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Abstract
This thesis presents methods for modelling conditional variance and uncertainty of prediction at a
query point on the basis of industrial process data. The introductory part of the thesis provides an
extensive background of the examined methods and a summary of the results. The results are
presented in detail in the original papers.

The application presented in the thesis is modelling of the mean and variance of the mechanical
properties of steel plates. Both the mean and variance of the mechanical properties depend on many
process variables. A method for predicting the probability of rejection in a quali?cation test is
presented and implemented in a tool developed for the planning of strength margins. The developed
tool has been successfully utilised in the planning of mechanical properties in a steel plate mill. 

The methods for modelling the dependence of conditional variance on input variables are
reviewed and their suitability for large industrial data sets are examined. In a comparative study,
neural network modelling of the mean and dispersion narrowly performed the best. 

A method is presented for evaluating the uncertainty of regression-type prediction at a query point
on the basis of predicted conditional variance, model variance and the effect of uncertainty about
explanatory variables at early process stages. A method for measuring the uncertainty of prediction
on the basis of the density of the data around the query point is proposed. The proposed distance
measure is utilised in comparing the generalisation ability of models. The generalisation properties
of the most important regression learning methods are studied and the results indicate that local
methods and quadratic regression have a poor interpolation capability compared with multi-layer
perceptron and Gaussian kernel support vector regression. 

The possibility of adaptively modelling a time-varying conditional variance function is disclosed.
Two methods for adaptive modelling of the variance function are proposed. The background of the
developed adaptive variance modelling methods is presented.

Keywords: joint modelling of mean and dispersion, model uncertainty, process data, tensile
properties, time-varying parameter, variance estimation, variance function, variance
heterogeneity
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Symbols and abbreviations

||x|| L2-norm of the vectorx

i.i.d. identically independently distributed

a = o(x) a is order ofx

I(x) indicator function: returns 1 ifx is true and otherwise returns 0

f (β ,xi) the regression function for the mean

g(τ,xi ,µi) the variance function

K(·) kernel function

l(·) log-likelihood function

L(·) loss function

Lλ (y) Box-Cox transformation function

V(µ) the variance function in GLM

N(µ,σ2) Gaussian distributed with expectationµ and varianceσ2

Gamma(µ,φ) Gamma distributed with expectationµ and dispersionφ
F(s) cumulative distribution function

p(s) probability density function

Φ(s) standard normal cumulative distribution

n number of training data observations

Pt the update matrix of adaptive models at timet

p number of input variables

q number of parameters in variance model

T training data set

V validation data set

wi prior estimation weight for observationi

xi thei th observation of the explanatory variable vector

X matrix of all input variable observations

xi j thei th observation of thej th input variable

Y vector of all response variable observations

yi thei th response variable observation



zi thei th input vector of variance model

β the parameter vector related to the mean function

βt the mean parameter vector at timet

ε̂i the residual of thei th observation

ηt learning rate

µi the conditional mean of thei th observation

σ2
i the conditional variance of thei th observation

τ the parameter vector related to the variance function

τt the variance parameter vector at the time momentt

φ dispersion parameter in GLM

A5 elongation in the tensile test

EQL extended quasi-likelihood

GLM generalised linear model

IWLS iteratively weighted least squares

MCMC Monte-Carlo Markov chain

ML maximum likelihood

ReH yield strength

REML restricted maximum likelihood

Rm tensile strength
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1 Introduction

1.1 Background

The purpose of regression modelling is to find out how the conditional distribution of the
response depends on the explanatory variables. In the usual approach, the conditional
distribution is derived from the distributional assumption and the predicted mean. A more
general approach is to also model the dependence of variance on the explanatory variables
and to approximate the conditional distribution using both the estimated variance and the
estimated mean. Further, the most general approach is to model the whole conditional dis-
tribution function as a function of the explanatory variables. The last approach is the most
difficult, whereas the first ones are special cases where some simplifying assumptions
about the form of the conditional distribution functions are made.

A large number of statistical methods have been developed for predicting the con-
ditional mean. It is said that the response depends on the explanatory variables via a
regression function. The true values of the regression function are not observed, because
the response observations involve a stochastic component. The learning method defines
how the regression function is presented and how its parameters are estimated.

Learning methods are often divided into parametric and non-parametric methods. In
the parametric methods, the number of model parameters is relatively small, so assump-
tions about the model structure restrict the possible regression functions. Non-parametric
methods employ so many model parameters that the regression function is practically not
at all restricted by the assumptions. The model parameters are estimated by minimising a
loss function in a training data set. The most usual loss function is the sum of the squared
errors. A penalty term is often included in the loss function to penalise complex models
and force the models to be smoother. Too complex, overfitted models do not generalise
well. Too simple models can not fully capture the interesting relationship revealed by the
data.

Statistical prediction models are commonly utilised for industrial purposes, for exam-
ple in process control, process planning and product planning. In an industrial production
process, millions of measurements of the process can be made daily. The term ‘process
data’ refers to data that are automatically measured in an industrial production process.
Process data are commonly stored and analysed for the purpose of finding some useful
information. Process data are employed to fit statistical models for predicting the con-
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ditional distribution of interesting variables. The developed models can be implemented
into the production line.

The first method for modelling the dependence of conditional variance on input vari-
ables was proposed by Bartlett & Kendall (1946). During the last decades, joint modelling
of the mean and dispersion has received more attention and modelling methodology has
been rapidly developed. In addition to growing computing power, understanding the re-
lationship between quality and variance has boosted this development. Most commonly,
joint modelling of the mean and dispersion has been used to analyse industrial quality
improvement experiments. A simple method for modelling conditional variance is het-
eroscedastic linear regression, but tens of other parametric and non-parametric learning
methods have been proposed.

1.2 Motivation

Information about dispersion is essential in prediction: The predicted mean without any
other information about distribution does not give much information about the expected
realisations of the response. The usual approach of assuming constant variance or some
relationship between the mean and variance is sometimes inadequate: The distribution of
the response can depend on the explanatory variables in a way which can not be described
meaningfully by modelling only the mean and estimating a single dispersion parameter.
A model for the dependence of variance on the explanatory parameters may be needed.

When variance depends on the process settings, the model describes the interesting
conditional distribution more accurately when the variance heteroscedasticy is also mod-
elled. The more accurate model gives additional efficiency to the industrial utilisation of
prediction models. A variance model can work as a helpful tool in actions aiming to de-
crease variance. Despite that, production line implementations of models for conditional
variance have not been reported earlier.

In process data, the numbers of both observations and variables are often large. The
modelling methods must be able to handle several input variables and large data sets.
Process data mostly consist of measurements made using the normal process settings.
For process development, it is equally important to predict well also outside the normal
process settings. The ability to generalise at the boundaries of the training data set is
therefore an important property, but methods for measuring it have not been proposed.
The interpolation abilities of different learning methods have not been studied or com-
pared.

When predictive regression models are utilised in industry, predictions are often queried
from the boundaries of the data region. For planning purposes, the benefits of the model
may be mainly in the information that the model gives from the rarely observed data re-
gion - the behaviour of the process with familiar settings is already known. Unfortunately,
the accuracy of a model is not guaranteed at the boundaries: Information about the reli-
ability of prediction is needed. Conditional variance and uncertainty of prediction are
closely related topics, and the application may determine which of them is more useful.

A successful industrial plant must develop its processes, which means that industrial
processes are changing. Changes in the process may change the relationships between
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the variables: The regression function varies over time. One of the major aims of quality
improvement is to decrease variance. Thus, variance can be expected to vary even more
than the mean. Adaptive models can adapt to time-varying changes in the regression
function. Adaptive statistical modelling of the mean is a well-known topic, but adaptive
modelling of a conditional variance function has not been studied before. In industrial
utilisation it is, however, important that the models can be kept up-to-date.

Although many methods have been proposed for joint modelling of the mean and dis-
persion, reviews and comparative studies about the different methods are missing. Also,
reported applications to large data sets are almost completely missing. Joint modelling of
the mean and dispersion has been used in industry to analyse the results of designed ex-
periments, but applications of modelling variance on the basis of process data have been
rarely reported.

1.3 Contribution

Process data-based prediction and joint modelling of the mean and dispersion are both
well-known topics that have not previously been applied together. In this thesis the two
approaches are combined. The research studies the question"How is joint modelling
of the mean and dispersion efficiently applied to industrial process data?".Modelling of
conditional variance is successfully applied to steel industry data. This thesis concentrates
on regression problems where the mean and variance of a quantitative response variable
depend on several input variables.

The main application is development of a tool for planning working allowances for
the strength of steel plates. The application utilises joint modelling of the mean and
variance to predict the probability of rejection in tensile testing. The proposed approach
is generally applicable for predicting the probability of rejection in qualification tests and
adjusting working allowances on the basis of the predicted rejection probabilities.

The existing methods for variance modelling are reviewed and their suitability to large
data sets are considered. A comparative study of the prediction accuracy of the most
important methods is conducted.

Some novel methodology related to dispersion modelling is presented. A novel neural
network approach for variance modelling is presented. A procedure for model selection
in joint modelling of the mean and dispersion is presented. A method is proposed for
estimating uncertainty of prediction at early process stages when there is uncertainty about
some explanatory variables.

Statistical prediction models allowing time-varying variance are reviewed. Two novel
algorithms are developed for adaptive modelling of conditional variance. An approach for
adaptive joint modelling of the mean and dispersion is proposed.

A method for measuring the distance of a single observation from a training data set
is proposed. It is proposed that the distance measure can be utilised in examining the
interpolation abilities of models. A comparative study about the interpolating capabilities
of learning methods is conducted.
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1.4 Summary of original papers

This thesis consists of eight publications. The publications discuss methods for modelling
conditional variance and measuring the uncertainty of prediction with applications to steel
plate data.

In original paper I, the strength of steel is modelled using linear regression and neural
networks. In original paper II, heteroscedastic linear models are applied to steel plate
data. A method for model selection in joint modelling of the mean and variance is also
proposed. It is shown that the production method has a clear effect on the variance of
strength. In original paper IV an implementation of the planning model for optimising the
working allowances of steel plates is described. The planning model utilises the developed
heteroscedastic models to predict the risk of rejection in a qualification test. It is shown
that the model of the variance of strength improves the ability of the planning model to
gain economical benefits. In original paper III, the approach developed for predicting the
probability of rejection in a qualification test is presented in a more general framework.

Original paper V is a comparative study on the suitability of different methods for joint
modelling of the mean and dispersion with large data sets. The proposed novel neural
network modelling of the mean and dispersion performed the best in the study. A short
review of the methods for joint modelling of the mean and dispersion is also given.

Several results related to evaluating the uncertainty of prediction are presented in the
original papers. A method for assessing the uncertainty of prediction at early process
stages, where complete information about input variables is not available, is suggested
in original paper III and successfully utilised with steel plate data in original paper IV.
Original paper VI presents a novel measure of the distance between the training data set
and a single observation. The distance measure reflects the uncertainty of prediction when
the observation is predicted on the basis of the data set. The distance measure is utilised in
original paper VII, where the differences between the interpolation capabilities of models
are compared. The main results of the study are that there are differences between learning
methods but, model complexity does not have a clear effect on the interpolation capability.

Original paper VIII discusses adaptive modelling of conditional variance. Two meth-
ods are proposed for adaptive modelling of the conditional variance function. An ap-
proach for adaptive joint modelling of the mean and dispersion is proposed.



2 Variance Modelling

Many methods for statistical modelling of the dependence of variance on input variables
have been developed and applied in various fields. Also, one textbook about variance
modelling has been written (Carroll & Ruppert 1988). This chapter reviews methods for
modelling conditional variance. Industrial quality improvement experiments have been
a major field of application of variance modelling: Dispersion modelling has been em-
ployed to analyse experiments designed for finding the process settings that minimise
variance under given conditions. The development of dispersion modelling has been con-
nected to quality improvement experiments, and therefore the history of quality improve-
ment methods is presented in detail.

2.1 Reasons for modelling conditional variance

Variance modelling has been justified by several reasons. The following motivations for
variance function estimation are the most common:

1. Information about variance is needed in the construction of confidence intervals and
in predicting conditional distribution. Prediction assuming constant variance pro-
duces misleading results under variance heterogeneity.

2. The efficiency of mean model estimation can be improved using weighted estima-
tion with weights proportional to the inverses of error variances. In practice, the
variances are not known and considerable attention has been paid to obtaining effi-
cient estimates of the mean with an unknown variance function.

3. In many applications variance is not a nuisance parameter, but a parameter of inter-
est. Especially in quality engineering, the purpose of data analysis can be to obtain
information about conditional variance. Small variance means good quality, and
therefore variance reduction is a desired goal in industry.

4. A model for variance is utilised in optimisation problems.

If there are enough replications from each of the design points, the variance at each
design point can be directly measured. In that case, modelling of variance is simple, and
all the usual modelling methods can be used without needing to care about the mean.
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Process data usually do not contain many replications, and thus direct measurements of
variance are not available. In practice, the mean is not known, so the mean and variance
are modelled jointly. A single observation does not give any information about variance,
and more observations are needed to model variance than the mean.

In many types of models, like generalised linear models, variance component models
and models with noise factors, the model structure implicitly defines a non-constant vari-
ance structure. A model for a transformed response also leads to non-constant variance
in the original response scale. Often the need for variance modelling can be avoided with
an appropriate selection of the model type. In regression analysis, variance stabilising
transformations of the response, for example logarithm or Box-Cox transformations, have
been widely used.

2.2 Background - Quality improvement experiments

Quality improvement on the basis of statistical analysis of designed experiments has been
an important application since the beginning of the development of industrial statistics.
The basic modelling concept was to first estimate response surfaces for the mean using
regression techniques. The process variables were then optimised on the basis of the
estimated response surface. Montgomery (1999) has written a review paper about using
experimental design for process and product development.

