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Abstract−To obtain a uniform and large crystal in seeded batch cooling crystallization, the cooling strategy is very
important. In this study, an optimal cooling strategy is obtained through simulation and compared to linear and natural
cooling strategies. A model for a crystallization process in a batch reactor is constructed by using population balance
equation and material balance for solution concentration, and a prediction model for meta-stable limit is formulated
by the dynamic meta-stable limit approach. Based on this model, an optimal cooling strategy is obtained using genetic
algorithm with the objective function of minimizing the unwanted nucleation and maximizing the crystal growth rate.
From the simulation results, the product from the optimal cooling strategy showed uniform and large crystal size dis-
tribution while products from the other two strategies contained significant amount of fine particles.
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INTRODUCTION

The crystallization process is an important unit operation in mod-
ern industry both as a separation and purification technique. With
the rapid growth of the biochemical and pharmaceutical industries,
the importance of crystallization has been recognized even more.
Crystallization is a convenient separation technique, because this
process often yields high purities easily and mostly cheaper in energy
consumption than other techniques. The importance of a well-con-
trolled crystallization process is emphasized in the pharmaceutical
and fine chemical industries where the properties of the product
highly depend on the operating conditions of crystallization process.
Especially, the product purity can be significantly enhanced as the
particle size increases through crystallization at the final stage of
the production process [1]. The effort to obtain large crystals has
been increased significantly over the past decades [2]. However,
the mechanism and kinetics of crystallization still seem to be an art
rather than science. A good part of research interest is focused on
the modelling of the crystallization process by different mathemati-
cal techniques, because the accuracy of the process model will result
in an improved profit of the industrial crystallization. The most im-
portant objectives of the crystallization process are the yield and
purity, but equally important are the morphology and size of crys-
tals. Among these, the control of crystal size distribution (CDS) is
the main target in industrial cooling crystallizations. For controlling
the CSD of product, the most crucial manipulated variable is the tem-
perature profile of the cooling crystallizer. Depending on the cool-
ing strategy, the CSD is influenced significantly. Thus, it is very
important to understand the effect of temperature on nucleation and
growth kinetics [3].

In crystallization, it is desirable that the CSD of the final product
should be narrow and the average size as large as possible. To obtain
good quality of product through crystallization, the nucleation has
to be suppressed while the rate of crystal growth should be maxi-
mized so that the seeds grow as fast as possible while the genera-
tion of nuclei is minimized. Thus, the suppression of undesired an-
cillary nucleation after the seed crystals are fed or generated is a
crucial factor to achieve the desired CSD. For this purpose, the so-
lution is required to be carefully maintained within the meta-stable
zone, which refers to the region where spontaneous nucleation is
believed to be unlikely [4]. Many research efforts have been exerted
in the investigation of meta-stable zone. Nonetheless, its definition
has still some vagueness and the models to estimate the meta-stable
limit (MSL) have not been matured enough to be used in practical
operation. Recently, a new method to predict the MSL based on
the dynamic interpretation [5]. Even though there are many impor-
tant factors affecting the MSL behavior, the cooling rate is the most
frequently used manipulated variable to control the CSD in indus-
trial crystallization. Most common form of the MSL prediction is
the power law of the cooling rate as suggested by Nývlt [6]. Their
method regarded the MSL as a static function of cooling rate. How-
ever, their method failed to explain the MSL behaviors in different
cooling strategies. For example, if the cooling stops after a constant
cooling in meta-stable zone, their model predicts the generation of
nucleation at the moment when the cooling stops. This is clearly
different from reality. Thus, the new dynamic approach can be used
to predict the meta-stable limit and to optimize the operating condi-
tion of the crystallizer for desirable product quality. If a reliable pre-
diction of MZW is available in real-time, one may push the solution
temperature to the point where the driving force for crystal growth
is maximized while not violating the MSL so that the nucleation
can be inhibited. In cooling crystallization, the optimal operation
strategy should be close to MSL as possible and this strategy can
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be obtained by formulating a constrained optimization problem. The
objective function can be chosen as a function of the third moments
of the CSD, which represents the average crystal size and combin-
ing the closeness to MSL. If the solution temperature does not violate
the MSL during the operation, the nucleation will be minimized and
the CSD of product will be maintained as the shape of seed CSD
with grown average size.

