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Abstract

This paper focuses on modelling and predicting the acoustic field generated by

ducted point sources in close proximity to an acoustic liner. Two analytical

models are presented. The first model comprises a point monopole or dipole

source in an infinite lined duct based on an existing Green’s function. The

predictions are compared with classic solutions for a source over an infinite lined

plane and with a high frequency asymptotic duct approximation. The second

model extends the Green’s function to include a liner section of finite length

connected to hard-wall extensions by using mode-matching techniques. The

new model features the inclusion of point sources in the vicinity of an impedance

discontinuity. The accuracy of this model is demonstrated by comparison with

reference FE solutions. Both models indicate a significant impact of the source

proximity to the liner surface in the source power output. These models offer

insight on the source modification effects beyond the conventional approach in

the design of liners solely based on acoustic absorption.
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1. Introduction

Ducted fans are widely used in industry across different sectors including

aerospace, automotive and a multitude of heating, cooling and ventilation sys-

tems at various scales. Compliance with environmental noise regulations has

influenced manufacturers to treat acoustic pollution as one of the driving fac-5

tors in the design of their products. Acoustic liners have traditionally been used

in ducted systems to attenuate noise. This is especially the case in the aerospace

industry where liners are an essential treatment for turbofan noise reduction and

are universally installed in the intake and bypass ducts of modern commercial

aircraft engines. Typical designs are formed by perforated or porous face sheets10

supported by one or multiple layers of honeycomb structure. These so-called

Single-Degree-Of-Freedom (SDOF) and Multiple-Degree-Of-Freedom (MDOF)

liners are generally designed to attenuate tonal and broadband noise over a

prescribed range of frequencies to minimize the certification noise levels. The

design of innovative liner configurations, the modelling of the physics involved15

in their absorption of noise and the measurement of their acoustic behaviour

have been the subject of research for many years [1, 2, 3].

The authors of the current article are motivated by an interest in Fan Prox-

imity Liners (FPL). These are acoustic treatments installed in the duct casing

in the immediate proximity of the fan rotor. They comprise the fancase liner20

immediately upstream of the fan, Over-Tip-Rotor (OTR) liners proposed for

the fan stage itself and interstage liners between the fan and outlet guide vanes.

OTR liners have been in the spotlight following recent experimental evaluation

[4, 5, 6, 7]. Published data [5] indicate that OTR liners not only attenuate

noise by conventional absorption of acoustic energy within the liner, but also25

by modifying the strength of the source due to back reaction pressure effects,

which arise from the very close proximity of the rotor tip sources to the lined

surface.

The acoustic power generated by a point source in the presence of an acousti-

cally treated surface is different from that in the free-field or in the presence of a30
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hard-wall. Analytical models have been developed in the literature to compute

the acoustic field generated by a point source over an infinite lined plane. These

include the works of Thomasson [8] and Levine [9] for a monopole in the absence

of a background flow and 2D solutions of Brambley and Gabard [10] for a line

source with uniform flow. For ducted applications, Green’s functions have been35

published for infinite circular hollow ducts with uniform flow by Tester [11],

Zorumski [12] and Alonso [13], and generalised for annular ducts by Rienstra

and Tester [14]. Despite the availability of these analytical solutions, the im-

plications on the noise radiation of point sources located acoustically close to a

lined wall have not been fully explored in the past.40

This work focuses on modelling and predicting the acoustic power radiated

by point sources in close proximity to acoustic liners to improve understanding of

the source modification effects observed in published tests of OTR liners [4, 5, 6,

7], and the extent to which they affect overall attenuation. A preliminary report

of the current study was presented in [15]. Uniform axial mean flow has been45

assumed throughout the formulation presented here, a reasonable approximation

for fancase liners and OTR liners. The latter are generally more challenging

since the fan tip sources are then immediately adjacent to the liner surface.

Linear propagation is assumed in the current study and sources are represented

as point or distributed stationary volume velocity monopoles and oscillating50

force dipoles. The main assumptions of the proposed model for the prediction

of the noise generation of FPLs are summarised in Table 1.

Table 1: Main assumptions of the analytical FPL liner prediction model.

Geometry Axially segmented hollow circular duct

Propagation Linear

Mean flow Uniform axial (subsonic)

Impedance Locally reacting, Ingard-Myers boundary condition

Source Point and distributed stationary monopoles and dipoles

The propagation model which is based on Green’s functions for infinite hard
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or lined cylindrical hollow ducts containing uniform mean flow is described in

Section 2. The effect of source proximity to the lined wall on the source power55

output is discussed in Section 3 for an infinite lined duct. The prediction model

is modified in Section 4 to include a lined section of finite length connected to

infinite hard-wall extensions. The fan sources are placed either immediately

downstream of the lined section, to simulate a fancase liner, or within the lined

section, to simulate an OTR liner. Mode-matching is used to connect the lined60

segment to the hard-walled extensions. Challenges arise when the source is

close to the matching interfaces and this is also discussed in Section 4. Cross-

verification of key aspects of the Green’s function models against reference FEM

solutions is also presented.

While the current work is motivated by the authors’ interest in fan proxim-65

ity liners for turbofan engines, the methods presented here offer insight into a

broader class of problems in which sources are located close to lined surfaces

in ducted systems. In the results presented here the critical parameters (duct

dimensions, frequency, Mach number, etc.) are chosen however to demonstrate

the performance of such configurations in turbofan applications.70

2. Analytical model for an infinite lined duct (Green/INF)

2.1. A Green’s function for an infinite anechoic duct

Consider solutions for the steady time harmonic acoustic field generated

by an acoustic source, or distribution of sources, in a lined circular duct with

uniform axial mean flow. The problem is sketched in Fig. 1. In all analysis which75

follows non-dimensional variables will be used; distances are normalised by the

duct radius a, time by a/c0, frequency by c0/a, pressure by ρ0c
2
0, and particle

velocity by c0, where ρ0 is the fluid density and c0 is the speed of sound. The

intensity is normalised by ρ0c
3
0 and the power by ρ0c

3
0a

2. The axial mean flow

velocity U0 is normalised by c0 to give a mean flow Mach number, M = U0/c0.80

The ejωt convention has been used to define time-harmonic variables.
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Figure 1: Lateral and cross-section of the infinite circular duct problem.

A customised Green’s function G(x|y) for the above problem, where x =

(x, r, θ) denotes a field point and y = (xs, rs, θs) denotes a source location, is

defined to be a solution of the inhomogeneous convected Helmholtz pressure

equation

∂2G

∂x2
+
∂2G

∂r2
+

1

r

∂G

∂r
+

1

r2

∂2G

∂θ2
−
(

jω +M
∂

∂x

)2

G = δ(x− y) , (1)

which also satisfies the Ingard-Myers impedance boundary condition at the wall:

(
jω +M

∂

∂x

)2

G+ jωZ
∂G

∂r
= 0 at r = 1 . (2)

The Green’s function is unique if anechoic conditions exist as x→ ±∞.

An analytic Green’s function for this problem was proposed by Tester et al.

[16, 11]; extending a previous formulation for a 2D lined duct with uniform mean

flow [17]. An equivalent formulation was independently obtained by Zorumski85

[12], although some of the expressions were not given explicitly. Alonso et al.