The importance of variance reduction as the aim of quality improvement experiments
was also understood early. Bartlett & Kendall (1946) proposed using the logarithm of the
sample variance as the response in variance modelling. Later, variance modelling became
a known and occasionally discussed topic (Park 1966, Rutemiller & Bowers 1968, Harvey
1976, Jobson & Fuller 1980, Carroll 1982). Variance modelling became a popular topic
at the end of the 1980s, when robust design was introduced to quality improvement exper-
iments in industry. Japanese engineer Taguchi introduced parameter design, later called
robust design, to reduce variation in products or processes. Taguchi’s ideas became pop-
ular and invoked much discussion among statisticians and quality engineers (Nair 1992).
The importance of variance in quality engineering was recognised, which led to the rapid
development of statistical methods for dispersion modelling. At the same time, Taguchi’s
ideas have made statistical methods better known among engineers. (Nair & Pregibon
1988.)

2.2.1 The Taguchi method

Taguchi’s philosophy aims at minimising the total cost of products. Total cost consists of
production costs and the costs for the customer. Quality can often be measured as variation
in the properties of the product. In robust design, the process variables are classified into
two categories: control factors,x, which can be easily controlled with minimal cost, and
noise factors,z, which are difficult or expensive to control. Variation in the noise factors
during the process causes variation in the outputs of the process. Robinsonet al. (2004)
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has written a review about robust design.
The basic idea in robust design is to find optimal settings for the control factors, so

that the process is insensitive to variation in the noise factors and at the same time the
process results in the desired outputs (Nair 1992). Taguchi recommended experiments
with factorial, orthogonal designs to obtain data for statistical analysis. Taguchi defined a
performance criterion called signal-to-noise ratio for measuring the quality of the process
(Taguchi 1986). For example, when the process has a fixed target value, the signal-to-
noise ratio is proportional to the logarithm of the proportion between the squared mean
and the variance

SNR= log

(
(Ey)2

var(y)

)
. (1)

At each of the design points, replications are used to measure the signal-to-noise ratio.
Then, standard analysis of the variance techniques are applied to the signal-to-noise ratio
with the purpose of identifying robust settings for control factors. (Taguchi 1987.) The
statistical efficiency of Taguchi’s analysis methods and the complexity of his experimental
design have later been criticised (Nair 1992).

Other methods for minimising variance on the basis of factorial experiments were pub-
lished. For example, Box (1988) proposed to modify Taguchi’s analysis with a power
transform of the response to make the mean and variance independent. Another proposal
was to base optimisation directly on the sample means and sample variances (Shoemaker
et al.1991).

2.2.2 The dual response surface approach

The term ’response surface’ is broadly used to mean the surface of predictions of a
regression-type model. The term ’response surface methodology’ has been used to mean
the analysis of factorial experiments using the second order polynomial

Eyi = xT
i β +xT

i Λxi (2)

response surface (Myers 1999). Response surface methodology had been intensively used
in industry. The aim is usually to optimise the control factors due to some objective.

In many applications there are two or more responses of interest. In the dual response
approach (Myers & Carter 1973), a response surface is fitted for two variables. In the basic
optimisation of a dual response system, the first response is optimised under constraints on
the other response. Vining & Myers (1990) proposed the dual response surface approach
for finding the optimal settings for control factors in the presence of noise factors. They
used the first response surface for the mean and the other for variance. In their approach
the minimisation of variance is based on the setting

yi = xT
i β +zT

i τ +xT
i Λzi + εi (3)

whereβ andτ are parameter vectors,Λ is a parameter matrix for the interactions,x is
fixed andz is random. The response surface of variance

var(yi) = (τT +xT
i Λ)cov(zi)(τT +xT

i Λ)T +σ2 (4)
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is a function of control factors. Here var(εi) = σ2 ∀i, which means variance is con-
stant if there are no interactions between control and noise factors. The optimal settings
for control factors are found using direct constrained optimisation for the dual response
surface of the mean and variance (Myerset al.1992).

Both Taguchi (1986) and Vining & Myers (1990) assume that noise variables cause
variance heterogeneity. However, variance heterogeneity often can not be explained by
uncontrollable noise factors, but variance also depends on the control factors. In that case,
a model for conditional variance has to be fitted separately.

Several regression approaches based on modelling of conditional variance have been
proposed for identifying the optimal values of the process variables. A linear variance
model fitted to the squared residuals of the mean model (Hamada & Nelder 1997, Chan
& Mak 2001) or the logarithm of squared residuals (Chan & Mak 1995) has been used
to analyse quality improvement experiments. Also, double generalised linear models
have been suggested for analysing experiments with the purpose of decreasing variation
(Nelder & Lee 1991).

2.2.3 Dual response surface optimisation

Industrial applications of dispersion modelling have often been related to optimisation of
the process settings, so the optimisation methodology related to dispersion models has
been regularly discussed (Kim & Lin 2006). Several methods have been proposed for
optimising a dual response surface

µi = µ(β ,xi)
σ2

i = σ2(τ,xi) (5)

(Fan 2000, Tang & Xu 2002, Köksoy & Dognaksoy 2003). The papers do not discuss
how the response surface of the standard deviation or variance is estimated.

There are three common optimising problems: maximising the response, minimising
the response and minimising the difference between the response and the target (Vining
& Myers 1990). Tang & Xu (2002) present a high-level general formulation that includes
some of the existing optimisation methods as special cases. Their paper also includes a re-
view of existing techniques for dual response surface optimisation. Mak & Nebebe (2003)
presented a methodology for optimising a general loss function using the mean, variance
and the conditional distribution function of standardised residuals. Carlyleet al. (2000)
gives a good review of statistical optimisation techniques related to quality engineering.

2.3 Response variables in variance function estimation

Several alternative response variables can be used in the modelling of dispersion. Usually,
a model for the mean is fitted and a transformation of the obtained residuals is used as the
response in variance function estimation.
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2.3.1 Squared residual

BecauseE(yi − µi)2 = σ2
i , the squared residualε̂2

i = (yi − µ̂i)2 is a natural response for
variance modelling. Especially in the case of a normally distributed response, squared
residuals are very attractive because of the result

ε ∼ N(0,σ2)⇒ ε2 ∼Gamma(σ2,2). (6)

The notationy∼Gamma(µ ,s) means thaty is Gamma distributed with expectationµ and
variancesµ2.

Normal distribution of an additive error term is often a reasonable assumption. Even
when the response itself is not normally distributed, some monotonic transformation of
the response can satisfy the normality assumption. The transformed response is used in
modelling, and as the result the predicted distribution in the original scale approximates
the distribution of the original response.

Rigby & Stasinopoulos (2000) proposed a method for joint modelling of the mean and
dispersion where the response is transformed using the Box-Cox transformation

Lλ (y) =
yλ −1

λ
, when λ > 0

Lλ (y) = logy, when λ = 0. (7)

The authors proposed to first estimate preliminary models for the mean and variance, and
then to find the transformation parameterλ that minimises deviance in the original scale

D(λ ) =
n

∑
i=1

[Lλ (yi)− µ̂i ]
2

σ̂2
i

+
n

∑
i=1

log(2πσ̂2
i )−2(λ −1)

n

∑
i=1

logyi . (8)

Deviance is defined to be twice the difference between the maximum achievable log-
likelihood and the log-likelihood at the maximum likelihood estimates of the parameters.
The deviance in the original scale includes the extra contribution to the likelihood from
the Jacobian of the Box-Cox transformation:(λ −1)∑n

i=1 logyi . When testing a transfor-
mationLλ for a linear mean model, the same link function for the mean should be used:
ELλ (yi) = Lλ (xTβ ). Finally, the models for the mean and variance are specified using the
optimally transformed response.

When the model is unbiased, it holds that

Eε̂2
i = σ2

i +var(µ̂i)−2cov(yi , µ̂i). (9)

Fitting a model to the mean biases the variance function estimation, because the measured
and predicted responses are correlated whenever the observation is used to fit the mean
model. It has been proposed that the bias could be corrected by using a corrected response
that takes into account the difference var(µ̂i)− 2cov(yi , µ̂i) (Carroll & Ruppert 1988).
When the fit can be expressed with a smoother matrixŶ = SY, the corrected response

ε̂2
i

1−∆i
(10)

leads to an unbiased variance function estimation scheme (Ruppertet al. 1997). Here,
∆ = (∆1,∆2, . . . ,∆n) = diag(2S−SST). The correction can be interpreted as using squared
leave-one-out residuals to eliminate the bias of mean model fitting (Cawleyet al.2004).
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2.3.2 Logarithm of residual

Heteroscedasticity of errors is usually modelled using a framework

εi = σiui , ui ∼ i.i.d., Eui = 0,var(ui) = 1. (11)

In this framework the variance of the logarithm of the squared error term is constant

var(logε2
i ) = var(logσ2

i + logu2
i ) = var(logu2

i )∀i. (12)

Thus, the dispersion parameters involved inσ2
i can be estimated using the standard least

squares method, using the logarithms of the squared residuals as the response (Harvey
1976). In the prediction it should be noticed thatE logε2

i 6= logσ2
i , for example

ε ∼ N(0,σ2)⇒ E logε2 ≈−1.27+ logσ2 (13)

(Harvey 1976). This method is quite robust, but not very efficient, can be biased and the
near-zero residuals are problematic (Carroll & Ruppert 1988).

2.3.3 Absolute residual

If it seems reasonable to assume zero median errors, median(εi) = 0, rather than zero
mean errorsEεi = 0, the absolute residuals|ε̂i | become a natural response variable (Welsh
et al.1994). Under the assumption Eq. (11) it holds thatE|εi |= cuσi where the constant
cu≤ 1 depends on the distribution ofui ’s (Dadidian & Carroll 1987). For example, under
normal distribution it holds that

ε ∼ N(0,σ2)⇒ E|ε|=
√

2σ2/π. (14)

So the variances of the absolute error terms are proportional to their squared means,

var(|εi |) = Eε2
i − (E|εi |)2 = (1−c2

u)σ
2
i = (1/c2

u−1)(E|εi |)2 , (15)

and the model can be fitted by IWLS with weights proportional to1/σ̂2
i (Carroll & Rup-

pert 1988). Another possibility is to model the deviation using the relationshipE|εi |= σi

and relax the assumptionE(ε2
i ) = σ2

i (Welshet al. 1994). Absolute residuals are more
robust to large errors than squared residuals (Carroll & Ruppert 1988).

2.3.4 Quadratic forms

Because variance can be expressed asσ2 = Ey2− (Ey)2, it has been proposed that vari-
ance can be modelled with

σ2
j = v̂(x j)− µ̂(x j)2 (16)
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wherev̂(·) is a fitted prediction model fory2 and µ̂(·) is a fitted prediction model fory.
Different prediction models, like local polynomials (Härdle & Tsybakov 1997) and linear
models (Gourierouxa & Monfort 1992), have been used. However, this method can yield
seriously biased and even negative estimates of variance and it has a large variance (Fan
& Yao 1998).

To avoid the mean model estimation, variance modelling on the basis of the squared
differences in the response variable has been discussed (Müller & Stadtmüller 1993,
1987). In difference-based methods, the model for variance is estimated using pseudo-
residualspi , which are properly weighted differences in the measured response values in
neighbouring observationsNi ,

pi = ∑
j∈Ni

ω jy j , ∑
j∈Ni

ω j = 0, ∑
j∈Ni

ω2
j = 1. (17)

The efficiency of difference-based methods is not very good, and the methods have been
used most commonly in univariate cases (Fan & Yao 1998).

2.3.5 Results for steel plate data

We compared different response variables in modelling the variance of steel strength. In
the comparison, the squared residual proved to work clearly better than absolute resid-
uals or logarithm transformed residuals. In agreement with the earlier results (Cawley
et al. 2004), it seemed recommendable to use the corrected squared residual Eq. (10) to
take into account the bias following from the mean model fitting; the details are given in
original paper V.

2.4 Estimation methods of variance function

Gamma generalised linear models applied to the squared residuals of the mean model
have been commonly used to estimate the variance function (Aitkin 1987, McCullagh &
Nelder 1989). The method assumes that the response variable is Gaussian distributed and
that variance is assumed to depend on the linear predictor via a monotone link function

g(σ2
i ) = zT

i τ . (18)

The vectorzi consists of transformations of explanatory variables found to best describe
conditional variance. If the mean model were known, the model would be most efficiently
estimated by maximising gamma log-likelihood

τ̂ = maxτ ∑
i

(
− logσ2

i −
ε2

i

σ2
i

)
. (19)

This section reviews the estimation techniques of the variance modelσ2
i = g(τ,xi ,µi).

The mean function is often modelled using a linear model

µi = xT
i β . (20)
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The discussed methods employ the squared residuals of the mean model; the estimation
methods for possible response variables other than squared residuals have been discussed
less in the literature.

If variance does not depend on the mean, the information matrix of the mean and
variance parameters is block diagonal (Aitkin 1987). The iterative separate estimation
of the mean and variance models yields the same results as joint estimation (Carroll &
Ruppert 1988). Maximising the joint likelihood of the mean and variance parameters
can be complicated, and thus iterative procedures have often been preferred, even though
variance depends on the mean. In iterative weighted least squares (IWLS), the mean is
estimated using weighted least squares with weights proportional to the inverses of the
estimated variances from the previous variance estimation (Mak 1992). The variance
parameters are updated in every iteration, and the discussed methods differ in the way
the variance parameters are estimated. There has been discussion about the number of
iterations needed. Some authors have suggested that the first iteration is enough (Yu &
Jones 2004), but most often two iterations have been considered recommendable (Carroll
& Ruppert 1988).

