.

The following assumptions are considered while modelling the PRPS:

– The aerodynamic forces generated by suspension lines and riser are considered negligi-

ble.

– The forces resulting from twisted risers and distortion of the shape of the parachute

canopies are neglected.

– The aerodynamic centres of pressure remain on the axes of symmetry of the vehicle and

the parachute, but do not necessarily coincide with the centre of mass those bodies.

– Trajectory simulations are carried out considering flat earth assumption.

3.2 Coordinate Frames

The reference frames used in modelling the PRPS, as illustrated in Fig. 1, are described

below:

– Inertial reference frame N (XN ,YN ,ZN) - This Newtonian reference frame is selected

as Launch Point Inertial (LPI) frame. The origin is fixed at time t = 0 on the Earth’s

surface directly below the Payload CG. The XN axis is along the local vertical pointing

away from the ground, ZN lies in the horizontal plane making an angle ψL with local

north and YN axis completes the right-handed coordinate system.

– B1 frame (XB1,YB1,ZB1) - This reference frame is attached to the Payload at its CG O1.

The XB1 axis is along the longitudinal axis and positive towards apex cover, ZB1 axis

is in the horizontal plane and pointing towards the hatch and YB1 axis completes the

right-handed coordinate system.

– B2 frame (XB2,YB2,ZB2) - This reference frame is attached to the riser at its CG O2 with

the XB2 axis along the length of the riser pointing towards parachute confluence point

J2.

– B3 frame (XB3,YB3,ZB3) - The reference frame is attached to the Parachute at its CG O3.

The XB3 axis is along the longitudinal axis of the parachute pointing towards the canopy.

3.3 Vector of Generalized Coordinates and Speeds

The degrees of freedom for this multi-body system is designated as.

– Payload is represented as a rigid body having 6 degrees of freedom - 3 translational

degrees of freedom in the inertial space, given by N r⃗0 = (x0,y0,z0) and 3 rotational

degrees of freedom about the CG O1, denoted by rotation angle θpay, ψpay and φpay.
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Fig. 1: Illustration of Coordinate frames and 12-DoF PRPS model

Following the rotation sequence Y −→ Z −→ X the transformation from N frame to B1

frame is represented by

N
about Y
−−−−→
by θpay

B′
1

about Z
−−−−→
by ψpay

B′′
1

about X
−−−−→
by φpay

B1

– The riser B2 has 2 rotational degrees of freedom about the joint J1, denoted by the joint

angles θriser and ψriser and 1 translational degree of freedom due to its elastic property

i.e. Lriser. Following the rotation sequence Y −→ Z the transformation from B1 frame to

B2 frame is represented by

B1
about Y
−−−−→
by θriser

B′
2

about Z
−−−−−→
by ψriser

B2

– Parachute B3 is considered a rigid body having 3 rotational degrees of freedom about the

joint J2, denoted by the joint angles θpar, φpar and ψpar. Following the rotation sequence

Y −→ X −→ Z, the transformation from B2 frame to B3 frame is represented by

B2
about Y
−−−−→
by θpar

B′
3

about X
−−−−→
by φpar

B′′
3

about Z
−−−−→
by ψpar

B3

Based on the 12 degrees of freedom of the system, the selected generalized speeds is

represented as a column vector as follows:

u⃗ = [ω⃗1,σ2,σ3, v⃗1, L̇riser]
T (4)
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where,

ω⃗1 =







ppay

qpay

rpay






, σ2 =

{
θ̇riser

ψ̇riser

}

, σ3 =







θ̇par

φ̇par

ψ̇par






, v⃗1 =







ẋ0

ẏ0

ż0







3.4 Derivation of Equations of Motion

The transformation matrices between the various frames is computed from the described

Euler angle sequences in section 3.3, using methodology as mentioned in Henderson(1977)

[6].

The relative angular body rates of each of the bodies can be represented in terms of the

joint angular rates (σ ) using the system kinematics.