[18, 19, 13] derived a Green’s function by solving a linear system of equations

based on a modal expansion of the solution and enforcing continuity of the

solution at the source plane.

The analytic Green’s function adopted here is the version derived by Rien-90

stra and Tester [14], expressed as a sum of non-orthogonal modes obtained by

representing the solution as a Fourier integral evaluated as a summation over

the residues. The formulation is explicit and agrees with the Green’s function

of Alonso et al. [13] when a sufficient number of modes in both solutions are

considered.95
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The Green’s function is expressed as a sum of non-orthogonal modes

G(x|y) =

∞∑
m=−∞

e−jm(θ−θs)Gm(r, x, rs, xs) , (3)

where

Gm(r, x, rs, xs) = − 1

2πj

∞∑
n=1

Jm(α±mnr)Jm(α±mnrs)

Q±mnJm(α±mn)2
e−jκ±mn(x−xs) , (4)

with

Q±mn = ±

[
(κ±mn + Ω±mnM)

(
1− m2

α±
2

mn

− Ω±
4

mn

(ωα±mnZ)2

)
− 2jMΩ±mn

ωZ

]
, (5)

and where αmn and κmn are the radial and axial eigenvalue pairs of azimuthal

order m and radial order n that satisfy the eigenvalue equation

jΩ2Jm(α) + ωαZJ ′m(α) = 0 , (6)

where Ω = ω − κM satisfies the dispersion relation

Ω2 = α2 + κ2 . (7)

Q±mn, α±mn and κ±mn are used in Eq. (4-5) for the right-running (+) and left-

running modes (-), in the regions x > xs and x < xs respectively. The solutions

of the eigenvalue equation have been obtained in the current study by using

a routine developed by Rienstra, in which the eigenvalue equation can be ex-

pressed in the form of an ODE and integrated numerically as an initial value100

problem. More details of the eigensolver and the analogous expressions for an

annular section can be found in [14].

2.2. Monopole and dipole point sources

The sound field in the duct, p(x, ω), due to distributed volume velocity

monopole sources of complex amplitude q(x, ω) and oscillating forces of ampli-

tude f(x, ω) is a solution of Eq. (1) and the boundary condition in Eq. (2) with

the delta function on the RHS of Eq. (1) replaced by the source distribution

Q(x, ω) = −
(

jω +M
∂

∂x

)
q(x, ω) + ∇ · f(x, ω) . (8)
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The general solution obtained by applying the Green’s function described in

Section 2.1 (Eq. (3-7)) is therefore

p(x, ω) =

∫
Vs

G(x,y)Q(y, ω)dVs(y) , (9)

where Vs is a volume which encloses the distributed source and Q(y, ω) = 0

on the boundary surface of Vs. Substitution of Eq. (8) into Eq. (9) and use of

integration by parts and the divergence theorem then gives

p(x, ω) =

∫
Vs

[
−jωq(y, ω)G(x,y) + q(y, ω)M

∂

∂xs
G(x,y) + f(y, ω) ·∇yG(x,y)

]
dVs(y) .

(10)

The expression for a volume velocity monopole can be readily obtained by sub-

stitution of

q(y, ω) = q0δ(x− y) , (11)

where q0 is the monopole strength, into Eq. (10) and setting f(y, ω) = 0 to give

p(x, ω) = q0

∞∑
m=−∞

e−jm(θ−θs)

(
1

2π

∞∑
n=1

Ω±mn
Jm(α±mnr)Jm(α±mnrs)

Q±mnJm(α±mn)2
e−jκ±mn(x−xs)

)
.

(12)

Similarly, the expression for an oscillating force dipole in the x − θ plane is

obtained by substitution of

f(y, ω) = f0(cos γ, 0, sin γ)δ(x− y) , (13)

where f0 is the dipole strength and γ the dipole alignment with the x axis, into

Eq. (10) and setting q(y, ω) = 0 to yield

p(x, ω) = f0

∞∑
m=−∞

e−jm(θ−θs)

(
− 1

2π

∞∑
n=1

Jm(α±mnr)Jm(α±mnrs)

Q±mnJm(α±mn)2
e−jκ±mn(x−xs)

[
κ±mn cos γ +

m

rs
sin γ

])
. (14)

The expressions presented in this section for an infinite lined duct containing

monopole and/or dipole sources will be referred as ‘Green/INF’, standing for105

an analytical Green’s function model for an INFinite lined duct.
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An infinite number of modes are needed to define the analytical solution

given by Eqs.(12-14), and not all of these can be included in practice. There-

fore, a parameter to control the series truncation is required. This determines

the number of modes included when evaluating the Green’s function. This pa-

rameter is chosen to be the Cut-Off Ratio (COR). The definition that is often

used to define the COR for a mode with radial wavenumber α is [20, 21];

COR =
α
√

1−M2

ω
. (15)

The radial wave number α increases with the mode order. For a given COR

all the modes with α smaller than ωCOR√
1−M2

are therefore included in the modal

summation. In a hard-walled duct COR=1 corresponds to the case when only

cut-on modes are included. When COR>1 the summation will include a certain110

number of evanescent modes. The evanescent modes play an important role

in the near-field of the source [14] and therefore CORs sensibly higher than

unity will often be required in the analysis which follow, since the near field

is important when the source is acoustically ‘close’ the the liner, or indeed in

Section 4, close to a mode matching interface.115

2.3. In-duct sound power

The non-dimensional acoustic axial power P (x) at each axial cross-section

(S) can be used to assess the performance of a liner. It is computed by inte-

grating the intensity field over the duct cross-section [22, 23, 24, 25]. This gives;

P (x) =

∫
S

IxdS =
1

2

∫
S

Re
{
pu∗x

(
1 +M2

)
+Mpp∗ +Muxu

∗
x

}
dS . (16)

It is common to analyse the liner acoustic performance using the Sound Power

Level (PWL) Insertion Loss (IL), defined as the power relative to the hard-wall

case in dB scale, i.e.

IL(x) = 10 log10

PH(x)

PL(x)
[dB] , (17)

where PH and PL are the acoustic power at a given cross-section for the hard-

wall and lined configurations obtained by using Eq. (16).

8



3. Source power output in hard and lined ducts

In this section, an analysis is presented of the effects that the impedance120

boundary condition, the source radial position and the excitation frequency have

on the acoustic power generated by a monopole and axial dipole point source in

infinite hard and lined ducts with and without axial uniform mean flow. Results

are presented here for a relatively large number of terms in the modal expansions

of expressions (12) and (14) (COR=5 in most cases) The effect of varying COR125

is discussed in Section 3.3. The axial acoustic power is computed on either side

of the source plane by integrating the axial intensity over the cross-section of the

duct using Eq. (16). The intensity field is obtained from the Green/INF modal

expansions of the pressure and the axial particle velocity. The intensity field

is truncated to a finite number of modal contributions and can be integrated130

analytically. The total power P radiated by the source is obtained by adding

the power radiated upstream P− and downstream P+, as indicated in Fig. 2.

Figure 2: Lateral and cross-section of the infinite circular duct problem and axial acoustic

power evaluation at the source plane.

Any axial position upstream and downstream of the source gives a unique

value for P− and P+ in the case of a hard-wall duct because there is no energy

loss as the modes propagate axially. However, power must be evaluated in the135

limit at the source plane (as x→ x−s and x→ x+
s ) for the lined case to exclude

any energy dissipated by propagation over the lined walls.