2.4.1 Maximum likelihood

The maximum likelihood estimator related to the linear mean model Eq. (20) maximises
the log-likelihood

l(β ,τ;y) =−1
2

log|Σm|− 1
2
(y−Xβ )TΣ−1

m (y−Xβ ) (21)

related to both the mean parametersβ and the variance parametersτ. The covariance
matrix of y, Σm = diag(σ2

1 ,σ2
2 , . . . ,σ2

n), is assumed to be diagonal. Because of the loss in
degrees of freedom that follows from estimatingβ , the estimator of the variance parame-
ters is biased.

2.4.2 Restricted maximum likelihood

Restricted maximum likelihood (REML) is often preferable to ML, because it is adjusted
to be unbiased (Verbyla 1993). In REML estimation, the marginal log-likelihood ofτ
is maximised by settingβ to its conditional maximum likelihood estimatesβ̂ (τ) (Smyth
2002). The maximised log-likelihood related to the linear mean model Eq. (20) is

lR(τ;y) = l(β̂ (τ),τ;y)− 1
2

log|XTΣ−1
m X|

= −1
2

(
log|Σm|+yTPΣy+ log|XTΣ−1

m X|) (22)

wherePΣ = Σ−1
m −Σ−1

m X(XTΣ−1
m X)−1XTΣ−1

m andl(β (τ),τ;y) is defined in Eq. (21). Be-
cause of the complexity of Eq. (22), the full REML estimation is slow for large data sets,
although recently a faster algorithm has been developed (Smyth 2002).
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Smythet al. (2001) proposed an iterative method for REML estimation in the frame-
work of the gamma generalised linear model Eq. (18). The proposed IWLS version of
REML yields exactly the same parameter estimates and almost the same standard errors
as the full REML. The correct response in the iterative REML is

ε̂2
j

(1−hi)
(23)

and the correct estimation prior weights arewi = 1−hi wherehi = Hii are the diagonal
elements of the hat matrix,H, of the previous mean model fitŶ = HY. (Smythet al.2001.)
The iterative REML is easy to implement, fast and thus recommendable for dispersion
parameter estimation in large data sets. The iterative REML estimation method has also
been proposed for estimation of variance in double-generalised linear models (Smyth &
Verbyla 1999).

2.4.3 Pseudo-likelihood

Maximisation of log-likelihood over part of the parameters while holding the rest of
the parameters fixed is called the pseudo-likelihood method (Gong & Samaniego 1981).
The pseudo-likelihood estimation of the variance function iteratively maximises the full
Gaussian likelihood. At each iteration, the variance parameters are estimated from the
log-likelihood function by fixing the mean parameters to their current values. The mean
model parameters are then estimated by fixing the variance parameters to their current
values. If the variance does not depend on the meanσ2

i = g(τ,xi), the pseudo-likelihood
estimator converges towards the ML estimator. (Carroll & Ruppert 1988.)

In the iterative procedure, the mean model is fitted using the weighted least squares
with weights proportional to the inverses of the predicted variances.

β̃ = maxβ

[
−1

2

n

∑
i=1

(yi − f (β ,xi))
2

σ̂2
i

]
. (24)

The log-likelihood maximised in variance model estimation has the form of gamma like-
lihood

τ̃ = maxτ

[
−1

2

n

∑
i=1

logg(zi ,τ, µ̂i)− 1
2

n

∑
i=1

(yi − µ̂i)
2

g(zi ,τ, µ̂i)

]
. (25)

The pseudo-likelihood method was motivated by the generalised least squares method
without any assumption about the normality of the error distribution. If variance also
depends on the mean, pseudo-likelihood has been preferred to ML because of its better
robustness against a non-Gaussian distribution (Carroll & Ruppert 1988).
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2.4.4 Extended quasi-likelihood

In quasi-likelihood estimation (Wedderburn 1974, Chiou & Müller 1999), the exact error
distribution is not assumed, but only the form of the variance function var(yi) = V(µi). It
has been shown that the quasi-likelihood function

Q(y; µ) =
∫ µ (y−s)

V(s)
ds (26)

has many properties similar to those of exact likelihood (Wedderburn 1974), and that it
has connections to generalised linear models (McCullagh & Nelder 1989).

The quasi-likelihood estimation method has been extended to estimation of the condi-
tional variance function, especially in the case where variance depends on the mean. In
the proposed extended quasi-likelihood (EQL) approach, the variance parameters are es-
timated by maximising the extended quasi-likelihood function (Nelder & Pregibon 1987).
Now, let the variance function beσ2

i = V(µi)g(zT
i τ) and

Dτ(y; µ) =−2[Q(y; µ)−Q(y;y)] =−2
∫ µ

y

y−s
V(s)

ds (27)

be the quasi-deviance function. The EQL function allows a comparison of different vari-
ance functions by extending quasi-likelihood with a variance factor (Nelder & Pregibon
1987). The EQL function is the sum of the contributions of single observations

Q+(Y;β ,τ) = ∑
i
−1

2
log(2πV(yi)g(zT

i τ))− 1
2

Dτ(yi ; µi)
g(zT

i τ)
. (28)

EQL parameter estimates are obtained by IWLS (Nelder & Pregibon 1987). EQL estima-
tion has been criticised for its inconsistency (Davidian & Carroll 1988).

2.4.5 Robust estimation

Errors in the data, a violation of assumptions or a model misspecification can have a
major effect on statistical inference when least-squares or maximum likelihood methods
are used (Huber 2004). Robust estimation is an alternative to very careful removal and
downweighting of observations that are interpreted as erroneous. Inference on the basis of
robust methods is more valid in the presence of outliers or in the violation of assumptions.
In contrast, robust estimators are less efficient than standard maximum likelihood estima-
tors when optimal conditions hold. An ideal robust estimator is efficient, but insensitive
to deficiencies in the data (Huber 2004).

Variance is even more sensitive to outliers than the mean (Carroll & Ruppert 1988).
Several robust algorithms have been proposed for estimating heteroscedastic models. An
early proposal (Carroll & Ruppert 1982) bounds the influence of residual but not of
leverage. The bounded-influence maximum likelihood and bounded-influence pseudo-
likelihood also bind the influence of leverage (Giltinanet al. 1986). The properties of
generalised M-estimators for robust estimation of variance are discussed in Biancoet al.
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(2000). Also, the robust methods developed for generalised linear models (Cantoni 2004)
can be useful in the framework of gamma generalised linear models.

The bounded-influence estimation of the variance modelσ2
i = g(zi ,τ) presented in

(Carroll & Ruppert 1988) can be written as follows: The variance model is estimated
using estimation weightsw = (w1,w2, . . . ,wn)T. The score vector, i.e. the gradient of log-
likelihood with respect to model parameters, for theith observationΨi =(Ψi1,Ψi2, . . . ,Ψiq)T

is

Ψi j =
(

ε2
i

σ̂2
i

−1

)
∂

∂τ j
g(zi ,τ). (29)

Let A beq×q-matrix

Â =
1
n

n

∑
i=1

w2
i ΨiΨT

i . (30)

Then the weights

wi = min


1,

a√
qΨT

i Â
−1Ψi


 (31)

downweight the observations whose normed score is too large. The tuning parametera
controls the number of downweighted observations. The algorithm is initialised by unit
weights, and the re-definition of weights and the estimation of parameters are iterated
until convergence.

2.4.6 Results for steel plate data

In original paper V, the number of iterations needed in pseudo-likelihood estimation is
studied empirically. The results agreed with earlier results (Carroll & Ruppert 1988)
indicating that two iterations is recommendable, but also the first iteration gave pretty
good results. Fitting of the variance model by least squares yielded poor results.

Robust estimation of the variance function was also studied using the steel plate data
set. The bounded influence estimation of variance model Eqs. (29), (30) and (31) did not
seem to work very well. Robust prediction was poor particularly for elongation: The av-
erage negative log-likelihood in the test data set was 1.93 when the model was estimated
using the robust method, and 1.80 using the usual pseudo-likelihood. The results were
calculated using the tuning constanta = 7, which downweighted 0.55 % of the observa-
tions. The results got worse when the tuning parameter was decreased to increase robust-
ness. The bounded influence estimator downweighted observations with high absolute
residuals, which resulted in low predicted variances. In this case, the bounded influence
method predicted variances to be 5 % smaller, on average, than variances predicted with
the pseudo-likelihood method. It seems that the bias of the tested robust variance function
estimator may be unacceptably large. The results for Rm and ReH had the same tendency,
but the differences between the estimation methods were not significant.
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2.5 Models for joint modelling of mean and variance

The earliest models for variance were linear, generalised linear and non-linear parametric
models. In parametric modelling, the results depend on the parametrisation of the model.
It is often difficult to find correctly transformed explanatory variables for the model. Non-
parametric methods for variance estimation have been developed since (Carroll 1982), but
non-parametric methods became common in multivariate variance modelling years later.

Nonparametric modelling diminishes the risk of model misspecification, but increases
the complexity of the model and decreases the interpretability of the model. The smooth-
ness of a nonparametric fit is controlled with a penalty on complexity, and the optimal
complexity level has to be explored in each application. The task of nonparametric vari-
ance function estimation is to estimate the smooth variance functionσ2

j = g(zj ,µ j). Non-
parametric variance modelling in multivariate regression has been discussed, for example,
in (Stadtmüller & Tsybakov 1995, Yau & Kohn 2003, Ruppertet al. 1997, Pan & Wang
2000).

This section reviews the models of variance that are applicable to multiple input vari-
ables. Many of the dispersion modelling methods assume that the error term is normally
distributed and the focus is also here in that case. Variance is considered a function of
explanatory variables, the mean or both.

2.5.1 Heteroscedastic regression

The concept of heteroscedastic regression refers broadly to regression models with non-
constant variance. Most commonly the variance function is estimated on the basis of
squared residuals.

The normal linear heteroscedastic regression model is defined as

y j ∼ N(µ j ,σ2
j )

µ j = xT
jβ

σ2
j = g(zj ,τ,µ j) (32)

where the functiong defines the form of the variance function andx j andzj are vectors
consisting of input variable observations and their transformations, which are selected to
describe the modelled dependence. Some common variance functions are

σ2
j = φ µθ

j

σ2
j = exp(zT

jτ)
σ2

j = µθ
j exp(zT

jτ). (33)

Non-linearity can be achieved by using transformations of the original explanatory vari-
ables in the input vectorsx j andzj . Interactions between the input variables can be taken
into account by using product terms. Generalisation to non-linear regressionµ j = f (x j ,β )
is straightforward. A practical alternative is a link-linear model

f (µ j) = xT
jβ . (34)
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2.5.2 Generalised linear models in dispersion modelling

In the family of generalised linear models (GLM), the additivity of effects is assumed to
hold on a scale transformed by a monotone link functionf (µ j) = xT

jβ , and variance is a
function of the meanσ2

j = φV(µ j). The distribution of the error term is assumed to be
included in the exponential family of distributions. (McCullagh & Nelder 1989.)

Many of the recent theoretical results concerning estimation of the parameters in het-
eroscedastic regression are related to models where variance is independent of the mean
and the effect of explanatory variables is additive in a transformed scaleg(σ2

j ) = zT
jτ

(Smyth 2002). In this case, variance modelling can be performed in the GLM framework.
It is never necessary to include the mean in the input variables of the variance model,
because it is possible to include all the explanatory variables of the mean model, instead.
However, this may make the variance model quite complicated. The independence be-
tween the mean and variance can often be achieved by transforming the response Box
(1988).

An usual choice for the variance link function is the log-link

logσ2
j = zT

jτ (35)

which guarantees the positivity of predicted variance. However, selection of the link
function should be based on the data, and often some other link function can yield a
significantly better model. For example, a linear linkσ2

j = zT
jτ and a square root link

σ j = zT
jτ have been used, but negative linear predictors can cause problems. Mak (2002)

proposed selecting the link function from the modified Box-Cox family

σ2
j = (1+ |λzT

jτ|)sign(λzT
j τ)/λ for λ 6= 0,

σ2
j = exp(zT

jτ) for λ = 0. (36)

In double generalised linear modelsf (µ j) = xT
jβ and dispersion depends on the ex-

planatory variables in a link-linear wayg(φ j) = zT
jτ (Smyth 1989). The model parameters

can be solved using ML estimation (Smyth & Verbyla 1999).

2.5.3 Local methods in variance function estimation

Local methods, i.e. kernel smoothing and local polynomials, use the entire data set as the
prediction model. The prediction is given by a local model fitted in the neighbourhood
of the query point. In kernel smoothing the model is a weighted average of the response
values. In local linear modelling the model is a linear model and in local quadratic mod-
elling the model is a second order polynomial regression model. The suitability of local
methods in high dimensions has been questioned (Hastieet al.2001).

Kernel smoothing of the squared residuals of the mean model has been commonly used
for variance estimation (Carroll & Ruppert 1988, Vining & Bohn 1998). LetT denote the
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model data set. The prediction model becomes

σ̂2
i =

∑ j∈T K
( ||xi−x j ||

hi

)
ε̂2

j

∑ j∈T K
( ||xi−x j ||

hi

) (37)

where the bandwidthh controls the smoothness of the model. The explanatory variables
x should be standardised or properly scaled. The smoothing kernel functionK is an uni-
modal density function with its mode at the origin (Hastieet al.2001). The usual choices
for K are

Epanechnikov K(s) =
3
4
(1−s2)I(|s|< 1)

tri-cube K(s) = (1−s3)3I(|s|< 1)

Gaussian K(s) =
1√
2π

exp(−1
2

s2). (38)

A multidimensional density function can also be used as the smoothing kernel. The mean
can be modelled parametrically or kernel smoothing can be applied with a different band-
width (Vining & Bohn 1998). Recursive kernels (Stadtmüller & Tsybakov 1995) and
kernel smoothing on the logarithm of the squared residuals (Kuk 1999) have also been
proposed.