B1ω⃗B1/N = ω⃗1 (5a)

B2ω⃗B2/B1 = Γ2σ2 (5b)

B3ω⃗B3/B2 = Γ3σ3 (5c)

where,

Γ2 =





sinψriser 0

cosψriser 0

0 1



 ,Γ3 =





cosφpar sinψpar cosψpar 0

cosφpar cosψpar −sinψpar 0

−sinφpar 0 1



 (6)

The angular velocities of the 3 bodies B1, B2 and B3 with respect to the inertial N frame

expressed in their respective body frames can be derived as:

B1ω⃗B1/N = ω⃗1 (7a)

B2ω⃗B2/N = B2CB1B1ω⃗B1/N + B2ω⃗B2/B1

= B2CB1ω1 +Γ2σ2

(7b)

B3ω⃗B3/N = B3CB2B2ω⃗B2/N + B3ω⃗B3/B2

= B3CB1ω1 +
B3CB2Γ2σ2 +Γ3σ3

(7c)

Equation (7) can be grouped together into a system of identities to form the partial

angular velocity matrix Ω .





B1ω⃗B1/N

B2ω⃗B2/N

B3ω⃗B3/N



=





I3×3 03×2 03×3 03×3 03×1
B2CB1 Γ2 03×3 03×3 03×1
B3CB1 B3CB2Γ2 Γ3 03×3 03×1





︸ ︷︷ ︸

Ω

u⃗ (8)

Subsequently, the angular acceleration of the each of the bodies Bi , i = 1,2,3 with

respect to frame N expressed in their corresponding body frame can be derived, as mentioned

in Pal(2020) [12]:

B1α⃗B1/N = B1 ˙⃗ωB1/N (9a)

B2α⃗B2/N = B2CB1B1 ˙⃗ωB1/N +Γ2σ̇2 +
B2α⃗

B2/N
r (9b)

B3α⃗B3/N = B3CB1B1 ˙⃗ωB1/N + B3CB2Γ2σ̇2 +Γ3σ̇3 +
B3α⃗

B3/N
r (9c)
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where B2α⃗
B2/N
r and B3α⃗

B3/N
r are the remainder angular acceleration following the ter-

minology of Stoneking(2013) [15], and Γ̇2 and Γ̇3 are the time derivatives of Γ2 and Γ3 re-

spectively.

B2α⃗
B2/N
r = Γ̇2σ2 +

(
B2CB1 ω⃗1

)
× B2ω⃗B2/B1 (10a)

Γ̇2 =





ψ̇riser cosψriser 0

−ψ̇riser sinψriser 0

0 0



 (10b)

B3α⃗
B3/N
r = B3α⃗

B2/N
r + Γ̇3σ3 +

(
B3ω⃗B2/N

)

× B3ω⃗B3/B2 (10c)

Γ̇3 =





−φ̇par sinφpar sinψpar + ψ̇par cosφpar cosψpar −ψ̇par sinψpar 0

−φ̇par sinφpar cosψpar − ψ̇par cosφpar sinψpar −ψ̇par cosψpar 0

−φ̇par cosφpar 0 0



 (10d)

Next, the position of the points O1, J1, O2, J2 and O3 are derived with respect to n, a

point fixed in the inertial frame N expressed in the inertial frame.

N r⃗O1/n = N r⃗0 (11a)

N r⃗J1/n = N r⃗O1/n +NCB1B1r⃗J1/O1 (11b)

N r⃗O2/n = N r⃗J1/n −NCB2B2r⃗J1/O2 (11c)

N r⃗J2/n = N r⃗O2/n +NCB2B2r⃗J2/O2 (11d)

N r⃗O3/n = N r⃗J2/n −NCB3B3r⃗J2/O3 (11e)

where,

– B1r⃗J1/O1 is derived based on riser attachment point on the payload.

– B2r⃗J1/O2 and B2r⃗J2/O2 satisfy the following equation assuming that the riser has a uniform

mass distribution





Lriser
2

0

0



=−B2r⃗J1/O2 = B2r⃗J2/O2 (12)

– B3r⃗J2/O3 is worked out based on the Parachute center of mass, which has been derived

as per Ibrahim and Engdahl(1974) [8] assuming the parachute canopy as a semi-oblate

spheriod with height h, radius r and mass mC, and suspension lines having length Ls and

mass mL.

B3r⃗J2/O3 =





−Lcm

0

0



=





− (mLLcms)+(mCL1)+(mIL1)
mL+mC+mI

0

0



 (13)

where, Lcm is center of mass of parachute which is derived considering the included mass

of the canopy mI =
2
3
ρπr2h, density of atmosphere ρ and center of mass of suspension

lines of parachute Lcms.