The axial power results presented here are normalised by the power radiated

by a monopole or dipole source in free-field. That is, Pd/Pf , the subscripts

d and f referring to ducted and free-field respectively. A similar analysis for140
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monopoles and dipoles has previously been published for a hard-wall duct [26].

It is extended here for lined ducts.

The power output of a monopole source over an infinite plane is also eval-

uated in this section and compared to the results obtained with the in-duct

expressions. The analytical solution of Levine [9] is used for this purpose. The145

first part of the section deals with a hard-wall duct and the second and third

parts deal with a lined duct and the comparison with the half-space problem.

The last part combines the hard-wall and lined results to assess the source

modification effects in terms of Insertion Loss.

3.1. Source power output in a hard-wall duct150

The effects of the source radial position and of the excitation frequency on

the normalised power output of the source are plotted in Fig. 3 for the hard-

wall case. The horizontal axis represents the normalised distance of the source

from the duct centerline. The results indicate that the power approaches the

free-field value when the source is located further from the wall and twice this155

value as it moves closer to the wall. The wall then acts like an image source as

demonstrated by the curves approaching a value of 2.0 as rs/a→ 1. The effect

of the image source is progressively confined to the vicinity of the wall as the

frequency increases. This behaviour occurs both for a monopole (Fig.3a) and

a dipole source (Fig.3b) and agrees with the half-plane solutions for all three160

frequencies plotted as dashed lines.

The results in Fig. 3a are plotted in Fig. 4 in terms of the radial distance

from the source to the wall (e = 1 − rs) normalised by the wavelength (λ).

Fig. 4a shows the results for a continuous set of source radial locations for a

discrete set of frequencies. Conversely, Fig. 4b shows the results for a continuous165

frequency spectrum for a set of discrete radial source positions. The ‘spikes’ in

the frequency response of Fig. 4b correspond to cut-off frequencies and occur

each time a mode cuts on or off. The curves collapse however for different source

locations and frequencies, being governed almost entirely by the ratio e/λ. The

same qualitative behaviour is evident in both the ducted solution and the half-170
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space problem and the agreement improves at higher frequencies. Although the

normalised results for a dipole are not shown here, the data collapses on the

parameter e/λ as for the monopole.

(a) (b)

Figure 3: Power generated by a (a) monopole and (b) axial dipole in a hard duct for various

radial source positions and excitation frequencies with COR=5 and M = 0 and comparison

with a half-space equivalent problem [9].

(a) (b)

Figure 4: Power generated by a monopole in a hard duct for various normalised radial source

positions (e = 1 − rs) and excitation frequencies with COR=5 and M = 0 and comparison

with a half-space equivalent problem [9].

The total power generated by a monopole and an axial dipole source for

various base flow Mach numbers is shown in Fig. 5 plotted against Helmholz

number or non-dimensional frequency (ω = ω̃a/c0). These results are compared
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to the multi-mode high-frequency Mach number expressions of Joseph et al.

[27] relating the dependence of axial sound power with and without flow for

an incoherent uniform distribution of sources of arbitrary spatial and temporal

order over the duct cross-section. In particular, for the monopole and axial

dipole considered in this section;

P+(M)

P+(0)
=


1

1+M2 , monopole

3[M4+M3−M2−2M−2(1−M2) ln(1+M)]
M3(1−M2) , axial dipole .

(18)

Note that these expressions are for the acoustic axial power radiated downstream

and that to obtain the total power radiated both upstream and downstream one

must calculate
PT (M)

PT (0)
=
P+(+M) + P+(−M)

2P+(0)
. (19)

It can be observed in Fig. 5 that the power generated both by a monopole

and an axial dipole increases with Mach number. The differences in the peaks175

observed at lower frequencies are attributed to a different number of modes being

cut-on, since the cut-off frequency of each mode changes with Mach number.

These trends agree with the high-frequency expressions of Eq. (18), shown in

both figures as dashed lines, as the frequency increases

(a) (b)

Figure 5: Power spectra of a (a) monopole and (b) axial dipole source for various base flow

Mach numbers and rs/a = 0.8. Dashed line: multimode high-ω limit [27].

While the trends in total power radiated by the source for different Mach

numbers are similar for the monopole and axial dipole, the proportion of acous-
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tic power radiated upstream and downstream varies substantially. The ratio

of power radiated downstream and upstream for an axial dipole is shown in

Fig. 6. The axial dipole radiates more power upstream than downstream.

The monopole radiates exactly the same power upstream and dowstream of the

source and hence is not included in Fig. 6. The high-frequency model of [27]

can be rearranged to give

P+(M)

P−(M)
=

1, monopole

−M
4+M3−M2−2M−2(1−M2) ln(1+M)

M4−M3−M2+2M−2(1−M2) ln(1−M) , axial dipole

(20)

These are shown as dashed lines in Fig. 6 and are in good agreement with the180

current results.

Figure 6: Spectra of the ratio of power radiated downstream and upstream by an axial dipole

source for various base flow Mach numbers and rs/a = 0.8. Dashed line: multimode high-ω

limit [27].

3.2. Source power output in a lined duct

In this section the analysis of Section 3.1 is applied to lined ducts. Three

values of impedance have been used to assess the impact of the liner on the trends

observed in Figs. 3-4. The impedance values used are Z = [1 + j, 1, 1− j]. The185

source power is evaluated again on either side of the source plane to characterise

the power generated by the source before it is attenuated by propagation over

the lined surface. Note that the acoustic field at the source plane contains a

singularity at the source which is represented in the Green’s function solution
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by the infinite summation of modes with complex axial wavenumbers. For190

consistency with the hard-wall case, the number of modes truncated in the

infinite mode summation is fixed again by using the hard-wall COR.

The effect of the lined surfaces is demonstrated in Fig. 7, where the results

are again plotted in terms of e/λ and the format is the same as for Fig. 4. The

trends are similar to those for the hard-wall case in that the results collapse on195

the non-dimensional e/λ for a significant range of frequencies (ω=10 to 100),

and the duct wall has little effect on the source power output provided that

the distance between the source and the wall is a significant proportion of one

wavelength, this distance depending on the source excitation frequency. As a

‘rule of thumb’, the source proximity to the wall is only important if the source200

is located within 1/2 of a wavelength from it. This result holds for all values

of impedance tested and is also applicable to a dipole source. However for

e/λ < 0.5 the value of the impedance has a significant impact on the source

power output, which can be many times higher than in free-field as e/λ tends

to zero. The same behaviour is evident in the half-space equivalent problem.205

The mechanism by which the source power output increases significantly with

its proximity to the wall is further investigated in Section 3.3.

14



(a) (b) (c)

Figure 7: Power generated by a monopole in a lined duct for various impedance values ((a)

Z = 1 + j, (b) Z = 1 and (c) Z = 1 − j), normalised radial source positions (e = 1 − rs) and

excitation frequencies with COR=5 and M = 0 and comparison to a half-space equivalent

problem [9].