Ruppertet al. (1997) and Fan & Yao (1998) proposed to use local polynomials to
estimate the variance function

µ̂i = β̂0

(β̂0, β̂ ) = arg minβ0,β

N

∑
j=1

[y j −β0− (x j −xi)Tβ ]2K1

( ||x j −xi ||
h1

)

σ̂2
i = τ̂0

ε̂ j = (y j − µ̂ j)

(τ̂0, τ̂) = arg minτ0,τ

N

∑
j=1

[
ε̂2

j − τ0− (zj −zi)Tτ)
]2

K2

( ||x j −xi ||
h2

)
. (39)

Ruppertet al. (1997) proposed correcting the squared residuals to take into account the
biasing effect of mean model estimation by using the Eq. (10). Yu & Jones (2004) pro-
posed using local likelihood for joint estimation of the mean and variance. Their approach
differs from Eq. (39) in that variance is estimated by locally maximising the gamma log-
likelihood instead of minimising the sum of squares, and a link function for variance is
introduced.

2.5.4 Mean and dispersion additive models

Additive models are a flexible family for nonparametric or semiparametric estimation of
the regression function. The usual form of a generalised additive model is

f (µi) = β0 +h1(xi1)+h2(xi2)+ . . .+hp(xip) (40)
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where f is a monotone link function andhi are univariate smooth functions, for example
cubic spline functions or parametric regression functions. Multivariate functions can be
included in the model to allow interactions between the explanatory variables. Additive
models are estimated using the backfitting algorithm. (Hastieet al.2001.)

Mean and dispersion additive models (MADAM) (Rigby & Stasinopoulos 1996) are
a general class of models proposed for joint modelling of the mean and variance. The
model can be written as

f (µi) =
p

∑
j=1

h j(xi j )

σ2
i = V(µi)φi

g(φi) =
q

∑
j=1

k j(zi j ) (41)

and the conditional density function ofyi is p(µi ,φi) (Stasinopoulos & Rigby 2000). The
model is estimated by maximising the penalised log-likelihood

lp =
n

∑
i=1

logp(µi ,φi)− 1
2

p

∑
j=1

λ1 j

∫ ∞

−∞
h′′j (s)

2ds− 1
2

q

∑
j=1

λ2 j

∫ ∞

−∞
k′′j (s)

2ds. (42)

It can be shown that the functionsh j andk j that maximise Eq. (42) are natural cubic
splines. LetNi(s) = (ai0 + ai1s+ ai2s2 + ai3s3)I(ξi−1 < s < ξi), i = 1, . . .n∗ be piece-
wise polynomials,ξ0 = −∞, ξ1 < ξ2 < .. . < ξn∗−1 be the ordered distinct values of the
explanatory variable in question andξn∗ = ∞. Then a function of the form∑n∗

i=1Ni(s)
having continuous second derivatives and being linear whens< ξ1 or s> ξn∗−1 is a nat-
ural cubic spline. MADAM includes generalised additive models and double generalised
linear models as special cases. In this framework, the mean and dispersion can be mod-
elled independently using parametric models or nonparametric cubic splines. (Rigby &
Stasinopoulos 1996.)

2.5.5 Reproducing kernels

Support vector machines and reproducing kernel methods have been one of the most
discussed learning methods during the recent years (Schölkopf & Smola 2002). These
methods apply a linear model in a transformed, high-dimensional space and the model
parameters pay a squared penalty in the model estimation. The transformed feature space
is induced by a continuous, symmetric and positive definite reproducing kernel function
K(xi ,x j) = 〈φ(xi),φ(x j)〉H . The reproducing kernel function is the inner product of the
Hilbert spaceH = { f | f : χ →ℜ}. Hereχ is the data space, oftenℜp andφ : χ →H ,
φ(x) = K(x, ·) is the mapping in the feature space. The reproducing property is useful be-
cause the model can be expressed in terms of reproducing kernel functions in the original
space. The solution to the problem minf∈H ∑n

i=1L(yi , f (xi))+λp|| f ||H is of the form

f (x) = b0 +
n

∑
i=1

αiφ(xi) = b0 +
n

∑
i=1

αiK(x,xi) (43)
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whereL(yi , f (xi)) is the loss paid from the prediction error. Two common reproducing
kernel functions are

Gaussian K(xi ,x j) = exp

(
−||xi −x j ||

h

)

polynomial K(xi ,x j) = (xT
i x j +θ0)θ . (44)

Cawleyet al.(2004) developed a reproducing kernel method for joint modelling of the
mean and variance. The proposed kernel ridge regression model is

µ(x) = β0 +
n

∑
i=1

αµ
i Kµ(x,xi)

logσ(x) = τ0 +
n

∑
i=1

ασ
i Kσ (x,xi). (45)

The model is estimated using IWLS by iteratively maximising the penalised weighted
least squares of the mean model and the penalised gamma log-likelihood of the vari-
ance model, correspndingly using the penalty termsλµ ∑n

i=1 ∑n
j=1 αµ

i Kµ(xi ,x j)α
µ
j and

λσ ∑n
i=1 ∑n

j=1 ασ
i Kσ (xi ,x j)ασ

j . The hyperparametersλµ andλσ control the complexity of
the model.

2.5.6 Bayesian methods

Some authors have applied Bayesian methods to inference about conditional variance.
Shao (1992) proposed an empirical Bayes estimation of variance heteroscedasticity. His
estimator is a mixture of prior information, within-group variation and smoothed squared
residuals. In the approach of Yau & Kohn (2003), the variance and mean functions are
estimated using penalised splines and log-link for variance. The authors assume Gaussian
distributed response and propose an MCMC sampling scheme for simultaneous estima-
tion and variable selection of the mean and variance. Bayesian inference about the hy-
perparameters of the model has been proposed for heteroscedastic kernel ridge regression
(Cawley & Talbot 2005).

2.5.7 Neural networks

Neural networks have been used for joint modelling of the mean and dispersion (Bishop
1995, Williams 1996, Dorlinget al. 2003). In these proposals, a multi-layer perceptron
with an additional output unit for variance is used. The model parameters are estimated
by maximising Gaussian log-likelihood. The single hidden-layer network proposed by
Boyd & White (1994) uses separate networks for both the mean and variance. The model
can be written as
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µi = β0 +
mµ

∑
j=1

A

(
β j0 +

p

∑
k=1

xikβ jk

)
β j

vi = τ0 +
mσ

∑
j=1

A

(
τ j0 +

p

∑
k=1

xikτ jk

)
τ j . (46)

The number of hidden nodesmµ andmσ controls the complexity of the network. The
authors used logistic functionA(s) = 1/(1+e−s) as the activation function. The proposed
link functions wereσ2

i = exp(vi) andσ2
i = e+ v2

i wheree is a small constant ensuring
positivity. The parametersβ and τ are estimated jointly by minimising the objective
function

1
2n

[
n

∑
i=1

logσ2
i +

(yi −µi)2

σ2
i

]
. (47)

2.5.8 Results for steel plate data

Heteroscedastic linear models, mean and dispersion additive models, local linear regres-
sion for mean and dispersion and neural network modelling of mean and dispersion were
compared in predicting variances in the steel plate data set. In the proposed novel neural
network approach, separate multi-layer perceptron models for the mean and variance were
estimated iteratively using the pseudo-likelihood method. Neural networks proved to be a
suitable method for variance modelling on large industrial data sets. Additive models had
problems with interacting explanatory variables, and their fitting required a huge amount
of memory. Local linear modelling was time-consuming and may not be applicable in
real-time applications. Heteroscedastic linear models seemed to be a comparable alter-
native, especially when interpretability is required. The results suggest that the learning
method of variance can be selected independently of the learning method of the mean.
Details are given in original paper V.

2.6 Modelling of conditional distribution

The conditional distribution function determines the mean, variance and different quan-
tiles and probabilities. There are three possible approaches to modelling conditional dis-
tribution. The stages are illustrated in Fig. 1. The usual method is to make a distributional
assumption, estimate a model for the mean and draw the inferences using the predicted
mean and the distributional assumption. In the second stage, the mean and dispersion
are modelled jointly as a function of the input variables. The inference is based on the
estimated mean, the estimated variance and a less restrictive assumption about the distri-
bution of residuals. The third stage is the most general. The conditional distribution or its
parameters, like kurtosis and skewness, are modelled as a function of the input variables.
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Fig. 1. The three stages of modelling.

In joint modelling of mean and dispersion, the conditional distribution depends on the
explanatory variables only through the first two moments: the mean and variance. A
review of methods for constructing confidence intervals on the basis of the modelling of
conditional distribution was given by Wright & Royston (1997). This section gives a
overview of the methods for flexible modelling of the conditional distribution function.

2.6.1 Conditional density estimation

Several methods have been proposed for estimation of the conditional density function.
The methods successfully applied to multivariate data are kernel smoothing (Davis &
Hwang 1998), local linear models (Fanet al. 1996), neural networks (Husmeier 1999,
Sarajediniet al. 1999) and mixture models. Mixture models, including mixture density
networks (Bishop 1995), model the conditional density function as a weighted sum of
several Gaussian densities. All of these methods are computationally quite complex and
may prove problematic in high dimensions.
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2.6.2 Quantile regression

In quantile regression, regression models are used to predict the conditional quantiles of
the response. The conditionalα-quantile function is

qα(x) = inf{s : P(y|x < s)≥ α}. (48)

For quantile regression, modelled quantile functions have to be selected. For example, it
could be decided that the 2.5 %, 50 % and 97.5 % quantiles are modelled. Models have
to be fitted for a large number of quantiles in order to describe the conditional distribution
completely. Quantile regression has been often applied in the construction of confidence
intervals.

Regression quantiles were introduced by Koenker & Bassett (1978). The authors used
a separate parametric linear regression model for each of the quantiles of interest. Non-
parametric and semiparametric modelling of regression quantiles has also been a popular
topic of discussion. In nonparametric modelling, the conditional quantiles are allowed
to depend quite freely on explanatory variables (Yu & Jones 1998). Several reviews on
regression quantile estimation have been written recently (Wright & Royston 1997, Yu
et al. 2003, Buchinsky 1998). Nonparametric quantile regression methods often have
problems with high dimensionality (de Gooijer & Zerom 1999). Quantile regression has
been widely used at least in medical and econometric applications. Apparently, quantile
regression has been rarely applied to multivariate industrial data.

The quantile function is the inverse of the cumulative distribution function, and thus
the problem of approximating the conditional quantile function is essentially the same as
approximating the conditional cumulative distribution function (Peracchi 2002). Some
methods, like local linear models, have been proposed for estimating the conditional cu-
mulative distribution function (Hallet al.1999).

2.6.3 Modelling the parameters of distribution

An easily applicable method for constructing conditional densities is to use separate pre-
diction models for the parameters of the distribution. In addition to the mean and dis-
persion, models can be fitted for other parameters of the distribution. The LMS method
(Cole & Green 1992) models skewness by estimating conditional skewness with an input-
dependent Box-Cox transformation parameter. Generalised additive models for location,
scale and shape (GAMLSS) (Rigby & Stasinopoulos 2005) use additive models to model
the parameters of conditional distribution



3 Adaptive modelling of a variance function

In the earlier literature, modelling and estimation of a time-varying variance function
σ2

t = g(τt ,zt) has not been discussed. In the notation, conditional variance depends on
explanatory variables via a variance functiong. The parameters of the variance functionτt

are not constant, but vary between the observations. In non-adaptive variance modelling
it is assumed thatτt = τ ∀t. In this chapter, statistical methods for modelling time-varying
parameters are reviewed and considered for modelling of conditional variance.

3.1 Recursive estimation

Re-estimation of the model after every new observation using all the available data is
always possible in principle, but in practice it is too time-consuming. Recursive, i.e.
sequential estimation methods recalculate the model parameters after each observation
on the basis of the current parameters and the new observation. A recursive method for
updating the regression coefficients of the familiar linear regressionEyi = xT

i β after every
new observation with

Pt+1 = Pt − (Ptxt+1)(Ptxt+1)T

1+xT
t+1Ptxt+1

β̂t+1 = β̂t +Pt+1xt+1(yt+1−xT
t+1β̂t) (49)

was proposed by Plackett (1950). The updated formula of the inverse Hessian

Pt =

(
t

∑
j=1

x jx
T
j

)−1

(50)

is based on the matrix equality

(A+BBT)−1 = A−1− (A−1B)(I +BTA−1B)−1(A−1B)T. (51)

The formulas offer a way to compute the updated least squares estimator with a low com-
putational cost. Later, Kalman proposed his filtering method for estimating more general
state space models, which shared much the same ideas (Kalman 1960).
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Computationally feasible recursive estimation methods have been suggested for several
model types, such as reproducing kernel methods (Kivinenet al. 2004) and local meth-
ods (Schaalet al. 2002). A comprehensive treatment of recursive estimation in linear
regression, linear difference equation models and state space models is given by Ljung
& Söderström (1983). Sequential parameter estimation can also be approached from a
Bayesian point of view. The recursive least squares algorithm can also be derived from
the Bayesian approach to recursive estimation (Ljung & Söderström 1983).

Although the parameters change after each observation, the recursive models are not
really adaptive. Behind the original formulas was the idea that the regression function is
static and the estimated regression coefficients converge to the true ones as more observa-
tions are added (Pollock 2003). In a long run, the regression coefficients converge to the
mean of the stochastic process generating them. Rolling regression and discounted regres-
sion using forgetting factors can be seen as adaptive variations of the recursive estimation
scheme (Pollock 2003).