Lcms = (0.5Ls cos(sin−1(
r

Ls

))) (14)
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Now, the velocity of the CG’s for each of the bodies expressed in the inertial frame N

can be derived as in Equation (15). The angular velocities of the bodies can be expanded in

terms of generalized speeds as mentioned in Equation (7) and then, Equation (15) can be

grouped to form the partial velocity matrix V , derived in Equation (16).

N v⃗O1/n = v⃗1 (15a)

N v⃗O2/n = N v⃗O1/n +
(

N r⃗O1/O2×NCB1B1ω⃗B1/N
)

+
(

N r⃗J1/O2×NCB2B2ω⃗B2/B1
)

+NCB2 L̇riser

2

(15b)

N v⃗O3/n = N v⃗O1/n +
(

N r⃗O1/O3×NCB1B1ω⃗B1/N
)

+
(

N r⃗J1/O3×NCB2B2ω⃗B2/B1
)

+
(

N r⃗J2/O3×NCB3B3ω⃗B3/B2
)

+NCB2L̇riser

(15c)





N v⃗O1/n

N v⃗O2/n

N v⃗O3/n



=






03×3 03×2 03×3 I3×3 03×1

Nr
O1/O2
×

NCB1 Nr
J1/O2
×

NCB2Γ2 03×3 I3×3
NCB2/2

Nr
O1/O3
×

NCB1 Nr
J1/O3
×

NCB2Γ2
Nr

J2/O3
×

NCB3Γ3 I3×3
NCB2






︸ ︷︷ ︸

V

u⃗ (16)

Nr
J1/O2
× and other similar terms in Equation (16) are skew-symmetric matrices of vec-

tors, which equivalently perform cross product of the given vector with some other vector.

Next, the accelerations of the points O1,O2 and O3, are expressed as

N a⃗O1/n =N ˙⃗v1 (17a)

N a⃗O2/n =N a⃗O1/n

+NCB1B1 ˙⃗ωB1/N×N r⃗O2/O1

+NCB2Γ2σ̇2×
N r⃗O2/J1

+Nω⃗B2/N×NCB2L̇riser

+N a⃗
O2/n
r

(17b)

N a⃗O3/n =N a⃗O1/n

+NCB1B1 ˙⃗ωB1/N×N r⃗O3/O1

+NCB2Γ2σ̇2×
N r⃗O3/J1

+NCB3Γ3σ̇3×
N r⃗O3/J2

+2×Nω⃗B2/N×NCB2L̇riser

+N a⃗
O3/n
r

(17c)
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where the remainder acceleration N a⃗
O2/n
r and N a⃗

O3/n
r are

N a⃗
O2/n
r =NCB2B2α⃗

B2/N
r ×N r⃗O2/J1

+Nω⃗B1/N×
(

Nω⃗B1/N×N r⃗J1/O1

)

+Nω⃗B2/N×
(

Nω⃗B2/N×N r⃗O2/J1

)

(18a)

N a⃗
O3/n
r =N a⃗

O2/n
r

+NCB2B2α⃗
B2/N
r ×N r⃗J2/O2

+NCB3B3α⃗
B3/N
r ×N r⃗O3/J2

+Nω⃗B2/N×
(

Nω⃗2/N×N r⃗J2/O2

)

+Nω⃗B3/N×
(

Nω⃗B3/N×N r⃗O3/J2

)

(18b)

Nω⃗B1/N =NCB1 B1ω⃗B1/N

Nω⃗B2/N =NCB2 B2ω⃗B2/N

Nω⃗B3/N =NCB3 B3ω⃗B3/N

(18c)

The active forces and moments acting on the system are the gravitational force, aerody-

namic forces and moments, and forces and moments due to elasticity of the riser. Further-

more, during the parachute deployment and inflation phase, an additional generalized thrust

is also added to cater to the effects due to variable mass, as described in Ge et al.(1982) [3].

Following the expressions of the translational and rotational accelerations, the active forces

are expressed in the inertial frame, while the active moments are expressed in the frames of

the bodies on which they act, about their respective centres of gravity.