3.3. The effect of the modal truncation parameter (COR) on the solution accu-

racy

Previous results in this section have been calculated with COR=5. Some210

aspects of Fig. 4 and Fig. 7 are however sensitive to COR and this is now

discussed. The number of modes included in the solution, controlled by the

COR, has a significant impact on the predicted power output for source positions

acoustically close to the lined wall. This is illustrated in Fig. 8 where the results

of Fig. 7 are reproduced for ω = 10, for a range of truncation values for COR.215

Clearly as the COR increases, the Green’s function solutions converge, and

approach more closely Levine’s result for a half-space problem. These results

appear to indicate that both for the infinite half-plane solution, and for the

current ducted solution, the source power becomes infinite as e/λ → 0. In

the ducted case this requires an increasing number of evanescent modes to be220

included in the truncated Green’s function (increasing COR) as e/λ→ 0. Three

values of COR are used in Fig. 8 (COR=1.5, 5 and 10). COR=5 gives converged

solutions for e/λ > 0.1 but higher values are required as e descreases further.
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The maximum azimuthal mode order and the total number of modes included

in the calculations for ω=10 are listed in Table 2 for each value of COR. Clearly225

very large numbers of evanescent modes must be included to give converged

solutions for very small values of e/λ.

(a) (b) (c)

Figure 8: Power generated by a monopole in a lined duct for various impedance values ((a)

Z = 1 + j, (b) Z = 1 and (c) Z = 1 − j), normalised radial source positions (e = 1 − rs) and

CORs with ω = 10 and M = 0 and comparison to a half-space equivalent problem [9].

Table 2: Modes included in the solution for ω = 10 and various COR.

COR mmax N

1 9 17

5 48 333

10 97 1294

The increase in source power illustrated in Fig. 8 as e/λ decreases and

the source moves closer to the liner surface appears to contradict experimental

evidence that shows a potential decrease in acoustic power when the source is230

close to the liner. This point is now addressed by subdividing the source power

output, Ps, into that subsequently absorbed by the lined surface, Pa, and that
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radiated to the ‘far-field’, P∞. This separation is illustrated in Fig. 9a for the

half-space problem and in Fig. 9b for the infinite lined duct. Note that in Fig.

9b the ‘far-field’ is assumed to lie a finite distance upstream and downstream235

of the source. Results are presented for the case when this is one half of a duct

radius. This is close enough to capture the proximity effects but not so large

that the power axial decay is dominant. Levine [9] provides explicit expressions

to compute Ps, Pa and P∞ for the half-space problem. In the ducted case, they

are obtained by computing the axial and radial acoustic power across prescribed240

control surfaces. This decomposition also allows for checking conservation of

energy within the control volume, since Ps should equate to (Pa + P∞).

(a)

(b)

Figure 9: Decomposition of the source power output Ps into the power observed by the liner

Pa and the power radiated to the ’far-field’ P∞ for (a) half-space problem and (b) ducted

problem.

The decomposition outlined above is illustrated in Fig. 10 for the ducted

and half-space problem. Here the three power components Ps, Pa and P∞ are
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plotted against e/λ. It is observed for both problems that Pa →∞ for e/λ→ 0245

for all three values of impedance. In contrast, the power radiated to the ‘far-

field’ is finite in all cases and generally reduces when the source is located closer

to the lined wall. This corresponds to experimental observations in [28, 29, 30].

This data indicates that although the source power increases substantially, due

to source modification effects, for sources very close to the liner surface, there250

is a commensurate increase in the absorption at the liner, with the net result

that the sound power radiated to a ‘far-field’ observer, the red curves in Fig.10,

actually decreases as the source approaches the lined surface. This is true both

for the half-space solution and for the duct problem.

(a) (b) (c)

Figure 10: Decomposition of the power generated by a monopole in a lined duct into source

power output Ps, absorbed power Pa, and radiated power P∞ (markers) for various impedance

values ((a) Z = 1 + j, (b) Z = 1 and (c) Z = 1 − j), plotted against normalised radial source

positions (e = 1 − rs) with COR=5, ω = 10 and M = 0 and comparison to a half-space

equivalent problem [9] (lines).

All results for the lined cases have been presented for M = 0. An equivalent255

decomposition to that in Fig. 10 is shown in Fig. 11 for M = 0.3. Trends

similar to those in the absence of flow can be observed. Analytical models are

not available for the half-space equivalent problem with flow.

The source power modification will vary for each combination of impedance,
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(a) (b) (c)

Figure 11: Decomposition of the power generated by a monopole in a lined duct into source

power output Ps, absorbed power Pa, and radiated power P∞ for various impedance values

((a) Z = 1+j, (b) Z = 1 and (c) Z = 1− j), plotted against normalised radial source positions

(e = 1 − rs) with COR=5, ω = 10 and M = 0.3.

source location and source excitation frequency, especially for e/λ < 0.5. Pre-260

dictions of power IL therefore involve the effects of the liner attenuation when

the sound propagates over the lined surface and the variation in the power gen-

erated by the source due to source proximity effects. This idea is explored in

greater detail in the next subsection.

3.4. Implications for PWL Insertion Loss265

The source power modifications described in Sections 3.1-3.3 can be applied

to estimates of power and power insertion loss specifically for Over-Tip-Rotor

liners. To this end, the ducted axial power will no longer be normalised by the

source power output in free field but by hard-wall values for the ducted problem.

The axial variation of the absolute PWL for a hard-walled and lined duct is

plotted against axial location in Fig. 12 for two radial locations of the source

e/λ=[0.1,0.3]. These correspond to rs/a=[0.94,0.81] respectively. The source is

located at xs = 0. The PWL IL at each axial position is obtained, as defined

in Eq. (17), as the difference between the hard-walled and lined PWLs. The

hard-wall PWL is constant and does not vary in different axial locations since
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there is no dissipative process but the lined PWL decays as the waves propagate

upstream away from the source due to the liner absorption. It has been observed

earlier in this section that the source power output also varies with the wall

impedance and frequency. PWL IL can be separated into two contributions as

follows

PWL IL(x) = TL(x) + ∆PWLs = 10 log10

PL(xs)

PL(x)
+ 10 log10

PH
PL(xs)

, (21)

where TL(x) is the Transmission Loss due to liner attenuation, and ∆PWLs270

accounts for the variation in the source power generation due to the liner

impedance, if present, and the back-reaction effects for the lined and hard-

wall cases. Note that the hard-wall power (PH) does not vary with x. This

separation of the IL into two components is plotted against axial location from

the source in Fig. 12b.275

An unusual feature of Fig. 12b is the negative insertion loss for e/λ = 0.3 at

the source plane. This is not inconsistent for this configuration. As discussed

previously, the source power output in a hard-wall duct is bounded to twice the

free-field power but it can be larger for a lined duct. Hence, close to the source

plane, the PWL in a lined duct can exceed, under certain conditions, that in a280

hard-wall, leading to noise amplification (negative IL).

The effect of the source proximity to the wall is characterised by the PWL IL

evaluated at the source plane. This provides insight into the noise modification

component, and is plotted against e/λ in Fig. 13. The noise modification effects

tend to produce a positive IL when the source is acoustically distant from the285

liner surface (large e/λ) but can lead to up to 3 dB of noise amplification as

e/λ → 0. For the current value of impedance, it seems that as long as enough

liner surface can be acoustically treated, the transmission loss will eventually

compensate for a negative ∆PWLs. However, it may not always be the case

for a short lined section, such as in OTR applications, when negative IL can290

be obtained. This is further discussed in the next section where an analysis is

presented for the case when the lined section is of finite length.