3.1.1 Forgetting factors

The recursive regression model can be made adaptive by gradually downweighting the
older observations with a forgetting factor (Pollock 2003). Letγ ∈ [0,1[ be a forgetting
factor giving estimation weightsγ t− j for the observationsj = 1,2, . . . , t. (Pollock 2003)
provided a computationally simple formula for updating of parameter estimates

Pt+1 =
1
γ

(
Pt − (Ptxt+1)(Pixt+1)T

γ +xT
t+1Ptxt+1

)

β̂t+1 = β̂t +Ptxt+1
(
γ +xT

t+1Ptxt+1
)−1 (yt+1−xT

t+1β̂t). (52)

3.1.2 Rolling regression

In the rolling regression scheme, the model is estimated based on thew previous observa-
tions, while the oldest observations are completely discarded. After each new observation,
the model is re-estimated based on the observations in a moving time window: this ap-
proach has been commonly referred to with the term ’moving window’. The formulas
used in recursive regression can be modified to make updating of parameter estimates
computationally easy. First the observationt −w is removed from the model using the
formulas

P∗t+1 = Pt +
(Ptxt−w)(Ptxt−w)T

−1+xT
t−wPtxt−w

β̂ ∗t+1 = β̂t −P∗t+1xt−w(yt−w−xT
t−wβ̂t) (53)

to obtain intermediate estimatesP∗t+1 andβ̂ ∗t+1. Then the formulas Eq. (49) are applied to

P∗t+1 andβ̂ ∗t+1 to add the new observation. (Pollock 2003.) A combination of rolling and
recursive regression is proposed in (Clark & McCracken 2004).
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Moving window modelling has been commonly applied in many kinds of models, al-
though the updating formulas Eqs. (53) and (49) hold only for linear regression. In
practice, the model can be re-estimated only occasionally, using the most recent data. Be-
cause of its simplicity, moving window modelling seems to be one of the most popular
adaptive modelling methods in many fields.

3.2 On-line learning

An approach where training is based on a fixed training data set is called batch learning.
When new data are continuously measured, on-line learning is an attractive alternative.
In on-line learning, only one observation at a time is given to the learner, which adjusts
the model parameters accordingly. After learning, the observations are forgotten and
only stored information is the model. While the usual learning algorithm steps change
the parameter estimates in some direction depending on the average gradient over the
training data set, on-line learning algorithms change the parameter estimates according to
the direction depending on the gradient of a single, new observation.

The original ideas behind on-line learning were proposed by Robbins & Monro (1951).
The terms ’stochastic approximation’ and ’on-line learning’ have often been used in the
context of stochastic gradient descent and related methods. In the update step of a typical
on-line learning algorithm, the parameter estimates are moved on the basis of the gradient
of the loss function at the current observation

β̂t+1 = β̂t +ηtCt(β̂t)
∂

∂β
L

[
yt+1, f (xt+1, β̂t)

]
. (54)

The positive definite matrixCt(β̂t) controls the search directions and is often related to
the inverse Hessian. The matrixCt can be updated using a separate update formula.

On-line learning has been studied in the frameworks of statistical learning theory (Mu-
rata 1998) and statistical physics (Biehl & Caticha 2001). Theoretical results (Opper
1996) show that a properly implemented on-line learning algorithm learns the regression
function asymptotically as efficiently as the best off-line algorithm.

On-line learning methods are especially practical when the modelled dependence varies
with time, but they are also useful when the true regression function remains constant. The
convergence properties of the algorithm depend on the learning rateηt . It is known that
the learning rateηt = c/t is optimal when the modelled phenomenon is not changing, be-
cause it guarantees local convergence of the algorithm under some regularity conditions.
It is known that when a sufficiently rapidly shrinking learning rateηt = O(1/t) is used,
the model is not able to adapt to changes in the regression function. Thus, on-line learning
with a constant learning rate has been used in adaptive modelling. (Murataet al. 2002.)
There have also been several proposals for an adaptive learning rate: The basic idea is that
the learning rate is increased when the model predicts poorly and decreased toc/t when
the smallest achievable prediction error level is found (Sompolinskyet al. 1995, Orr &
Leen 1996).
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3.2.1 On-line quasi-Newton algorithm

An on-line quasi-Newton algorithm for a squared error loss function was presented by
Bottou (1998). The algorithm updates the parameter estimates after each new observa-
tion, like in the ordinary quasi-Newton algorithm step, but it uses the gradient at the new
observation instead of the average gradient of the training data set. Let the non-linear
regression function beEyi = f (β ,xi). The author approximates the Hessian matrix by the
Gauss-Newton outer product estimator

n

∑
i=1

[
∂

∂β
f (β ,xi)

][
∂

∂β
f (β ,xi)

]T

. (55)

The inverse approximate Hessian was proposed to be updated using the matrix formula
Eq. (51). Letδt = ∂

∂β f (β ,xt). The algorithm can be written as

Pt+1 = Pt − (Ptδt+1)(Ptδt+1)T

1+δ T
t+1Ptδt+1

β̂t+1 = β̂t +Pt+1δt+1

[
yt+1− f (xt+1, β̂t)

]
. (56)

The author proves that the algorithm converges to a local minimum of the squared er-
ror loss function. (Bottou 1998.) The method is not adaptive, because the step size is
proportional to1/n: Pn = O(1/n).

3.2.2 On-line neural networks

Much of the recent work in on-line learning has been done in the field of neural networks.
Saad (1998) discusses the on-line learning of neural networks from many viewpoints.
The learning of neural networks is challenging because of local minima and plateaus in
the loss function (Bishop 1995). Despite that, on-line neural networks seems to be a well-
established method for adaptive modelling of a time-varying regression function: Saad
(1998) discusses the optimality and convergence properties of on-line neural networks and
presents successful applications. Several on-line learning schemes, like on-line gradient
descent

β̂t+1 = β̂t +ηt
∂

∂β
f (xt+1, β̂t)

[
yt − f (xt+1, β̂t)

]
(57)

and quasi-Newton type algorithms, have been proposed for on-line learning of neural
networks.

3.2.3 Reproducing adaptive kernels

On-line learning has been suggested for kernel methods where linear regression is per-
formed in a transformed, high dimensional feature space. The major problems are how
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to treat regularisation, the number of kernel functions and the high dimensionality of the
feature space. In recent work, recursive least squares (Engelet al. 2004) and stochastic
gradient descent (Kivinenet al. 2004) have been modified to be applicable in the repro-
ducing kernel Hilbert space. The on-line support vector regression of Kivinenet al.(2004)
can be used to model a time-varying regression function.

3.2.4 Real-time lazy learning

In the framework of lazy learning, the training data set works as a model: When a pre-
diction is queried, the most similar observations are searched to construct the prediction.
The most common methods in this framework are nearest neighbour methods, kernel
smoothing and local linear regression. In the lazy learning framework, model updating
is extremely easy, the update step consists of simply adding the new observation to the
database. However, such a simple approach is problematic and not very adaptive: The
prediction time grows linearly with the size of the training data set, and new and old ob-
servations cannot be distinguished. These problems have been addressed, for example, by
Schaalet al. (2002). A related method is recursive calculation of kernel smooths, but that
method is not adaptive either (Krzyzak 1992).

3.3 Time-varying parameter regression

Several methods for modelling time-varying parameters in the regression context have
been developed (Riddington 1993). The methods used in time-varying parameter regres-
sion include change point models, functional coefficient models and stochastic coefficient
models. Let{β (t)} be the time-continuous series of the regression coefficient vector and
let the true parameter at timet beβt .

3.3.1 Change point models

Change point models assume that the regression coefficients are piecewise constant. There
are break pointsB1,B2, . . . where a structural change in the modelled phenomenon hap-
pens

βt = β0 +b1I(t > B1)+b2I(t > B2)+ . . . . (58)

The majority of the articles related to change point modelling discuss finding the break
points and testing the existence of break points. These kinds of ’all data on hand’ ap-
proaches are not of interest when adaptivity based on continuously measured new obser-
vations is needed.

Leischet al. (2000) and Zeileiset al. (2005) propose to sequentially test for structural
change based on recursive or moving window regression parameter estimates. These
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papers do not discuss about prediction, but obviously the results of their tests could be
utilised to time the refitting of adaptive models.

A recent research topic is prediction using change-point models with an unspecified
number of change points. The model is capable of handling a continuous flow of obser-
vations in real time. In the proposed approach, the model is estimated using Bayesian
methodology. New observations are predicted using the MCMC algorithm. (Koop &
Potter 2004.)

3.3.2 Stochastic coefficient models

Stochastic coefficient models assume that the regression parameters form a stochastic
process. At every time step, usually after each observation, the regression parameters
are assumed to change because of stochastic innovations (Rosenberg 1972). A common
approach is to assume that the regression parameters form a random walk

βt = βt−1 +υt , υt ∼ N(0,Gυ), υt i.i.d. (59)

where the covariance matrixGv can often be assumed to be diagonal. Cooley & Prescott
(1976) proposed assuming that the parameter vector forms the process where changes in
the parameters can be divided into permanent and trajectory changes

βt = β ∗t +ut ut ∼ N(0,Gu), ut i.i.d.
β ∗t = β ∗t−1 +υt υt ∼ N(0,Gυ), υt i.i.d.. (60)

By adjusting the magnitude ofGu andGυ , a model between the random coefficient model
and the random walk model can be chosen. A more general approach is to assume that
the regression parameters form an ARMA process (Liu & Hanssens 1981). Stochastic
coefficient models can be estimated using a Bayesian approach (Shively & Kohn 1997) or
a Kalman filter (Harvey 1989).

A special case of stochastic coefficient models is the random coefficient model, where
the distribution ofβt is identical∀t (Hildreth & Houck 1968)

βt = ut , ut ∼ N(0,Gu), ut i.i.d. (61)

Random coefficient models can be used to introduce structural heteroscedasticity to the
prediction. Prediction with random coefficient models is discussed in more detail by
Beran (1995).

3.3.3 Functional coefficient models

Functional coefficient models are of the form

yi =
p

∑
j=1

β j(Ui)xi j + ε. (62)
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The coefficients of regressors depend on some covariatesUi . The coefficient functions
β j(t) are usually estimated using a smoothing method (Fan & Zhang 1999.) Time-varying
coefficient models are easily included in the framework when the coefficients are func-
tions of timeβ j(t). In principle, functional coefficient models are not meant for adaptive
modelling, but the purpose is to find out the past behaviour of the parameters. Functional
coefficient models have also been applied in time series analysis (Huang & Shen 2004).

3.4 Models with time-varying variance

Several models allowing time-varying variance that does not depend on explanatory vari-
ables have been commonly applied in econometrics. The approaches assume that variance
is a one-dimensional stochastic process, and the methods differ in the way the variance-
generating process is formulated and estimated. However, none of these suggestions allow
the variance to depend on the explanatory variables.

3.4.1 Conditional autoregressive heteroscedasticity

Autoregressive conditional heteroscedasticity (ARCH) models (Engle 1982) are defined
as follows,

yt = µt + εt

√
ht

ht = α0 +ζ1ε2
t−1ht−1 +ζ2ε2

t−2ht−2 + . . .+ζrε2
t−rht−r (63)

whereεt are i.i.d. random variables withEεt = 0 and var(εt) = 1. Generalized autoregres-
sive conditional heteroscedasticity (GARCH) models (Bollerslev 1986) are of the form

ht = α0 +ζ1ε2
t−1ht−1 + . . .+ζrε2

t−rht−r + ι1ht−1 + . . .+ ιt−mht−m. (64)

The estimated model parameters describe how variance depends on lagged squared errors
and variances. Although the predicted variances are changing, the model describing the
autoregressive structure is static. The models can be estimated by ML, and several mod-
ifications of the basic method have been used (Liet al.2002). Recurrent mixture density
networks (Schittenkopfet al. 2000) employ a similar approach, but the dependence of
conditional variance on the lagged variances is modelled by a neural network model.

3.4.2 Stochastic volatility models

The principle of a stochastic volatility model is to assume that conditional variance forms
a stochastic process. The approach can be seen as an application of time-varying coeffi-
cient models to the modelling of variance. Variance is usually examined on a transformed
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scale to ensure its positivity

yt = µt +
√

htεt

loght = θ1 +θ2 loght−1 +υt (65)

whereεt andυt are i.i.d., often Gaussian processes.
The most popular approaches to model estimation are probably Bayesian MCMC in-

ference (Jacquieret al.1994), the method of moments (Andersenet al.1999) and quasi-
maximum likelihood (Ruiz 1994). Some methods do not make restrictive assumptions
about the form of the variance generating process: Andreou & Ghysels (2006) applied
change point models to the modelling of volatility and Mercurio & Spokoiny (2004) ap-
plied a local linear method for predicting time-varying variance.

3.5 Adaptive modelling of conditional variance

This section proposes that the methodology related to on-line learning and time-varying
parameter regression can be used to model a time-varying variance function. In original
paper VIII, two methods, namely moving window estimation and adaptive on-line quasi-
Newton, are proposed for adaptive modelling of conditional variance.

The process of squared residuals of the mean model fit can be used as the response
variable in adaptive modelling of conditional variance. The difficulty is that many of the
adaptive regression methods assume that the response is normally distributed, but squared
residuals are gamma distributed. Zeileis & Hornik (2002) propose using quantile residuals
of generalised linear models in change point modelling. A quantile residual is defined as
the quantile of a standard normal distribution that corresponds to the value of the assumed
cumulative distribution function of the observation (Dunn & Smyth 1996)

qi = Φ−1
[
F(yi ; µ̂i , φ̂)

]
. (66)

It could be possible to utilise quantile residuals of the variance model in adaptive mod-
elling of variance.