For body B1 i.e. payload, the active forces and moments acting are

N F⃗B1 = N F⃗
B1
G +N F⃗

B1
A +N F⃗

B1
S +N F⃗

B1
JD (19a)

B1M⃗B1/O1 = B1M⃗
B1/O1

A + B1M⃗
B1/O1

S + B1M⃗
B1/O1
JD (19b)

For body B2 i.e. riser, the active forces and moments acting are

N F⃗B2 = N F⃗
B2
G (20a)

B2M⃗B2/O2 = 03×1 (20b)

and for body B3 i.e. parachute, they are

N F⃗B3 = N F⃗
B3
G +N F⃗

B3
A +N F⃗

B3
S +N F⃗

B3
GT (21a)

B3M⃗B3/O3 = B3M⃗
B3/O3

A + B3M⃗
B3/O3

S (21b)

where, F⃗G, F⃗A, F⃗S and F⃗JD are the gravitational force, aerodynamic force, elastic spring force,

and jet damping force respectively, and M⃗A, M⃗S and M⃗JD are the aerodynamic moment,

spring moment and jet damping moment respectively.
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Under the assumption of flat Earth, the gravitational forces in the inertial frame N can be

written as

N F⃗
Bi
G =







−mig

0

0






(22)

where, mi is the mass of body Bi, i = 1,2,3, and g is the acceleration due to gravity.

The spring force caused by elasticity of the riser is computed in the riser body frame B2

as

B2F⃗
B3
S =−B2F⃗

B1
S =







K(∆Lriser)−ζ L̇riser

0

0






(23)

where, K and ζ are the spring constant and damping constant for the elastic riser.

F⃗GT is the generalized thrust added to the parachute to cater to the variable mass effects

during the deployment and inflation phase as described in Ke et al.(2009) [10], with the

equation as

B3 F⃗
B3
GT =







ṁl̇

0

0






(24)

The aerodynamic forces and moments acting on the payload and the parachute CG’s (i =
1,3) expressed in their corresponding body frames as:

BiF⃗
Bi
A =







CA,iQiSi

CS,iQiSi

CN,iQiSi






, BiM⃗

Bi/Oi

A =







CRM,iQiSiLi

CPM,iQiSiLi

CY M,iQiSiLi






+Bi rOi/CPi ×Bi F⃗

Bi
A (25)

where Si is the reference area, Li is the reference length and Qi is the dynamic pressure

of the ith body. Since, the payload acts as a forebody to the parachute, Qpar would not

be the freestream dynamic pressure. Hence, a simplistic model as given in Peterson and

Johnson(2013) [14] is incorporated to simulate the wake effects, which consists of empirical

constants (a,k,m and n) proposed by Heinrich and Eckstrom(1963) [5].

Qpar = Q∞ ×

(

1+

(
2

r2

D1

D2

[

1− eD2r2

+
D1

4
e2D2r2

−
D1

4

]))

(26)

where,

D1 =
a

(Z/DB)m
and D2 =

−1

0.435k2(Z/DB)2n
(27)

To form the system of differential equations, Ω and V matrices are derived in Equations

(8) and (16) respectively. The remaining terms [m], [I], {ω}, {αr}, {ar}, {F} and {M} are



Modelling of 12-DoF PRP System using Kane’s method 11

derived as follows:

[m] =





m1I3×3 0 0

0 m2I3×3 0

0 0 (m3 +m3A)I3×3



 , [I] =





IB1/O1 0 0

0 IB2/O2 0

0 0 IB3/O3



 (28a)

{ω}=







B1ω⃗B1/N

B2ω⃗B2/N

B3ω⃗B3/N






, {αr}=







B1α⃗
B1/N
r

B2α⃗
B2/N
r

B3α⃗
B3/N
r







, {ar}=







N a⃗
O1/n
r

N a⃗
O2/n
r

N a⃗
O3/n
r







(28b)

{F}=







N F⃗B1

N F⃗B2

N F⃗B3






, {M}=







B1M⃗B1/O1

B2M⃗B2/O2

B3M⃗B3/O3






(28c)

where, IB1/O1 , IB2/O2 and IB3/O3 are the inertia matrices in their body frames about the

respective centres of gravity O1, O2 and O3, and m3A is the apparent mass of the parachute.