The source proximity to the wall has also an impact on the the noise atten-
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uation component of Eq. 21 since it determines the modal acoustic excitation

in the duct. That is, when the source is close to the wall the mode structure295

is dominated by high order radial modes that have peak pressure and particle

velocity near the wall. This generates local activity close to the wall, which

generally correlates with higher noise attenuation.

(a) (b)

Figure 12: Axial variation of the PWL and PWL IL for a monopole source located at xs/a = 0

in a lined (solid lines) or hard-wall (dashed lines) duct for Z = 1 + j, COR=5, ω = 10 and

M = 0.

(a) (b) (c)

Figure 13: PWL IL at the source plane for a monopole in a lined duct for various impedance

values ((a) Z = 1 + j, (b) Z = 1 and (c) Z = 1 − j) and CORs with ω = 10 and M = 0.
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4. Solution for an infinite duct with a finite length liner (Green/FINF)

The analysis in Section 3 was based on an infinite hard-walled or lined duct.300

However, in most practical applications the liner is of finite length. An analysis

is now presented for this case, that is to say an analytical Green’s function is

proposed for a Finite length liner connected to INFinite hard-wall extensions.

The resulting model will be termed ‘Green/FINF’. This model can be used to

represent a simple fan stage in which an OTR liner is modelled by a finite lined305

section. The fan noise is represented by point sources within the lined section.

A sketch of the problem is shown in Fig. 14. Note that this arrangement can

also be extended to model the effect of fancase liners in the absence of an OTR

liner by placing the noise sources just downstream of the lined section in the

hard-wall semi-infinite duct.310

Figure 14: Finite length liner within an infinite hard-wall duct.

A Green’s function for this problem is obtained by matching the Green’s

function of Section 2 to solutions of the homogeneous hard-walled problem at the

interfaces between the hard and lined sections. The mode-matching technique is

a well-established method for computing the acoustic field in ducts with changes

in wall impedance. The traditional approach for mode-mode matching is based315

on the continuity of acoustic pressure and axial particle velocity on the matching

interface. A Galerkin method of weighted residuals is often applied by using

the lined or hard-walled eigenfunctions as test functions. This transforms the

problem into a set of algebraic equations to determine the modal amplitudes for

the combined problem. Detailed descriptions of the method and its applications320
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are described in the literature [31, 32, 33].

An alternative mode-matching approach formulated by Gabard and Astley

[34] is based on the conservation of mass and momentum across the matching

interface. Both methods are identical in the absence of mean flow. When axial

mean flow is present, however, the second approach results in an additional finite325

contribution to the matching equations at the matching interface. This improves

the accuracy of the solution in the vicinity of the impedance discontinuity when

flow is present. More recently, a new mode-matching method was devised by

Oppeneer et al. [35] based on closed-form analytical integrals of the modal so-

lutions of the Pridmore-Brown equation allowing for parallel non-uniform shear330

flow, not relevant for the current work. The traditional mode-matching method

and the conservation of mass and momentum approach [34] were both imple-

mented in the current study. Analysis and results are only presented however

for the preferred mass and momentum approach.

The novelty of the analysis presented in this section lies in extending the335

Green’s function of Section 2 to include a finite length liner and in presenting the

limitations and challenges involved. Mode matching equations are used for this

purpose. A similar approach was proposed by Zorumski [12] for a circular duct

without flow and a monopole source located on the duct axis, hence considering

only axisymetric sound fields.340

4.1. The mode-matching method

A single matching interface and the nomenclature to be used are depicted

in Fig. 15.

Figure 15: Detail of the matching interface and nomenclature.
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The time-harmonic pressure field in a generic cylindrical duct can be ex-

pressed as;

p(x, r, θ) =

∞∑
m=−∞

e−jmθpm(x, r, θ) . (22)

The impedance of the liner does not vary circumferentially and no scattering

occurs between azimuthal modal orders. Therefore, the matching problem can

be solved separately for each azimuthal mode number m. Scattering is possible

however between radial modes at impedance discontinuities. The pressure field

in the hard and lined ducts for each azimuthal order m is given by;

pHm(x, r, θ) =

∞∑
n=1

(
AH+
mn Jm(αHmnr)e

−jκH+
mnx +AH−mn Jm(αHmnr)e

−jκH−
mnx

)
e−jmθ ,

(23)

pLm(x, r, θ) =

∞∑
n=1

(
AL+
mnJm(αL+

mnr)e
−jκL+

mnx +AL−mnJm(αL−mnr)e
−jκL−

mnx
)

e−jmθ ,

(24)

expressed as the superposition of right-running (+) and left-running (-) duct

modes with coefficients A+
mn and A−mn respectively. Note that the radial eigen-345

values in the hard section are the same in each direction (αH+
mn = αH−mn = αHmn).

The corresponding axial particle velocities can be obtained from the pres-

sure field by applying the non-dimensional linearised axial momentum equation.

Matching conditions at the hard/lined interface of Fig. 15 will be outlined here

for the mass/momentum ‘conservation’ approach.350

In the case of the conservation mode-matching method the non-dimensional

corrected matching conditions with uniform mean flow are given by [34]∫
S

W (pL − pH)dS = − jM2

1−M2

1

ω

∫
Γ

W
pL
ZL

dΓ , (25)

∫
S

W (uxL
− uxH

)dS =
jM

1−M2

1

ω

∫
Γ

W
pL
ZL

dΓ , (26)

where S is the cross-sectional surface of the duct, Γ is its contour and W

is a weighting function. The terms on the right-hand side represent a finite
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contribution from the bounding contour of the matching cross-section. In the

traditional pressure/velocity matching approach these terms on the right-hand

side are zero, but the additional terms have been shown to improve the accu-355

racy of the mode-matching scheme when compared to reference FE solutions,

especially in the vicinity of the impedance discontinuity [34].

Matching equations can be obtained for the conservation matching by sub-

stitution of the generic solutions of pressure and axial particle velocity into

Eqs. (25-26). The resulting matching equations for each azimuthal mode num-

ber m are given by;∫ 1

r=0

Jm(αHmn′r)
[
pLm(0, r, θ)− pHm(0, r, θ)

]
rdr = − jM2

1−M2

1

ω
Jm(αHmn′)

pLm(0, 1, θ)

Z
,

(27)

∫ 1

r=0

Jm(αHmn′r)
[
uLxm

(0, r, θ)− uHxm
(0, r, θ)

]
rdr =

jM

1−M2

1

ω
Jm(αHmn′)

pLm(0, 1, θ)

Z
,

(28)

where n′ = 1 to N . Eqs. (27-28) then give a set of 2N algebraic equations for

the modal coefficients AH±mn and AL±mn. Since the additional terms on the right

hand side of Eqs. (27-28) vanish for M = 0, the traditional and conservation360

matching equations are exactly equivalent in the absence of mean flow. The

application of the above process and evaluation of the coefficients AH±mn and

AL±mn for the case of a point source in a finite length lined section is given in

Section 4.2 to follow.