McGilchrist & Matawie (1998) developed a method for computing recursive parame-
ter estimates in a GLM family. Let̂µt = f (xT

t βt−1) andσ2
t = φV(µt). Their recursive

formulas can be written as

β̂t = β̂t−1 +

[
f ′(xT

t β̂t−1)
]−1

(yt − µ̂t)Pt−1xt

V(µ̂t)
[

f ′(xT
t β̂t−1)

]−2
+xT

t Pt−1xt

Pt = Pt−1− (Pt−1xt−1)(Pt−1xt−1)
T

V(µ̂t)
[

f ′(xT
t β̂t)

]−2
+xT

t Pt−1xt

. (67)

The method can be interpreted as the on-line version of the Fisher scoring algorithm.
The authors prove that the recursive formula approximately follows the exact recursive
parameter estimates. The approach of Eq. (67) could be applied to recursive estimation
of variance function parameters under the gamma generalised linear model.
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3.5.1 Variance function estimation with recursive smoothing

Stadtmüller & Tsybakov (1995) proposed a method for recursively estimating the variance
functionσ2(xi), xi ∈ℜp. They employed recursive kernel smoothing of squared residuals
to expand the variance function after each new observation

σ̂2
t (x) = σ̂2

t−1(x)+ηt
[
ε̂2

t − σ̂2
t−1(xt)

]
h−p

t K

(
xt −x

ht

)
. (68)

The positive sequencesht andηt go to zero and∑∞
i=1 ηi = ∞, thp

t → ∞. The mean model
is estimated simultaneously with a similar recursive kernel principle. Stadtmüller & Tsy-
bakov (1995) assume that the variance function is static and prove the convergence prop-
erties of the estimator. Their estimation method does not adapt to changes in the variance
function, because the old observations are never discounted or removed from the model.

3.5.2 Moving window modelling of conditional variance

In original paper VIII it is proposed that the moving window method can be used to
estimate a variance function with time-varying parametersσ2

t = g(xt ,τt). The model
is occasionally re-estimated by maximising the gamma log-likelihood related to thew
previously squared residuals

τ̂t = maxτ
t

∑
i=t−w

[
− logg(τ,xi)− ε̂2

i

g(τ,xi)

]
. (69)

Re-estimation of the model after each new observation is computationally expensive. In
practical application the model can be re-estimated less frequently, for example at certain
time intervals. In addition, discounting of older observations can be considered to make
the model behave more smoothly.

3.5.3 Adaptive on-line quasi-Newton algorithm

Estimation of time-varying conditional variance by applying an adaptive version of the
on-line quasi-Newton algorithm to the squared residuals is proposed in original paper
VIII. Let σ̂2

t+1 = g(τ̂t ,xt+1), and let

δ (τ,xt) = (∂/∂τ)g(τ,xt) (70)

denote the vector of partial derivatives. The matrix

It =
t

∑
i=1

[
δ (τ̂i ,xi)/σ̂2

i

][
δ (τ̂i ,xi)/σ̂2

i

]T
(71)

denotes the first-order approximation of Hessian cumulated from the gamma distributed
observations ati = 1, . . . t. The matrixPt ≈I −1

t denotes the approximate inverse Hessian
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used in the quasi-Newton algorithm. The parameter estimates are updated after each new
observation by

τ̂t+1 = τ̂t +η(t +1)Pt+1

(
ε̂2

t+1

σ̂2
t+1

−1

)
δ (τ̂t ,xt+1)

σ̂2
t+1

. (72)

The constant learning rateη is tuned separately in each application. The inverse Hessian
is kept up-to-date by applying the matrix equality Eq. (51):

Pt+1 = Pt −
[
Ptδ (τ̂t ,xt+1)/σ̂2

t+1

][
Ptδ (τ̂t ,xt+1)/σ̂2

t+1

]T

1+
[
δ (τ̂t ,xt+1)T/σ̂2

t+1

]
Pt

[
δ (τ̂t ,xt+1)/σ̂2

t+1

] . (73)

The algorithm is initialised by fitting the model using a sufficient number of early obser-
vations. New and old observations have equal contributions toPt . The matrixPt reflects
the accumulated information, but the model has forgotten the oldest information. The
proposed adaptive on-line quasi-Newton algorithm differs from the non-adaptive versions
(McGilchrist & Matawie 1998, Bottou 1998) in that the learning steps are proportional to
tPt instead of the non-adaptive stepsPt .

3.5.4 Results in steel plate data

For the steel plate data set, the adaptive models performed better than the non-adaptive
model. The differences between the models are significant, but the non-adaptive model
seems fairly adequate. The adaptive quasi-Newton algorithm outperformed the moving
window method. In two groups of steel plate products, variance had slightly decreased
with time. The time paths of the model parameters and predicted variances indicated that
major changes had not taken place in the conditional variances during the study period.
Details are given in original paper VIII.

3.6 Simultaneous adaptive modelling of mean and dispersion

When the true mean model remains unchanged over time, a natural approach to adaptive
modelling of the mean and variance is to update the mean model recursively. Because
the accuracy of the mean model increases with time, estimation of time-varying variance
should be based on the squared residuals of the latest, most accurate mean model.

In the case of the time-varying mean modelEyt = xT
t βt , it is much more difficult to

assume that the estimated mean model is the true model. Joint modelling of the time-
varying mean and dispersion is balancing between bias and variance. Distinguishing the
error due to bias and variance may often be difficult. A highly adaptive mean model
estimator has a large variance and results in a strong correlation between the observations
and the fit, so that oftenEε2

i < σ2
i . Often it may make more sense to avoid overfitting and

to accept that the true mean model can not be satisfactorily estimated without a time delay.
As a slowly changing mean model estimator has low variance, its bias has to be taken into
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account in the modelling of variance. Because of the bias, it often holds thatEε2
i > σ2

i .
The following moving window framework is an example of the latter approach.

In original paper VIII a moving window framework for adaptive heteroscedastic linear
regression is sketched. In the proposed method, the true parameters{βt} are assumed to
form a continuous time Levý process

E(βti −βta) = 0, cov(βti −βta) = B|ti − ta|. (74)

In the notation, theith observation is observed at timeti , when the true parameter value
is βti . Updating of the model begins with an estimation of the mean model parameters

using a moving window. The resulting estimateβ̂ w is used to construct the squared resid-
uals. Assuming that the estimatorβ̂ w equals the true parameters at timeta, β̂ w = βta, the
expected squared error is

E(yi −xT
i β̂ w)2 = σ2 (xi ,τti )+ |ti − ta|xT

i Bxi . (75)

The result can be utilised in the estimation of the variance function: An additional offset
variable

qi = |ti − ta|xT
i Bxi (76)

is employed in the variance model fitting. The problem is then to estimateB and to
determineta. The result Eq. (75) is employed also when future predictions are produced.

Another possible approach to simultaneous adaptive modelling of the mean and disper-
sion is to apply an adaptive on-line learning method to the joint log-likelihood of the mean
and variance parameters. When variance does not depend on the mean, the information
matrix is block diagonal and the mean and variance can be treated separately.



4 Industrial process data in predictive modelling

A large amount of data are measured from industrial production processes. The data
contain information that is useful in controlling the production process. The problem
is to extract information from the data. This has commonly been done by developing
statistical prediction models, which are then utilised in process control, process planning
and product planning (Khattree & Rao 2003).

Industrial process data sets are usually large. Both the number of variables and the
number of observations are high. Process data are often clustered: there are clusters of
observations and sparse or empty regions between the clusters. The clusters occur in
the regions of normal process settings. Statistical analysis of large data sets has been
commonly discussed under the topic of data mining (Giudici 2003).

A successful industrial plant has to develop its processes. The process changes as
it is developed, which means the relationships between the process variables vary. The
relationship described by the model can also change. As a consequence, the need for
model updating is obvious. Adaptive prediction models that are fit for using process data
have been commonly applied in industry (VanDoren 2002).

These special features characterise industrial process data for the purpose of regression
modelling. In this chapter, the results related to process data-based regression modelling
are presented.

4.1 Dispersion modelling using process data

Modelling of variance in large data sets has not been specifically discussed in earlier lit-
erature. Recent industry-oriented textbooks about statistical modelling (Khattree & Rao
2003, Giudici 2003) do not consider modelling of conditional variance. However, it is
not unusual that not only the mean but also the deviation of the response variable de-
pends on the process variables. In this case, a model of the deviation gives additional
information and makes more efficient utilisation of the models possible. Previously, dis-
persion modelling methods have rarely been applied to industrial process data, but some
examples include (Myllykoski 1998, Smyth 2002). A related topic is modelling of model
uncertainty (Tjärnström 2002). In original paper V, variance modelling methods suitable
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for several explanatory variables are surveyed and their suitability for large data sets is
discussed.

Variance is often sensitive to even small changes in the process. Changes and varia-
tion in the facilities and practices of the production line cause heteroscedasticy and also
time-dependent variation in the conditional variance function. In spite of that, methods
for adaptive modelling of the variance function have not been discussed earlier. In origi-
nal paper VIII, methods for adaptive modelling of conditional variance are proposed and
applied to steel plate data.

4.2 Model selection

Expected squared prediction error is the sum of irreducible variance, squared model bias
and model variance

E
[
y0− f̂ (x0)

]2
= σ2

ε +
[
E f̂ (x0)− f (x0)

]2
+E

[
f̂ (x0)−E f̂ (x0)

]2
. (77)

Model complexity increases model variance, but decreases model bias. Optimal complex-
ity is determined in the model selection phase. For example, in linear regression, model
variance is

E(xT
j β̂ −xT

jEβ̂ )2 = xT
jcov(β̂ )x j . (78)

Model variance depends on the location of the observationx j . If x j is located so that
y j has a large influence on model estimation, model variance aroundx j is large. Model
variance usually increases when the distance from the query point to the estimation data
set grows.

The task of model selection includes selection of the structure of the model, the input
variables and their transformations and the model estimation method. Validation, cross-
validation, bootstrap validation and information criteria are the most common methods
used for model selection. In validation the training data set is split into two parts: The
prediction accuracy of the fitted model is measured in the data which are not used for
learning. InK-fold cross validation, the data are split intoK parts. The model is fitted
K times usingK− 1 parts for fitting and one part for validation at a time. The model
is selected using the average prediction error in theK validation data sets. Bootstrap
validation works similarly, except that the training data sets are obtained by re-sampling
the original data. Information criteria consist of the log-likelihood of the fitted model in
the training data and a penalty term for the complexity of the models. (Hastieet al.2001.)

In original paper II, it is suggested that validation methods are preferable in model
selection for large process data sets. The real predictive performance of the models can
be measured most reliably in the validation data set (Purushottam & Ibrahim 1995). If the
data are split between validation and training using a split in time, more emphasis is given
to the interpolation ability of the models, because the estimation and the validation data
sets are more dissimilar.

In original paper II, an approach to model selection for joint modelling of the mean
and dispersion is presented. The variance model is selected on the basis of the validation
deviance of squared residuals. The proposed procedure for model selection is
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1. Specify preliminary models for the mean and dispersion.
2. The model for the mean is selected by minimising the weighted sum of squared errors

in the validation data setV. Unit weights or weights proportional to the inverses of
the predicted variances are used.

3. Squared residuals are calculated and used for variance model fitting and validation.
The selected variance model minimises validation deviance

DV = 2∑
i∈V

[
− log

ε̂2
i

σ̂2
i

+
ε̂2

i − σ̂2
i

σ̂2
i

]
. (79)

4. The whole model is re-estimated.

Some authors have emphasised the role of model generalisation ability in model se-
lection Busemeyer (2000). In original paper VI, model selection that attempts to respond
to the need for well-generalising models is proposed. The proposed distance-weighted
validation criterion gives more weight to the validation data observations whose distance
to the training data set is large. However, the experiments did not confirm the hypoth-
esis that the proposed distance-weighted validation criterion selects a model with better
interpolation capability than the unweighted validation criteria.

4.3 Utilisation of industrial prediction models

The aim of industrial data analysis is to produce information and models that can really
be utilised to improve the production process. When prediction models are developed for
industrial use, the utility of the models lies in their applicability. Prediction models can
be utilised in planning products and the flow of production, in planning and optimising
process settings, and in process control.

In joint modelling of the mean and variance, prediction of conditional distribution is
constructed on the basis of the conditional mean and variance. Sometimes it may be better
to construct conditional distribution using the expected squared error

E(yi − ŷi)2 (80)

rather than the error varianceσ2
i . It can be thought that the mean model is first specified

to be as accurate and unbiased as possible. Then the uncertainty of the mean model
is modelled so that the expected likelihood of future observations becomes maximised.
Error variance usually forms the major part of the expected squared prediction error, but
model bias and model variance also have their own effects, as presented in Eq. (77).
When the model is used for interpolation, both model bias and variance increase and the
expected squared prediction error grows rapidly.

Predictions can be needed in different stages of the production process. At early stages,
the realised values of some explanatory variables are not necessarily known exactly. When
the predictions are made only target values can be given for some of the explanatory vari-
ables. Optimally, the expectations of the realised values agree with the target values, but
the realised values have some variance. Lacking information about the explanatory vari-
ables decreases prediction accuracy: The expected squared prediction error increases as
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the dispersion between the target values and measured values of the explanatory variables
grows. If predictions are queried from the same model in different process stages in which
the amount of uncertainty about the input variables differ, then the effect of the uncertainty
should be taken into account in the predicted variance. This approach has not been given
much attention in the literature. The alternative is to construct different models to be used
in the different process stages.

In original paper IV, it is proposed that model uncertainty is predicted as a sum of three
components:

1. Error variance. Error variance can depend on the explanatory variables.
2. The effect of uncertainty about the input variables used for prediction. The use of

target values in the early stages of the process increases the prediction error.
3. Model variance. The model is less accurate in the regions with sparse data.