– m3A is computed considering the potential flow around the semi oblate spheriod geom-

etry of the canopy as described in Kidane(2009) [11]:

m3A =
α0

2−α0

2

3
ρπr2h (29a)

α0 = r2h

∫ ∞

0

dλ

(h2 +λ )(r2 +λ )
√

(h2 +λ )
(29b)

– IB1/O1 is the inertia tensor of the payload which is an input.

– IB2/O2 can be computed assuming riser to be a uniform cylindrical rod of infinitesimally

small radius, which would result in

IB2/O2 =






0 0 0

0
m2L2

riser
12

0

0 0
m2L2

riser
12




 (30)

– The Inertia tensor for the parachute i.e. IB3/O3 is derived as expressed in Ibrahim and

Engdahl(1974) [8].

IB3/O3 =





Ixx 0 0

0 Iyy 0

0 0 Izz



 (31)

where,

Ixx =
1

12
mLL2

s sin2(sin−1(
r

Ls

))

+
2

3
mCr2

+0.063ρR5
0

(32a)

Izz = Iyy =
1

12
mLL2

s cos2(sin−1(
r

Ls

))+mL(Lcms −Lcm)
2

+
1

3
mC(h

2 + r2)+m1A(L1 −Lcm)
2

+m1A(L1 −Lcm)
2 +0.042ρR5

0

(32b)
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All the above terms are finally assembled into Equation 3, to form the system of differ-

ential equations describing the dynamics of Parachute-Riser-Payload System.

4 Results and Validation

The numerical simulations of the formulated model are described in this section. The sys-

tem of differential equations derived in Equation 3 is solved at each instant using the LU-

decomposition solver implemented in C++ to get the generalized accelerations ˙⃗u. These are

integrated using the Runge-Kutta 4th order scheme to obtain the generalized speeds u⃗ which

involves the attitude and position of the payload and the joint angles for riser and parachute.

The formulated model is validated by modelling the SRB parachute recovery system using

Newton-Euler formulation as described in Ibrahim and Engdahl(1974) [8] and subjecting

the system to a 20 deg pendulum disturbance at an altitude of 1800m and initial downward

velocity of 60m/s. Furthermore, the reference literature assumes riser to be a massless body

which transmits only axial forces to the attachment points, which has been modelled by

forcing mriser to be an extremely small value. Additionally, the literature also considers sim-

ulation starts at the time instance when the parachute is fully deployed and inflated. The

simulation has been carried out assuming flat earth model and altitude based density varia-

tion considering the Indian Standard Atmosphere. Table 1 gives the system parameters used

for validation.

Table 1: Parameters used in validation simulation

Parameters Value

g 9.80665 m · s−2

m1 69321 kg

m2 1×10−6 kg

m3 2210.991 kg

mC 1020.121 kg

mL 1190.87 kg

I
B1/O1
xx 2259151 kg ·m2

I
B1/O1
yy 9667065.6 kg ·m2

I
B1/O1
zz 9667065.6 kg ·m2

B1 r⃗J1/O1 (25,0,0) m

Lriser 20.1 m

Ls 82.5 m

L1 93 m

R0 18.5 m

h 12.675 m

r 14.04 m

The aerodynamic coefficients of SRB and parachute are given in polynomial form de-

scribed in Equation 33, with the polynomial coefficients as mentioned in Ibrahim and En-

gadhl(1974) [8] and tabulated in Table 2.

CA/N/PM =
N

∑
i=0

pi ∗α i (33)
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Table 2: Polynominal Coefficients for Aerodynamics Modelling(Ref: [8])

Coefficients p0 p1 p2 p3 p4

CASRB 0.6989 0.1915E−8 12.56 −0.1682E−7 −35.59

CNSRB 0.2355E−9 3.645 −0.8473E−8 15.20 0.4432E−7

CPMSRB −0.1927 −7.032 −1.114 −12.87 33.24

CAPAR 0.5755 −0.1637E−10 −0.8091 0.3483E−10 0.4228

CNPAR 0.2172E−11 0.3795 −0.9339E−11 0.3631 0.0
CPMPAR −0.7229E−4 −0.2742 0.2576E−2 −1.271 −0.02333

Fig. 2 shows an exact match between the two formulations, validating the Kane’s for-

mulation for the system.