4.2. Construction of the point source solutions for a finite length liner365

The pressure field and particle velocity in each section of Fig. 14 are related

by matching conditions at the matching interfaces I-II and II-III. The contribu-

tion of the point source can be included in region II by using the superposition

principle. It is represented in the first instance by a modal expansion using

the sets of known coefficients AII±
mn,s obtained by using Green/INF. Note that

AII−
mn,s and AII+

mn,s only exist for 0 ≤ x ≤ xs and xs ≤ x ≤ lL respectively. The

corresponding expressions for axial particle velocity are omitted here but can
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easily be recovered given that

u±xmn
=
κ±mn
Ω±mn

p±mn . (29)

The Green/INF solution can then be supplemented by any solution of the ho-

mogeneous equation and still remain a solution of the inhomogeneous problem

in region II, including the point source. This introduces unknown modal co-

efficients AII±
mn into the expressions for pressure and particle velocity in this

region. The sound fields in region I and III are simply general solutions of the370

homogeneous problem for a hard-walled duct. This introduces unknown modal

coefficients AI−
mn (region I) and AIII+

mn (region III), assuming that both extensions

remain anechoic.

When the resulting expressions for pI
m and pII

m are evaluated at the I-II

interface we obtain

pI
m(0, r, θ) =

N∑
n=1

(
AI+
mnJm(αHmnr)e

−jκH+
mnxa +AI−

mnJm(αHmnr)
)

e−jmθ . (30)

pII
m(0, r, θ) =

N∑
n=1

(
AII+
mnJm(αL+

mnr) + Jm(αL−mnr)
[
AII−
mne+jκL−

mnlL +AII−
mn,se

+jκL−
mnxs

])
e−jmθ .

(31)

Similarly at interface II-III (x = lL);

pII
m(lL, r, θ) =

N∑
n=1

(
Jm(αL+

mnr)
[
AII+
mne−jκL−

mnlL +AII+
mn,se

−jκL−
mn(lL−xs)

]
+AII−

mnJm(αL−mnr)
)

e−jmθ .

(32)

pIII
m (lL, r, θ) =

N∑
n=1

(
AIII+
mn Jm(αHmnr) +AIII−

mn Jm(αHmnr)e
−jκH−

mn (lL−xa)
)

e−jmθ .

(33)

Substitution of the above expressions into the matching equations (27-28)

leads to 2N sets of algebraic equations for the various coefficients Amn at each

matching interface, totalling 4N sets of equations: AI−
mn

AII+
mn

 = T1D1

 AII−
mn

AI+
mn

+ T1,sD1,s

[
AII−
mn,s

]
, (34)
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 AIII+
mn

AII−
mn

 = T2D2

 AII+
mn

AIII−
mn

+ T2,sD2,s

[
AII+
mn,s

]
, (35)

where T1, T2, D1 and D2 are 2Nx2N transfer matrices. The matrices Ti are

square matrices which include analytic integrals of the products of the Bessel375

functions. The matrices Di are a diagonal matrices that contain the axial decay

rates at the hard and lined duct sections. These equations differ from those

used in the absence of sources within the lined section, in the inclusion of the

additional terms involving T1,s, T2,s, D1,s and D2,s on the right hand side of

Eqs.(34-35). The coefficients of these matrices are described in detail in Ap-380

pendix A.

The coefficients defined by the source model (AII±
mn,s) are known and Eqs.(34-

35) can in theory be solved to give the remaining unknown coefficients: AI−
mn,

AIII+
mn and AII±

mn. Here AI−
mn and AIII+

mn correspond to the transmitted modes

upstream and downstream into the hard-wall sections, and AII±
mn, relate to the385

reflections back into region II at the matching interfaces. Eq. (34-35) can be

written as a single system of 4N algebraic equations for the 4N unknown coef-

ficients. In principle these equations can be solved directly but in practice the

system is poorly conditioned when a significant number of evanescent modes are

included in the modal summations, as is generally the case. A simple iterative390

scheme such as that outlined in [36] can however be used to generate robust

solutions. In this case, the scheme starts by setting AII−
mn initially to zero and

computing AI−
mn and AII+

mn by using Eq. (34). Then, AII+
mn is used in Eq. (35) to

obtain AIII+
mn and a new value of AII−

mn. This loop is repeated until the variation

of each coefficient with respect to the previous iteration is lower than a specified395

tolerance δ.

As mentioned previously, an analogous formulation can be adapted to model

a fancase liner by placing the point source downstream of the lined section

(x > lL). Eq. (34-35) can then be re-written as AI−
mn

AII+
mn

 = T1D1

 AII−
mn

AI+
mn

 , (36)
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 AIII+
mn

AII−
mn

 = T2D2

 AII+
mn

AIII−
mn

+ T2,sD2,s

[
AIII−
mn,s

]
, (37)

where all the matrices are the same except for the source contributions T2,s

and D2,s now given as

T2,s =

 a −c−

b+ −d−

−1  −a

−b−

 , (38)

D2,s,ii = e−jκH+
mi (lL−xs) , (39)

where the submatrices a, b, c and d are defined in Appendix A.

Results for finite length liners have been computed by the authors by using

the above approach implemented both with the traditional and conservation

versions of matching. Both give identical results for zero flow. When flow is400

present they give results which are very similar to each other except close to

the matching interface where small changes are observed. The conservation

approach is superior in terms of its underpinning physics and will be used for

all the results presented in the remaining part of this section.

4.3. The effect of source proximity to the matching interface405

Analytical mode-matching techniques are well established for propagation

in ducts with lined sections and simple geometries. In such applications, the

‘source’ is often approximated by a set of prescribed incident duct modes propa-

gating from an unspecified source upstream or downstream of the lined segment.

However, in the current study a modal Green’s function representation is used410

to place the source within the acoustic domain of interest, and indeed to place

it close to the liner to allow for source modification. In such configurations

additional challenges arise when the source is also located acoustically close to

a matching interface. This poses a number of practical issues which are inves-

tigated in the current section.415

It has been shown in Section 3.2 that an increasing number of evanescent

modes are required to capture the back-reaction effects in the power output of a
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source as it moves closer to the duct wall. Mode-matching at liner discontinuities

must consider at least as many radial terms as those required for the point

source representation. The current implementation is controlled by the COR420

which must be chosen based on the parameter e/λ. The same number of modes

is used for mode-matching.

In practice, if the source is located relatively far from the matching plane, the

amplitudes of the evanescent modes excited by the source are highly attenuated

when evaluated at the impedance discontinuity and have little effect on the425

matched solution. Conversely, for the case when the source is located close

to a matching interface the number of cut-off modes can significantly affect the

mode-matching calculations. To illustrate this, the PWL of the field propagating

in the upstream hard-wall section (duct section I) is evaluated for a range of

source positions within region II, and plotted in Fig. 16 against COR. The non-430

dimensional length of the OTR liner used for this study is that of the NASA

W-8 test rig [7] lL = 0.2045 and the point source is an axial dipole. Solutions are

shown for M = 0 and M = 0.3. In addition to calculations for source positions

within the lined section, two additional cases are included where the source is

placed close to the interface but downstream of the lined section (xs = 1.25lL,435

fancase liner config.) and well downstream (xs = 10lL, a reference case).