The effect of uncertainty about the input variables is approximated by the error propaga-
tion formula

E
[
yi − f (β̂ ,xi)

]2
= σ̂2

i +var
[

f (β̂ ,xi)
]
+

p

∑
j=1

σ2
( j)

[
∂ f (β̂ ,x)

∂x( j)

]2

(x=xi)

(81)

where each observationxi is a realisation of the input vectorx = (x(1),x(2), . . .x(p)) and
σ2

( j) is the expected squared difference between the target value and the realised value
of x( j). The approximation employs the first order Taylor expansion of the fitted model
around the query point.

4.4 Model maintenance

The long-term utilisation of industrial process models requires systematic analysis of the
data that aims at maintaining of prediction accuracy. Because of the evolution of the
processes and changes in the relationships described by the models, there is a need for
maintenance of industrial prediction models. In model maintenance, the model is regu-
larly re-fitted to correspond to the current state of the production process. The develop-
ment of a completely new prediction model can be laborious and it can be made easier by
utilising the experience from the previous models. In adaptive modelling, model re-fitting
is performed automatically. If the variance depends on the inputs, the variance model may
need to be re-fitted regularly.

A system for model maintenance has to systematically analyse and store the production
line measurements. If a large amount of data are measured, it is not feasible to store all
the data or, at least, not all of the data can be used for modelling. Algorithms for data pre-
processing and selection are needed in model maintenance systems. To detect the need
for model updating actions, the performance of the models in the process data should be
monitored. A model maintenance system should also include algorithms for re-fitting of
models. An illustration is given in Fig. 2.
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Fig. 2. Illustration of a system for maintening process data-based models.

4.5 Measuring distance between data point and training data set

A measure of the distance between the training data set and a new query point or observa-
tion could be useful in assessing the uncertainty of prediction and in finding outliers. Mea-
suring the distance from a training data set has not been proposed earlier, although quite
similar approaches have been used. Standard errors of predictions measure uncertainty
with variance, but they do not take bias into account. In local methods, distances between
observations are utilised to find the nearest observations of a query point (Wettschereck
et al. 1997). In clustering and prototype methods, several measures of the distance be-
tween a single observation and a set of observations, like average pairwise Euclidean
distance∑n

i=1 ||x0− xi ||/n, Mahalanobis distance(x0−mx)TS−1
x (x0−mx) and Euclidean

distance to the cluster centroid||x0−mx||, have been used (Kaufman & Rousseeuw 1990).
HereSx is the empirical covariance matrix ofx andmx is the average vector ofx. In novelty
detection, the aim is to detect abnormal observations. The usual approach has been to con-
struct a model for a joint density function of input variables and judge observations with
a density below a given threshold as novel (Markou & Singh 2003). Also several other
approaches have been suggested, such as measuring the minimum distance mini ||x0−si ||
to a vector in a set of prototypess1,s2, . . . ,sk (Alanderet al.1991).

An interesting approach was given by Angiulli & Pizzuti (2005), who used the sum of
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Euclidean distances to thek nearest observations

k

∑
i=1

d(k) (82)

to rule out outliers. Mahamud & Hebert (2003) discussed optimal distance measures. The
optimal distance measure in 1-nearest-neighbour prediction minimises the expected loss
functionEL(y0,y′) wherey′ is the measured response atx′, which is the nearest neighbour
of x0 using distance measured. The authors showed that the distance measure equaling
the expected loss functiond(x0,xi) = EL(y0,yi) is optimal and they proposed to use a
distance measure that approximates the expected loss of nearest neighbour prediction.

In original paper VI, a method for measuring the distance between a single observation
and a training data set is proposed. The distance is measured as the harmonic sum of the
distances to thek nearest observations in the data set

d = d(x0,T) =
1

∑k
i=1

1
d(i)

. (83)

The distances between single observations

d(x0,x j) = σ̂2 +
p

∑
i=1

κi(x ji −x0i)2 (84)

are squared Euclidean distances plus a constantσ̂2, the estimated error variance. In the
formula, d(1),d(2), . . .d(k) are the orderedk smallest distancesd(x0,x j) betweenx0 and
training data observationsx1,x2, . . .xn and thusd(i) = d(x0,x j) for some j. The variables
that have a large effect on the response have a large weight on the distance measure.
In original paper VI, a data-driven procedure is proposed for defining the scalingsκi

of each variable in such a way that they are proportional to the variable’s contribution
to the fitted regression function. The proposed distance measure can be seen as a linear
function of the approximated expected squared prediction error when the new observation
is predicted by distance weightedk-nearest-neighbour. The expected squared prediction
error is approximated under the condition that the distances and directions to thek nearest
training data points and the measured response in these points are given.

Details, the mathematical reasoning behind the above definitions and the results for
simulated data sets and for the steel plate data set are given in original paper VI. The
results show that prediction accuracy depends on the distance to the training data: When
the distance to the training data is large, the model gives a poor prediction with a high
probability.

4.6 Interpolation ability of models

Often the predictive power at the boundaries of the data currently on hand is an important
property in the practical utilisation of models. However, research on the interpolation
ability of models at the boundaries of the data region has not been published previously.
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The problem is that the generalisation ability of prediction models outside the data region
is very difficult to measure. Intuitively, it is reasonable to assume that models behaving
smoothly at the boundaries predict reliably in a wider volume around the data region, i.e.
they interpolate better. A model that generalises well would be very useful in process
optimisation problems and in finding novel improvements to the process. Unfortunately,
all statistical modelling techniques have major problems in predicting reliably outside
the training data. There are probably differences between the generalisation abilities of
various learning methods, but no methods for gauging the merits of different learning
methods have yet been proposed.

The upper bounds of the generalisation errors of learning methods have been derived
under the assumption that the distribution of input variables does not change (Vapnik
1998). However, in industrial practice the distribution of inputs changes because of im-
provements in the process. A model with good generalisation ability is useful in the
changing environment of industrial processes.

In original paper VII, it is proposed that the interpolation ability of models can be mea-
sured using the prediction accuracy of the validation data set observations whose distance
from the training data set is large. The distance measure developed in original paper VI
is utilised in measuring interpolation capability. In original paper VII, the interpolation
capabilities of quadratic regression, local linear regression, additive spline models, multi-
layer perceptron and support vector regression are compared. Quadratic regression and
local linear regression interpolated poorly compared with the other methods, both for sim-
ulated data sets and for the steel plate data set. The result can be explained by the unstable
boundary behavior of the quadratic terms and local fitting. The effect of model complex-
ity and meta-parameters on interpolation capability was also examined. It seemed that
model complexity does not have a strong effect on interpolation capability.



5 Application to the mechanical properties of steel plates

The methods presented in the thesis have been applied and developed for use at Ruukki’s
steel plate mill in Raahe. The research was carried out in three projects. In the first
project, a product planning tool for planning the strength margins of steel plate products
was developed. In the second project, a model for elongation was added to the developed
tool. In addition, a tool for assuring the fulfillment of the requirements of the mechanical
properties in the positioning of orders was developed for used in production planning. In
the third, currently ongoing project, a maintenance system for the developed prediction
models will be developed.

Both developed tools employ the same prediction models for tensile strength, yield
strength and elongation. The functionality of the developed tools is based on predicting
the probability of rejection in tensile testing. The probabilities are predicted on the basis
of models for the conditional mean and conditional variance. In the Ruukki application,
the term ’rejection’ means the result of a single tensile test is below the specified minimum
value. The research was based on a large data set collected from the production process
of steel plates.

5.1 Modelling the probability of rejection in a qualification test

Joint modelling of the mean and dispersion has been commonly applied to the construc-
tion of confidence intervals (Rigby & Stasinopoulos 2000, Wright & Royston 1997).
There are several proposals concerning how the confidence intervals are constructed. Let
zα/2 denote theα/2 quantile of the standard normal distribution. The basic method is to
assume normal distribution and construct the confidence interval accordingly,

CL1−α(yi) = [µ̂i −zα/2σ̂i , µ̂i +zα/2σ̂i ]. (85)

Rigby & Stasinopoulos (2000) proposed finding a Box-Cox transformation, Eq. (7), so
that the error distribution of the transformed variabley∗ = Lλ (y) is Gaussian. The mod-
elling is performed in the transformed scale. Mak (2002) proposed a sampling method for
estimating variance in the original metric. The100(1−α)% confidence interval foryi is

CL1−α(yi) = [L−1
λ (µ̂∗i −zα/2σ̂∗i ), L−1

λ (µ̂∗i +zα/2σ̂∗i )] (86)
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whereµ̂∗i andσ̂∗
i are the predicted mean and variance of the transformed response. Akritas

& van Keilegom (2001) proposed employing the empirical distribution of the standardised
residuals

F̂e(s) =
1
n

n

∑
i=1

I

(
yi − µ̂i

σ̂i
≤ s

)
(87)

to construct the confidence interval

CL1−α(yi) = [µ̂i + F̂−1
e (α/2)σ̂i , µ̂i + F̂−1

e (1−α/2)σ̂i ]. (88)

Confidence intervals constructed on the basis of the predicted mean and deviation have
been employed in medical statistics (Stasinopoulos & Rigby 2000), for example. Also
different conditional probabilities can be constructed by assuming a distribution for the
standardised residuals. In original paper III, an approach to predicting the probability
of rejection in a qualification test using joint modelling of the mean and dispersion is
proposed. Let [Ymin, Ymax] be the acceptance region of the qualification test. Then the
probability of rejection is predicted with

Pr = F

(
Ymin−µi

σ̂i

)
+1−F

(
Ymax− µ̂i

σ̂i

)
(89)

whereF(s) is the assumed cumulative distribution function of the standardised residual.
In original paper III, it is proposed to use the approximated empirical distribution function.
The approximation consists of two halves of a cumulative normal distribution whose tails
are replaced with exponential functions

F(s) = Cl e
−sγl ,when s< lc

F(s) = Φ
(

s−mc

σl

)
,when s∈ [lc,mc]

F(s) = Φ
(

s−mc

σu

)
,when s∈ [mc,uc]

F(s) = 1−Cue−sγu,when s> uc. (90)

Later it was observed that a better fit with the data can be achieved using a Box-Cox
transformed response variable. The probability of rejection is predicted by transforming
the requirementsYmin andYmax and comparing them to the cumulative standard normal
distribution

Pr = Φ

[
Lλ

(
Ymin

)−µ∗i
σ̂∗i

]
+1−Φ

[
Lλ (Ymax)− µ̂∗i

σ̂∗i

]
. (91)
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5.2 Steel plate data set

The steel plate data set utilised in the research consists of tensile test results, measure-
ments of the composition of steel, the dimensions of steel plates and slabs, the thermo-
mechanical treatments of the production process and the shape of the test bar. About 50
variables were measured and about 30 of them have an effect on the response variables.
About 225000 observations made between July 2001 and October 2005 were utilised.

In tensile testing, the test bar is drawn until it breaks. Three important mechanical
properties are measured: tensile strength (Rm), yield strength (ReH) and elongation (A5)
(Fig. 3). Elongation correlates negatively with the strengths, which are positively cor-
related. Tensile strength is considered the most important mechanical property of steel.
All steel plate products have a minimum requirement for Rm. Most of the products have
minimum requirements for ReH and A5 and a maximum requirement for Rm. Tensile
testing is used to assure fulfillment of the requirements.

Fig. 3. Measurement of mechanical properties from a tensile test curve.

Steels are the most widely used metallic material because of the wide variety of prop-
erties that can be produced at relatively low cost for different purposes. Steel plates are
produced in large-scale rolling mills. At Ruukki’s steel plate mill the focus is on produc-
ing low-alloyed hot-rolled steels with a ferritic-pearlitic microstructure. The modelling
done in this research aims at predicting the properties of these types of steels.

Many variables and mechanisms affect the mechanical properties of hot-rolled steel
plates (Honeycombe 1981). These mechanisms are controlled with alloying as well as
with heating, working, and cooling operations (thermomechanical treatments). In many
cases complicated and expensive treatments are needed to obtain the required proper-
ties for the final product. Modelling of steel properties is important because many of the
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required properties are achieved only if the interactions between composition and thermo-
mechanical treatments can be predicted and controlled reliably. Modelling of the strength
of steel is commonly applied in steel mills, and many models for strength have been cre-
ated (Hodgson & Gibbs 1992, Dumortier & Lehert 1999). One model can usually cover
only a small subset of all known steel grades.

5.3 Planning the strength margins of steel plates

Before this research work was done, planning of strength at Ruukki’s steel plate mill had
been based on an old planning model that predicts tensile strength with a linear combi-
nation of the composition of steel. The first motivation for this research was the need
to update the model to predict better under the developed production process. The de-
velopment of a new prediction model for tensile strength is reported in original paper I.
Carefully specified regression models predicted similarly to neural network models, and
it was decided to implement the regression model because of its better interpretability.

The variance of tensile strength depends strongly on several explanatory variables. It
was observed that the variance heterogeneity of strength should be taken into account in
planning the process settings for steel plate products. A large planning margin is needed
between the expected strength and the strength requirements when the variance of strength
is large. In original paper IV, an approach to planning strength margins on the basis of the
predicted probability of rejection in a tensile test is presented.

The proposed approach to planning tensile strength margins seemed to work well, and
a similar model was developed for yield strength. Both developed models were het-
eroscedastic linear regression models Eq. (32). Original paper II discusses the model
selection procedure used in the development of the models. The models were imple-
mented in a planning tool. The purpose of the planning tool is to help determine process
settings for the products in product planning. The developed planning tool is in everyday
use in Ruukki, and the number of rejections has significantly decreased after the model
was introduced. Modelling deviation in addition to the mean significantly improves the
model’s ability to prevent rejections. Details are given in original paper IV. The decrease
in rejections yields economical benefits to the steel plate mill.