In this study, a model for the cooling crystallization process is
constructed by using the population balance model with dynamic
meta-stable limit prediction. Then, the optimal cooling strategy is
obtained by using the genetic algorithm as an optimization method
in order to maximize the crystal growth rate while suppressing the
nucleation so that the final product CSD is as narrow as possible.
In the simulation of the crystallization process, the cooling rate has
upper and lower bound as constraints as in real processes. The op-
eration time and the final temperature are set to be identical in all
types of the cooling strategies in order to compare results of various
cooling strategy. The obtained cooling strategy can be applied to
the industrial crystallizer for desirable product. If there are some
discrepancies in actual application for optimal operation due to mod-
elling error, then the optimal cooling strategy has to be recalculated
after reducing the weight for the closeness to MSL in the objective
function so that the possibility of nucleation can be reduced.

MODEL FOR BATCH COOLING CRYSTALLIZATION

1. Dynamic Model of Meta-stable Limit
The states of solution for crystallization can be classified by three

regions in the phenomenological point of view. A stable region exists
in the unsaturated condition that more solute can be dissolved. Labile
region exists in the supersaturated condition that both nucleation
generation and crystal growth can occur in the solution. The meta-
stable region also exists in the supersaturated condition but only
crystal growth is possible and nucleation will not occur spontane-
ously. The concept of the labile and the meta-stable supersaturation
was first introduced by Wilhelm Ostwald in 1897 [4]. For maxi-
mizing crystal growth while inhibiting the nucleation, the meta-stable
limit has to be determined as exact as possible and the operating
condition should be maintained in the meta-stable region. Many
researches on predicting the meta-stable limit have been published
over a long period of time. However, the exact definition of MSL
is still not clear and its prediction is not accurate. Among tradi-
tional approaches, Nývlt in the 1970’s and 1980’s proposed that
the meta-stable zone width, ∆Tmax(c), depended on the cooling rate
directly as follows:

∆Tmax=kup (1)

where, u is the cooling rate of the solution, and the two parameters,
k and p, are dependent on the saturation concentration. This static
model in that meta-stable limit location varies only with cooling
rates has been widely accepted and used for the definition of meta-
stable limit in industrial crystallization. Despite the acute prediction
for the linear cooling case, the prediction results could not explain
the observations from the cases of variable cooling rate. For exam-
ple, when the cooling rate is turned to zero while the solution tem-
perature is lower than the saturation temperature, it yields ∆Tmax=0
since u=0. It implies that some nucleated crystals appear at the mo-

ment of stopping cooling. In reality, crystal particles would be ob-
served after some period of time from the instant when the cooling
stops. Also, when solution is cooled with constant cooling rate from
a steady state, this approach predicted that the meta-stable limit width
becomes nonzero from zero immediately. It is unnatural to assume
that a physical property changes in step manner in reality. There-
fore, it is more natural to postulate that the meta-stable limit changed
gradually separated from the saturation curve. To explain the dynamic
behavior of meta-stable limit, following 1st-order dynamic model
was proposed [5].

(2)

This model has a 1st-order dynamics of meta-stable limit width with
nonlinear input to the rate of driving force inducing supersaturation.
Three parameters, k, p, and τ depend on saturation concentration.
2. Model of Batch Crystallizer

To simplify the mathematical model, a few assumptions are em-
ployed: that the solution is well-mixed, crystal breakage and agglo-
meration are negligible, the density of the crystals as well as the
surface and volume shape factors are independent of the tempera-
ture, crystals are born at zero size and heat transfer in the solution
is neglected. With these assumptions, the population balance equa-
tion (PBE) for crystallization is obtained as in the following form.

(3)

where f denotes the population density of crystals, t is the time, L is
the size of the crystals, and G represents the growth rate. The overall
growth rate is given by

G=kg(T, L)·∆cg (4)

where ∆c is the driving force which is the difference between the
solution concentration, c, and the saturation concentration c*. The
kinetic growth rate constant, kg is given by relation below and the
parameters can be obtained from the experiments. The parameters
are dependent on temperature and length of the crystals:

(5)

The driving force is decided by the solution concentration and the
solution concentration varies as the nucleation and growth of crystal
proceed. The changes of environment for crystal formation should
be modelled by the material balance. The rate of changes in solution
concentration is entirely dependent of the rate of change in crystal
mass.