It can be observed in Fig. 16 that COR=5 is generally sufficient to give

a converged solution (indicated by a horizontal line as COR increases) unless

the source is very close to the matching interface. The convergence is faster

for the reference case (xs/lL=10), where the source is well downstream of the440

lined section and of the matching planes. The back-reaction effects on the

source power caused by the proximity to the impedance discontinuity (matching

interface) can be observed by comparing PWLI for source positions xs/lL=1.25

and xs/lL=10. Even though both source locations are in the downstream hard-

wall section, the axial power reaching the upstream section can be up to 7 dB445

lower for the first of these locations closer to the matching plane (see curves for

xs/lL=[1.25,10] in Fig. 16d), suggesting potential benefits of this configuration.

When the source is located at 1% or 99% of the liner length a converged
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solution is not always achieved when flow is present. This limitation is clearly

related to the proximity of the source to the nearest matching plane relative450

to the characteristic wavelength. A value of COR=5 appears however to be

sufficient for sources located a distance 0.1λ or more from a matching plane.

In practical implementation of the proposed method, it is suggested that the

liner be extended artificially a small distance beyond the leading/trailing edge

position to avoid this issue.455

(a) (b)

(c) (d)

Figure 16: Predicted PWL in the duct section I for ω=15, rs/a = 0.99, a range of source

positions xs/lL and CORs. (a) Z=1+j ; M=0.0, (b) Z=1-j ; M=0.0, (c) Z=1+j ; M=0.3, and

(d) Z=1-j ; M=0.3.

Clearly the difficulty of obtaining a converged solution when the point source

is close to a matching plane, is analogous to that of evaluating the PWL in an

infinite lined duct at an axial plane in the near field of the source. All lined

modes carry energy, even if they are highly evanescent, leading to a slower

convergence rate of the solution closer to the source plane. This reasoning is460
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illustrated in Fig. 17 where the PWL is plotted along an infinite lined duct for

various values of COR for a source located at xs = 0. The asymptotic axial

decay is determined by the least attenuated mode. Higher-order predominantly

evanescent modes dominate in the near-field and cause slower convergence of

the solution with increasing COR when the power is evaluated close to the axial465

source location. If scattering occurs due to an impedance discontinuity within

this region, the effect of the evanescent modes cannot be ignored in matching

to the hard-walled extension.

(a) (b)

Figure 17: PWL in an infinite lined duct for ω=15, xs/a = 0, rs/a = 0.99, M=0.0, and a

range of CORs for (a) Z=1+j and (b) Z=1-j.

The power radiated by a monopole point source in an infinite lined duct

(Green/INF) and in a lined duct of finite length (Green/FINF) are now com-470

pared. This allows the impact of the finite liner length on the source proximity

effects to be assessed. The non-dimensional length of the lined section used

here is lL = 0.2045 and the source plane is located at xs/lL = 0.5. The acoustic

power Pd is evaluated in the hard-walled regions I and III for the finite length

liner, as shown in Fig. 18a. For a consistent comparison, the acoustic power475

in the infinite lined duct is evaluated at axial planes located at x = −0.5lL

and x = +0.5lL, as indicated in Fig. 18b. The results are plotted against the

normalised radial source location e/λ in Fig. 19. The trends in the source

modification effects versus source location are not significantly modified by the

impedance discontinuities at the edges of the lined section. Clearly variations480

due to the reflected modes at the impedance discontinuities are relatively small.
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(a) (b)

Figure 18: Evaluation of the acoustic power for (a) Green/INF and (b) Green/FINF used in

the comparison of Fig. 19. The evaluation cross-section is indicated by red vertical dashed

lines.

(a) (b) (c)

Figure 19: Radiated power P∞ predicted with Green/INF and Green/FINF for various

impedance values ((a) Z = 1 + j, (b) Z = 1 and (c) Z = 1 − j) and normalised radial

source positions (e = 1 − rs) with COR=5, ω = 10 and M = 0.

4.4. Cross-verification of Green/FINF with FE solutions

Reference FE computations have been performed to cross-verify the ana-

lytical solutions obtained with Green/FINF. The numerical simulations have

been obtained with the FEM commercial software ‘Simcenter 3D Acoustics’485

with adaptive polynomial order [37]. The domain used for the computations

is shown in Fig. 20. It consists of a cylindrical hard-walled duct terminated

at each end with a PML-type anechoic boundary condition and with a lined
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section, highlighted in orange, which contains a monopole point source. The

mesh is refined around the source position (rs/a = 0.95) and at the interface490

between the hard and lined duct sections.

(a) (b)

Figure 20: (a) Isometric view with lateral section and (b) lateral view of the mesh used in the

FE simulations for the cross-verification with Green/FINF.

A number of cases have been considered for frequencies ω=[5,10,15], specific

acoustic impedances Z=[1+j,1,1-j] and source positions xs/lL = [0.25,0.50,0.75,1.25].

This test matrix has been repeated for zero mean flow and M=0.3. Results for

ω=15 and Z=[1+j,1-j] are presented here but similar agreement has been found495

in the other cases considered. The conservation matching based on continuity

of mass and momentum has been used in the Green/FINF solutions. The ana-

lytical and numerical solutions are compared in Fig. 21 in terms of the sound

pressure level along the duct wall for the zero flow case. In Fig. 22 results are

shown for M = 0.3. The vertical thin lines indicate the position of the source500

plane in each case. In all analytical Green/FINF results presented in this com-

parison, a COR=5 has been used and provides converged solutions for the data

presented here. The analytical and FE solutions are in excellent agreement

both with and without flow except in the vicinity of the point source and the

matching plane.505

Apart from at the matching plane, the most significant discrepancies are

in the immediate vicinity of the source, up to 100 % at the source position
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itself. This is attributed to the difficulties in evaluating the near-field of the

source with the current analytical and numerical approaches. In the analyti-

cal solution, the Green/FINF model requires an increasingly higher number of510

evanescent modes (higher COR) to achieve a converged solution of the sound

field in the source near-field region, as illustrated in Fig. 17. In the FE solution,

this can be due to the coarseness of the mesh close to the point source when

using an adaptive polynomial order solver (FEMAO) based on an a priori error

indicator. This approach allows the use of a single mesh for a wide range of515

frequencies and the polynomial order is suitably adjusted for each frequency for

an efficient calculation while ensuring a target accuracy. However, the adaptive

order does not account well for singular behaviour near the point source and

further refinement of the mesh (h-refinement) around the source simply drives

down the interpolation order in each element. What is really needed is the in-520

clusion of enriched basis functions in the FE model, not available in standard

commercial FE software. However, the integrated effect of the source in the rest

of the solution domain is well captured.

In practical applications of the Green/FINF model one is mainly interested

in evaluating the sound radiated into the hard-wall sections upstream or down-525

stream of the lined region. Here the agreement with the FE solution is excellent,

and a detailed refinement to capture details of the sound field in the ‘source’

near field region has not been pursued.

Two additional numerical cases have been considered to ensure that multiple

sources within the lined section can be modelled accurately by Green/FINF.530

This has been done by calculating analytically the acoustic field in the duct

caused by a number of sources separately and then by superimposing the solu-

tions. The Green/FINF superimposed solutions are compared to FE solutions in

which the sources are present simultaneously. The first case comprises 3 sources

distributed axially along the lined section at xs/lL = [0.25,0.50,0.75]. The sec-535

ond case consist of three sources distributed radially for rs/a=[0.8,0.9,0.99]. The

comparisons are shown in Fig. 23 and Fig. 24.