One of the tasks of product planning is to define process settings separately for each
product. This is a demanding task, as there are thousands of products and every product
has many requirements for mechanical properties, alloying and the delivery condition.
On the other hand, the flexibility of the production process is important because it allows
more products to be produced in a shorter time, permits smaller orders to be accepted
and decreases the need for storage slabs. Needless alloying and expensive treatments also
have to be avoided. When the variance of mechanical properties is decreased, these goals
can be achieved more easily. The situation is controlled by determining default values
and acceptable limits for the values of the process variables for each product separately.
Figure 4 illustrates planning of steel plate products using the developed planning tool.

The prediction models are used in two process phases: before casting the slabs, where
only the target values of the composition of steel are available, and after casting, where
the composition is already measured. Uncertainty about the composition increases the
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Fig. 4. Planning of steel plate products.

variance of the mechanical properties. The deviation of the mechanical properties is about
5-20 % larger before casting, depending on the input variables. When the same prediction
model is used in both situations, the effect of the uncertainty about the composition before
casting has to be added to the prediction of the variance model. A method for estimating
the effect of uncertainty on the expected squared prediction error using the first order
Taylor approximation is proposed in original paper IV. An alternative is to fit two separate
models; the one used before casting fitted on the basis of target composition and the other
fitted on the basis of the measured composition.

5.4 Modelling the mean and variance of elongation

Because the developed models for strength were considered useful, it was decided to ex-
pand the developed planning tool by also introducing a model for elongation. At the
same time, the models for strength were updated. All three models were link-linear het-
eroscedastic regression models, Eq. (34). The models employ a transformed response
variable to achieve a normally distributed error term. The link functions for the mean and
variance were selected to maximise the fit with the data. In addition, the predicted mean
was included in the explanatory variables of the variance model. All the models have
about 120 terms in the mean model and about 30 terms in the variance model.

The functionality of the developed models is illustrated by using the developed model
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to predict the mean and variance of elongation. Figure 5 gives an overview of the variance
heterogeneity of elongation. Variance is highest when the steel plates are water-cooled or
rolled at a low temperature. Variance is also high when the plates are relatively high-
alloyed, but not very thin, and a normalising heat treatment is not applied. Variance
is lowest for steel plates to which a normalising heat treatment is applied and whose
predicted elongation is about 30.

The accuracy of the model in predicting rejections is illustrated in Fig. 6. Figure 7
is another illustration of the accuracy of the predicted probability in detecting rejections.
Only products with over 30 measurements are included. Sensitivity means the proportion
of correctly predicted rejections. Specificity means the proportion of correctly predicted
acceptances. All of the presented results are obtained from an independent test data set.

Fig. 5. Predicted deviation plotted against the predicted mean. The colours differentiate the
different production method branches.
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Fig. 6. Predicted and observed proportions of rejections. A point presents the average of a
relatively homogeneous steel plate product.

Fig. 7. ROC curve of the developed model in finding rejections in a tensile test.



6 Discussion

The methods presented in this thesis were developed for the purpose of predictive regres-
sion modelling for large industrial data sets. The presented ideas were tested using a large
data set collected from a steel plate mill, but use of the methodology is not restricted to
the steel industry. One data set does not give much evidence about the general importance
of variance heteroscedasticity in analysing industrial process data. However, the vari-
ous publications about quality improvement experiments, which are based on modelling
of conditional variance, prove that variance heteroscedasticity is common in industrial
processes. Analysis of designed experiments is a topic with a long history, but process
data-based modelling has been established only recently. It seems probable that the devel-
oped methodology for joint modelling of the mean and dispersion can improve modelling
accuracy in many kinds of industrial applications. The study demonstrates the potential
need for modelling of conditional variance for industrial model developers.

When only the mean and variance of the response are modelled, it is assumed that the
other moments of the distribution of the response are independent of the explanatory vari-
ables. In most applications, the conditional distribution of the response can be satisfacto-
rily described by modelling only the first two moments. The advantage, compared with
the usual approach of modelling only the mean, is that the conditional distribution can be
modelled more accurately. The more accurate model can then be utilised in the applica-
tions. The advantage compared with modelling of skewness is simplicity: The danger of
overfitting decreases and estimation of models is more efficient when additional parame-
ters are not estimated. It seems probable that joint modelling of the mean and dispersion
is the optimal solution in many cases: A model for conditional variance is needed, but a
model for conditional skewness is unnecessary. Sometimes this is not enough, especially
when the number of explanatory variables is small, and the conditional distribution func-
tion has to be modelled in more detail. Of course, in many cases constant variance is the
most rational assumption and variance modelling is not needed.

The optimal variance model is often less complex than the optimal mean model, be-
cause observations give more information about the mean than about variance. A large
number of observations is needed to fit a variance function that depends on several input
variables. The presented methods focused on the case where there are at least a couple of
input variables: In the case of only one or two input variables, even more detailed models
can be utilised.
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The application to the planning of strength margins shows that process data-based joint
modelling of the mean and dispersion is a useful approach that can yield economical ben-
efits when properly applied to industrial practice. The proposed approach to utilising the
predicted probability of rejection in a qualification test could have plenty of applications,
as the properties of final products have to be controlled in many industries.

6.1 Variance function estimation

Variance function fitting and mean model fitting can be accomplished separately using it-
erative methods. Thus, the form of the mean model does not constrain the learning method
used in variance function estimation. The results of the study support the approach of in-
dependently selecting the learning method used in the estimation of the conditional vari-
ance function. It is not necessary to limit the proposed methods to joint modelling of
the mean and dispersion; modern learning methods can also be utilised in the modelling
of conditional variance. Surely, the optimal learning method depends on the applica-
tion, and usually several alternatives give good results. Only a few extensive publications
about variance modelling methods have been written (Dadidian & Carroll 1987, Carroll
& Ruppert 1988, Welshet al.1994). Thus, the reviews written in this study are a relevant
complement to the existing literature.

Variance is even more sensitive to outliers than is the mean. Real but exceptional in-
stances of the process can contain very important information, which may lead to new
understanding. Selective removal of true observations from the data leads to biased mod-
els, especially when variance is modelled. Thus, removal of exceptional true observations
must be avoided. Another simple approach is to downweight observations that have been
interpreted as outliers. The problems with this approach are the same, although more ac-
ceptable. Because the problem of outliers is emphasised in variance modelling, it seems
natural to develop robust estimators for variance. The topic has been, however, rarely dis-
cussed. In our study, the bounded influence estimator Eqs. (29), (30) and (31) predicted
too small variances because of systematic downweighting of the largest squared errors.
Development of robust variance function estimators seems to be an interesting topic for
further studies.

6.2 Process data-based modelling

A model is only an approximation of complex relationships. Models are based on data, a
random instance produced by the underlying relationships. The data were collected in the
past, but the model is used to improve the future.

In model development, special attention has to be paid to the applicability of mod-
els. Before models are implemented into the production line, the economic benefit of
applying the models have to be assured. Cumbersome or needless implementations cause
complexity and costs instead of benefits. Often, the payback of model application can not
be measured directly using the average prediction accuracy of the model, such as MSE
or log-likelihood. The utility value of models should be taken into account already in
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the model development phase. Single bad predictions given by a model that usually pre-
dicts well can cause costly mistakes. The model should be accompanied with information
about the reliability of prediction.

Expected response values when using familiar settings are often known even without
a model. The model can be most valuable in predicting the properties of rarely manufac-
tured products on the basis of rare process settings. Major improvements may be realised
by using completely novel settings. Such settings can rarely be tested in the production
line, because failures would be too costly. The validity of a model cannot be assumed in
the empty parts of the data space. Optimisation of process settings has to be restricted
to the data region where the model is reliable. A model with great interpolation ability
would be very valuable in optimisation.

Because the process is usually run with familiar settings, it is quite difficult to obtain
new information using the process data. An alternative to process data-based modelling
is designed experiments. Designed experiments can give data from process settings that
have not yet been tried in production. The drawback of designed experiments is their cost.
A large number of expensive experiments would be needed to obtain an extensive data set,
especially to model variance using many design factors. The advantage of process data-
based modelling is that the data are cheap, as additional arrangements are not needed to
obtain the data for modelling. The large amount of process data facilitates more accurate
and more complex models than could be obtained using designed experiments.

6.3 Adaptive modelling

The maintenance of prediction models should be taken into account already in the imple-
mentation of the model applications. Implementation of adaptive models may sometimes
be risky, because then the prediction model can change uncontrollably. A static model
with an easy possibility for updating may often be a better alternative.

When a large amount of data is measured, it is not feasible to store all the data. The
data can include millions of measurements from the same, typical process settings. Not
all of them are needed in model fitting, and the whole data set cannot even be handled
by the learning algorithm. On the other hand, measurements using rare and experimental
process settings can be valuable for expanding the reliable prediction region of the model.
An interesting approach to model maintenance is to refit the models using exceptional
input observations for a very long time period, but only the newest observations for the
usual settings. The practical functionality of the idea needs to be studied further.

Time-dependent changes in the modelled relationships of industrial processes are dif-
ficult to formalise in a statistical framework. The changes can be related to developments
in the process, wearing of facilities or imperceptible changes in process practice. It may
be difficult to describe a stochastic process that could explain the time-varying parameters
of an industrial process model. Some of the changes are permanent, but some are tem-
porary. Some of changes are slow shifts, but some can be sudden changes. Because of
the permanent changes, the assumption about stationarity does not often hold. In spite of
that, assuming stationarity may often be rational in order to simplify adaptive modelling.

Joint modelling of the time-varying mean and time-varying dispersion is a complicated
problem. It is difficult to distinguish which part of the prediction error is due to mean
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model bias and which is due to error variance. When a time-varying phenomenon is
modelled in real time, the current parameter values are usually inaccurately estimated. Old
parameter values can be estimated more accurately, because from their point of view also
future observations are available for estimation. Obviously, differences in the accuracy of
the mean model should be taken into account in the modelling of time-varying conditional
variance. The topic is raised the first time in this thesis, and more studies are needed to
develop more efficient methods.

Industrial processes are developed, and it is clear that the variance structure sometimes
changes at the same time. However, it is unclear how important time-dependent variation
is in the conditional variance function in practical applications. If the changes in the
conditional variance function are small, the advantages of time-varying modelling can
be smaller than the cost of implementation. Adaptive modelling of variance decreases
the need for model updates. It seems probable that the proposed methods for adaptive
modelling of the variance function are useful in some cases, but not very often.

6.4 Uncertainty of prediction

Basically, it seems rational to fit the model using the same explanatory variables that are
available in the prediction phase. When only target values are available in prediction,
target values should also be used in model fitting. Then the model answers the right
question "How is the response distributed when these target values are given?". However,
if the same model is needed in several process stages, it seems attractive to fit only one
model using the measured values and to estimate the effect of using target input values
on conditional variance. In these cases, the proposed method for estimating the effect of
uncertainty about explanatory variables on variance can be utilised.

Information about the reliability of prediction is important when a model is utilised in
decision-making. The developed distance measure seems most useful when considering
the query points at the boundaries of the training data set. If the query point is clearly out-
side the data, then the prediction is not reliable. If the query point is in a dense data region,
then the prediction is reliable. But, in cases where the query point is at the boundaries
of the data, the distance can give valuable information about the reliability of prediction.
In very large data sets, the proposed distance measure is, however, computationally too
expensive for real-time applications.

The interpolation ability of models is difficult to compare in the model selection phase,
because validating model performance in the empty regions of the input space is impos-
sible. Thus, information about the interpolation capability of learning methods is very
interesting when the model application needs prediction accuracy at the boundaries of the
data. The steel plate data set is very suitable for comparing the interpolation capabilities
of learning methods: The data include observations about rare products and settings, and
several new products were introduced during the research period. In the study conducted
on interpolation capabilities, the results from the simulated data sets and the steel plate
data set supported each other. It can be concluded that the study gave a strong indication
of the differences in the interpolation capabilities of the learning methods. The topic is
interesting and important, and it would be useful to conduct further studies with other
large data sets.



7 Summary

This thesis combined two known statistical methodologies: modelling of a conditional
variance function and industrial process data-based prediction. The thesis presented meth-
ods, applications and approaches to utilising process data by means of joint modelling of
the mean and dispersion.

A comprehensive review of the methods used to model conditional variance was given.
The suitability of the methods for predictive modelling based on large industrial data sets
was evaluated and compared. It was suggested that modern statistical learning methods
can be applied to modelling of conditional variance.

The thesis highlighted the need and possibility of adaptive modelling of a time-varying
variance function. Two methods for adaptive modelling of conditional variance were
proposed, and the background for the methods was presented in detail.

Methods for estimating the uncertainty of a model’s prediction at a query point were
discussed. Variance modelling was utilised in a method developed for evaluation of the
uncertainty of prediction at early process stages, when all the explanatory variables are
not known. A novel measure of the distance between a training data set and a query point
was proposed. The method approximates the model uncertainty based on the density of
the data around the query point. The distance measure was utilised in a method devel-
oped for measuring the interpolation ability of models. A comparison of the interpolation
capabilities of different learning methods was presented. The most important result was
that local methods seem to interpolate poorly.

The developed methods were applied to a large data set related to the mechanical prop-
erties of steel plates. An approach to planning working allowances based on the predicted
probability of rejection in a qualification test was proposed. The probability of rejection
is predicted using joint modelling of the mean and dispersion. The approach was imple-
mented in a planning tool that has been successfully used in a steel plate mill to optimise
process settings. Modelling of the conditional variance of strength has yielded economic
benefits for the steel plate mill.
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