Fig. 2: Pitch Angles of Parachute and Payload (SRB) w.r.t Inertial Frame

Furthermore, end to end simulation from parachute deployment to separation are carried

out by modelling the parachute opening force in refeed and disreefed mode, including the

apparent mass and fore-body wake effects and considering the effects of mass variations.

The additional parameters used for this simulation have been tabulated in Table 3. Consid-

ering the canopy shape described in Table 1 and apparent mass computation as mentioned

in Equation 29b, α0 is calculated to be 0.7219587.

The motion of CG’s of parachute and payload is shown in Figure 3. During the parachute

deployment phase, the payload descends vertically because of gravity and the parachute CG

moves in lateral direction owing to the stretching of bridles and suspension lines. When infla-

tion begins, the drag builds up, and stable aerodynamic behaviour ensures the initial lateral

movement is corrected by the parachute. Post deployment process, the descend trajectory of

the payload is determined by the parachute, where the lateral movement is dependant on the

direction of wind, as Parachute drag force acts opposite to the air relative velocity vector. In

the current simulation PRPS movement is predominantly in the Eastward direction due to

higher Zonal Wind, shown in Figure 4. It is also observed that the pendulum motion under-
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Table 3: Additional Parameters used in end to end simulations

Parameters Value

B1 r⃗J1/O1 (25,1,0) m

m2 14.594 kg

tstretch 1.28 s

tin f lation 0.63 s

tree f cut delay 7.0 s

tdisree f 1.4 s

reefing ratio 0.45

Fig. 3: Trajectories of Payload and Parachute mass cen-

ters
Fig. 4: Simulation Wind

gone by the system is in a plane perpendicular to the dominant motion of the PRPS system.

The rotational states of the system from parachute deployment to splashdown is shown in

Figure 5. The inertial yaw angle of the payload, has a steady state offset from 0deg owing to

lateral offset in attachment point of riser on the payload, as tabulated in Table 3. The relative

joint angles made by riser w.r.t to payload, and parachute w.r.t riser are plotted in Figure 6,

which clearly indicates that relative motion between parachute and payload predominantly

occurs at the riser-payload joint. The total angle of attack made by the payload and parachute

have been shown in Figure 7.

Figure 8 shows the velocity profile and aerodynamic load profile for an end to end

parachute simulation. When time is less than tstretch, i.e. when the parachute and riser stretches

out of payload, aerodynamic load acting on payload is 0 and payload velocity increases due

to gravity. Once inflation begins, the velocity reduces attributable to increasing parachute

drag, and aerodynamic load first increases as a result of increasing drag of inflating parachute,

followed by exponential reduction owing to reduction in dynamic pressure (reducing veloc-

ity). Similar profile is observed when disreefing begins. After disreefing, the velocity profile

slowly converges to the terminal velocity of descend, but since the simulation considers

altitude based density variation, the velocity tends to convergence only.
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Fig. 5: Pitch Angles of Parachute and Payload w.r.t Inertial Frame (End to End Simulation)

Fig. 6: Relative Joint Angles of Bodies (End to End Simulation)
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Fig. 7: Total Angle of Attack faced by Parachute and Payload (End to End Simulation)

Fig. 8: End-to-end velocity and aerodynamic load profile
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5 CONCLUSION

The dynamics of a Single Parachute - Riser - Payload system, consisting of Parachute and

Payload sculpted as rigid bodies connected using a elastic riser with non-zero mass, is mod-

elled as 12-DoF system using matrix form of Kane’s method. A simplistic reaction thrust

based methodology is adopted to model the effects during parachute opening transient due

to mass ejection.

The modular matrix formulation of PRPS system ensures that the model can easily be

extended to cluster of parachutes, either by considering a single parachute equivalent to clus-

ter (using a cluster coefficient factor to be used in parachute aerodynamics) or by extending

the derived velocity, mass-inertia and force matrices for multiple parachutes (considering

each parachute as separate bodies and modelling the contact aerodynamics). The fidelity

provided by the above model would enable analysis of parachute dynamics especially the

cluster interactions leading to various modes during descent, optimize the loads exerted on

the payload and understand the effects on the payload trajectory.
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