(6)

where µ3 is the third moment of the CSD which is defined as

(7)

and kv is the shape factor of crystals. To calculate the saturation con-
centration an experimental equation reported by Choi and Kim [7]
is used, which is given by the following equation as a function of
temperature.
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c*=Ce1+Ce2·T (8)

The nucleation rate, N, can have diverse forms, but the most widely
used empirical equation is given by

N=kb(T)·∆cβmax(T) (9)

This equation has a very similar form as that of the growth rate.
Then, the model for batch cooling crystallization can be constructed
by one PDE and one ODE which are the PBE and the material bal-
ance in the solution, respectively. Both equations depend on time
and indirectly on temperature and crystal size. These equations have
to be solved simultaneously. However, it is difficult and computa-
tionally expensive to solve these equations. Therefore, an additional
solution technique can be exploited. Hu et al. [8] have reported a
simple solution for PBE in a combination of discretization and meth-
od of characteristics. This method provides an effective method to
reduce the PBE to a set of algebraic equations. In this method the
population density of crystals is expressed as following equation:

(10)

and Li, j+1 is given by

(11)

These equations can be easily solved along with the ordinary differ-
ential mass balance equation.

OPTIMIZATION BASED ON GENETIC ALGORITHM

Since the nature of the problem to find the optimal cooling curve
in this study is very nonlinear and possesses many local optima,
ordinary optimization methods such as sequential quadratic pro-
gramming cannot obtain the solution. Thus, it requires an optimi-
zation technique that can find the global optimum. In this study, the
genetic algorithm (GA) is employed for finding the optimal cooling
strategy. The genetic algorithm was first suggested by John Hol-
land, who developed the idea and the framework in the late 1960s
and the early 1970s [8]. The GA is a search technique hat can be
used to find exact or approximate solutions to optimization and search
problems. It is categorized as global search heuristics. Also, it is a
particular class of evolutionary algorithms that use techniques inspired
by evolutionary biology such as inheritance, mutation, selection, and
crossover. Among many optimization approaches, GA is a popular
method in various chemical engineering problems because it has
some advantages over the other methods. The GA has flexibility
and robustness as a global search method, and it does not require
gradient information and makes relatively few assumptions about
the problem being solved. Also, it can deal with highly nonlinear
problems and non-differentiable functions as well as functions with
multiple local optima. The concept of this technique can be sum-
marized as follows. The initial population of possible solutions to
the problem is selected in a domain of independent variables, Ω,
randomly or by some strategy. Each candidate solution, which is
called a chromosome, has its own set of variables that describe the
solution. Each individual is evaluated by the objective function, and
the value of function is called the fitness of the individual. Based

on the fitness function values, the whole population is sorted and
some of them are selected according to the fitness of its individu-
als, which is called the fittest survival. Some individuals who are
randomly selected from survived individuals mate with each other
by crossover for a new generation and some are mutated randomly
for finding a global optimum. Then, the new population, which con-
sists of old and new generation, is again going through the same
selection procedure using the fittest survival strategy. Commonly,
the algorithm terminates when either a maximum number of gen-
erations has been reached and/or a fitness level has reached to a de-
sired value. To formulate the problem of this study all of the real-
valued genes in the chromosome represent cooling rates of each
time interval, and the allowable cooling rate is automatically satis-
fied by limiting the gene code within the bounds.

In this study, the optimization problems are related to the quality
of product CSD. The important objectives are to suppress nucle-
ation and to maximize the crystal mean size. So the objective func-
tion can be formulated as follows:

subject to 0≤u(t)≤50 (12)

where µ3
n and µ3

s are the third moments of the CSD of crystal formed
by nucleation and the crystal growing from the seeds, respectively.
To avoid heating and violating the allowable cooling rate, the cool-
ing rate is limited from 0 to 50 oC/hr. For the comparisons of various
types of cooling strategies, the operation time and termination tem-
perature sets to be identical. Even the cooling profile is a continu-
ous function of time; the full time span of the operation is divided
into 50 sections in order to apply the GA. The higher value for the
number of sections would not make much difference in the objec-
tive function. Thus, the number of sections has been decided based
on the calculation efficiency and computational efficiency.