Excellent agreement is achieved between the FE solution with multiple sources
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(a) (b)

Figure 21: Sound pressure level along the duct wall for ω=15, M=0.0 and COR=5 for (a)

Z=1+j and (b) Z=1-j. Lines: FE solution; Squares: Green/FINF solution; Blue-shaded area:

lined section.

(a) (b)

Figure 22: Sound pressure level along the duct wall for ω=15, M=0.3 and COR=5 for (a)

Z=1+j and (b) Z=1-j. Lines: FE solution; Squares: Green/FINF solution; Blue-shaded area:

lined section.

and the analytical Green/FINF predictions based on the superposition of in-

dividual acoustic fields. This comparison provides confidence in applying the540

Green/FINF model incorporating the mode-matching techniques described here,

to cases where more realistic distributed, multiple sources are present in the fan

region.
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(a) (b)

(c) (d)

Figure 23: Comparison of the predicted sound pressure level along the duct wall for ω=15

and COR=5 and the FE solution with multiple axial sources. (a) Z=1+j ; M=0.0, (b) Z=1-j

; M=0.0, (c) Z=1+j ; M=0.3, and (d) Z=1-j ; M=0.3. Blue-shaded area: lined section.

5. Conclusions

In this paper two analytical models have been used to predict the acoustic545

field generated by point monopole and dipole sources in lined ducts with uniform

mean flow. The first model, Green/INF, assumes an infinite anechoic lined

duct based on an existing Green’s function. The second model, Green/FINF,

extends the Green/INF Green’s function to include a lined section of finite length

connected to hard-wall extensions. The connection between the lined segment550

and the hard-wall extensions is obtained by using mode-matching techniques.

Both models have been used to evaluate the source power output for multiple

values of wall impedance, source proximity to the wall, frequency and mean flow

Mach number. It has been shown that the PWL Insertion Loss can be divided

into two contributions: (1) the noise attenuation, measured with the Transmis-555

sion Loss (TL), and, (2) the source modification due to the back-reaction effects

for the lined and hard-wall cases. A detailed study of contribution (2) shows
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(a) (b)

(c) (d)

Figure 24: Comparison of the predicted sound pressure level along the duct wall for ω=15 and

COR=5 and the FE solution with multiple radial sources. (a) Z=1+j ; M=0.0, (b) Z=1-j ;

M=0.0, (c) Z=1+j ; M=0.3, and (d) Z=1-j ; M=0.3. Blue-shaded area: lined section.

that the back-reaction effects become significant when the source is acoustically

close to the liner surface (e/λ < 0.5), in agreement with preliminary experi-

mental data and classical half-space analytical models. A significant number560

of evanescent modes need to be included in the models to achieve a converged

solution when the source is close to the duct wall.

The accuracy of Green/FINF has been demonstrated also by comparison

with reference FE solutions and by convergence studies. The application of

Green/FINF poses a practical challenge when point sources are located acous-565

tically close to an impedance discontinuity. The effect of evanescent modes

is then important and a significant number must be included in the solution.

Green/INF and Green/FINF indicate similar trends in predicted source modi-

fications effects. These generally reduce the source power output as the source

is located closer to the liner surface.570

This work represents the first documented study of radiation from ducted

sources (monopole and dipole) which are located very close to acoustically
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treated duct walls. The study is prompted by the authors interest in Over-

Tip-Rotor (OTR) liners for turbofan aero-engines, for which measured data is

now available. The analytic Green’s function models demonstrated in the cur-575

rent article provide an analytic tool which can be used in the preliminary design

of such liners. The current work indicates however that great care must be taken

in using this approach to ensure that a sufficient number of modes are included

in the Green’s function expansions to ensure that near field evanescent effects,

which strongly affect source modification, are correctly modelled. Some guid-580

ance is given on how this can be achieved for small values of e/λ where e is the

distance of the source from the hard or lined surface and λ is the characteristic

wavelength of the source.

The current study is a first attempt at analytic modelling of this problem.

Further work is certainly possible which might improve the fidelity of the cur-585

rent results. For example, it is a limitation of the current model that it assumes

uniform axial mean flow. While this is a reasonable assumption in the case of

OTR liners for turbofan engines, where flow onto the fan is relatively uniform

at normal operating conditions, an extension to include the effects of shear flow

and of boundary layers could be implemented by using Green’s functions based590

on the Pridmore-Brown equation. The effects of swirl might also be included

by use of Green’s functions including swirl. These constitute major extensions

however and lie well beyond the scope of the current article. The current work

would also benefit from a more representative model of the relevant fan rotor

sources, including features such as a distribution of dipoles along the fan span,595

a frequency and spatial dependency of the source strength, possibly based on

existing semi-empirical models, or the effects of rotating sources. An exten-

sion of the current work including these additional features and a preliminary

validation with measured data has been recently presented in [38].
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Appendix A. Mode-matching matrices

The mode-matching matrices are given by

T1 =

 a −c+

b− −d+

−1  c− −a

d− −b+

 , (A.1)

T2 =

 a −c−

b+ −d−

−1  c+ −a

d+ −b−

 , (A.2)

T1,s =

 a −c+

b− −d+

−1  c−

d−

 , (A.3)

T2,s =

 a −c−

b+ −d−

−1  c+

d+

 , (A.4)

where each element (i, j) of the matrix is defined as

aij =


∫ 1

r=0

J2
m(αHmir)rdr if i = j

0 if i 6= j

, (A.5)

b±ij =


κH±mj

ΩH±mj
aij if i = j

0 if i 6= j

, (A.6)

c±ij =

∫ 1

r=0

Jm(αHmir)Jm(αL±mj r)rdr +Mς±ij , (A.7)
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d±ij =
κH±mj

ΩH±mj

[
Jm(αHmir)Jm(αL±mj r)rdr

]
− ς±ij , (A.8)

and

D1,ii =

ejκL−
mi lL if i = 1, ..., N

e−jκH+
mi xa if i = N + 1, ..., 2N

, (A.9)

D2,ii =

e−jκL+
mi lL if i = 1, ..., N

e−jκH−
mi (lL−xa) if i = N + 1, ..., 2N

, (A.10)

D1,s,ii = ejκL−
mi xs , (A.11)

D2,s,ii = e−jκL+
mi (lL−xs) . (A.12)

The term ς±ij represents the additional contributions one gets by using the

continuity of mass and momentum at the matching interface instead of the

traditional condition of continuity of pressure and particle velocity. Therefore,

this term is zero in the traditional approach and is defined as follows in the

conservation approach:

ς±ij =
jM

1−M2

1

ωZ
Jm(αHmi)Jm(αL±mj ) . (A.13)

The integrals of the products of the Bessel functions can be solved analyti-

cally by using [39]:∫ a

0

J2
m(αrs)rsdrs =

1

2
J2
m(αa)

(
1− m2

α2

)
, (A.14)

∫ a

0

Jm(αrs)Jm((βrs)rsdrs =
a

α2 − β2
{βJm(αa)J ′m(βa)− αJ ′m(αa)Jm(βa)} .

(A.15)
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