RESULT AND DISCUSSIONS

The optimal cooling strategy is obtained by the GA for the ob-
jective function and constraints given in Eq. (12). To evaluate the
effectiveness of the optimal cooling curve, two other cooling strat-
egies, which are the linear and natural cooling methods, are con-
sidered. The simulation results of the linear, natural and optimal
cooling curves are shown in Figs. 1-3, respectively. For fair com-
parison, the initial and final temperatures, batch time, seed size and
amount of seeds are fixed at the same values for all cases. In Fig. 1,
the linear cooling strategy is applied. The cooling starts at 60 oC
and the solution is cooled down so that the final temperature 24 oC
at 1.5 hr linearly. In this case, the solution temperature and the meta-
stable limit cross each other in the middle of the operation, at which
the nucleation occurs. Even though two lines cross back later so
that the nucleation stops, the generated nuclei will grow and the
final CSD contains large number of fine particles. In Fig. 2, the na-
tural cooling strategy is applied. The natural cooling strategy has
higher cooling rate at the initial period and lower cooling rate at the
later period, which is determined by the temperature difference be-
tween the solution and constant cooling medium temperatures. In
this case also, there is a region that the solution temperature is lower
than the meta-stable limit and fine particles are generated. Thus,
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Fig. 1. Simulation results for the linear cooling curve (a) Evolution of CSD, (b) The linear cooling curve and metastable limit, (c) Seed
and newly formed crystal size distribution, (d) Solution concentration profile.

Fig. 2. Simulation results for the natural cooling curve (a) Evolution of CSD, (b) The natural cooling curve and metastable limit, (c) Seed
and newly formed crystal size distribution, (d) Solution concentration profile.
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the final CSD has undesirable shape as the linear cooling case. The
average size of the particles for natural cooling case is larger than
that of linear cooling case, but the population density for nucleated
particles is higher. In Fig. 3, the optimal cooling strategy obtained
from the optimization solution is adopted. Since there is no viola-
tion of the meta-stable limit in the optimal cooling curve, the nu-
cleation does not occur. The product from the optimized process
has very uniform distribution as seed particles and the average crystal
size is larger than the other two cases.

Through the simulation study, the effectiveness of the optimal
cooling strategy has been verified. Since the product particle con-
tains a reduced amount of fine particles, the cake resistance will be
reduced and this will lead to facilitate the post-processes such as
filtering, washing, drying etc. If the model contains errors, the ob-
tained optimal cooling strategy may not be of great help in a real
situation. In that case, a different type of objective function can be
chosen. The most important objective in this operation is to pro-
hibit the unwanted nucleation and maximize the growth rate if pos-
sible. The increased uncertainty of the model will increase the risk
of unwanted nucleation. To reduce the risk, the concept of close-
ness of the solution temperature to meta-stable limit can be incor-
porated into the objective function. With the wider gap between
those values on the closeness, it will lead to conservative operation so
that the risk of nucleation is reduced at the cost of slower growth rate.

CONCLUSIONS

In this study, an optimal cooling strategy is obtained through sim-

ulation and compared to linear and natural cooling strategies. A mod-
el for a crystallization process in a batch reactor is constructed by
using a population balance equation and material balance for solu-
tion concentration, and the prediction model for meta-stable limit
is formulated using the dynamic meta-stable limit approach. Based
on this model, an optimal cooling strategy is obtained by using the
genetic algorithm with the objective function of minimizing the un-
wanted nucleation and maximizing the crystal growth rate. From
the simulation results, the product from the optimal cooling strategy
showed uniform and large crystal size distribution, while products
from the other two strategies contained a significant amount of fine
particles. For further study, it is necessary to verify the optimal cool-
ing strategy with the experimental results and consider the seed ef-
fects and operation time for improving productivity.

NOMENCLATURE

∆Cmax : maximum allowable super-saturation, solute kg/solvent kg
k : parameter for meta-stable limit dynamics
p : kinetic order of cooling rate for meta-stable limit dynamics
∆Tmax : maximum allowable undercooling [oC]
t : time [sec]
t : time constant for meta-stable limit dynamics [hr]
u : cooling rate [oC/hr]
kb : nucleation rate constant, crystal number/kg*min
kg : growth rate constant [m/min]
kv : volume shape factor
L : crystal size, as length [m]

Fig. 3. Simulation results for the optimal cooling curve (a) Evolution of CSD, (b) The optimal cooling curve and metastable limit, (c) Seed
and newly formed crystal size distribution, (d) Solution concentration profile.
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N : overall nucleation rate, crystal number/kg*min
f : population density
T : temperature [oC]
∆C : super-saturation, kg solute/kg solvent
β : power of nucleation rate
µ3 : third moment of the crystal size distribution
ρ : density of crystals [g/m3]
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