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The work presents the dynamic equations of motion of a wheeled mobile robot with mecanum wheels derived 

with the use of Lagrange equations of the second kind. Mecanum wheels are a new type of wheels used in 

wheeled mobile robots and they consist of freely rotating rollers attached to the circumference of the wheels. In 

order to derive dynamic equations of motion of a wheeled mobile robot, the kinetic energy of the system is 

determined, as well as the generalised forces affecting the system. The resulting mathematical model of a 

wheeled mobile robot was generated with the use of Maple V software. The results of a solution of inverse and 

forward problems of dynamics of the discussed object are also published. 
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1. Introduction 

 
 The new type of wheels used in wheeled mobile robots (abbreviated as WMR) includes the so-called 

omnidirectional wheels, which consist of a hub and a specific number of rollers installed on the 

circumference of the hub (Fig.1) [1, 2, 3, 4, 5]. The mentioned number of rollers can vary between different 

designs of the wheels, but each of the rollers can freely rotate around its own axis. The wheels can be 

characterised by means of angle   occuring between the axis of own rotation of the wheel and the axis of 

rotation of the roller (Fig.1), which is equal in mecanum wheels 45    [6]. 

 

 

Fig.1. Model of a mecanum wheel with graphically marked angle  . 
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 The WMR considered consists of a platform, four identical mecanum wheels and four independently 

controlled direct-current motors. The mecanum wheels are in turn rigidly placed on the shafts of the 

particular motors. The virtual model of the mentioned WMR is presented in Fig.2.  

 

 
 

Fig.2. Virtual model of a WMR with mecanum wheels. 

 

 It has been assumed in the current configuration that the mecanum wheels located on the opposite 

part of the WMR have identically oriented angles   (Fig.2), which is also presented schematically in Fig.3.  

 

2. Description of kinematics of a WMR with mecanum wheels 

 

 During movement of the WMR, the mecanum wheels rotate with angular velocity l , where i 

denotes the number of the wheel (i = 1, 2, 3, 4). The radiuses of mecanum wheels R and rollers r are constant 

values that are equal for each of the four wheels. Further assumptions in regard to the WMR are presented 

graphically in Fig.3. It has also been assumed that the angle of rotation of the platform of the WMR around 

the characteristic point S is angle β. The width of the platform is 2sy, and the distances between point S, and 

the midpoints of the front and back axle (points A1, A2) are in both cases equal to sx. Furthermore, we assume 

that all the mecanum wheels are moving on a level base without skidding. 

 A WMR object with mecanum wheels can be described in a co-ordinate system xpypzp (Fig.3) 

connected with the mass centre of the WMR platform, i.e., the characteristic point S. 
 

 
 

Fig.3. Analytical model of a WMR with mecanum wheels. 

 

 The description of kinematics of the WMR in the case under consideration can also be presented in 

the form of the following equations [6, 7] 

 

     
p pSx Sy x y 1v v s s R r 0       ,  (2.1) 
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     
p pSx Sy x y 2v v s s R r 0       ,  (2.2) 

 

     
p pSx Sy x y 3v v s s R r 0       ,  (2.3) 

 

       
p pSx Sy x y 4v v s s R r 0         (2.4) 

 

where: 
pSxv - projection of velocity of point S on the xp axis, 

pSyv - projection of velocity of point S on the yp. axis. 

 Equations (2.1), (2.2), (2.3), (2.4) are equations of holonomic (geometric) constraints. Therefore, the 

WMR described with the use of the mentioned kinematic equations, is a holonomic object. 

 For this case it is also possible to present a solution of an inverse kinematics problem assuming the 

track of point S and its velocity s  in the form of the following relationships 
 

  
   

p p1 Sx Sy x y

1
v v s s

R r
      

 ,  (2.5) 

 

  
   

p p2 Sx Sy x y

1
v v s s

R r
      

 ,  (2.6) 

 

  
   

p p3 Sx Sy x y

1
v v s s

R r
      

 ,  (2.7) 

 

  
   

p p4 Sx Sy x y

1
v v s s

R r
      

 .  (2.8) 

 

 Equations (2.5), (2.6), (2.7), (2.8) can be presented in the form of a relationship presented below 
 

    spJV     (2.9) 

where 

  

1

2

3

4

 
   
 
  








,  (2.10) 

 

  

   
 
 

   
 
 

   
 
 

   
 
 

x y

x y

x y

x y

s s1 1

R r R r R r

s s1 1

R r R r R r
J

s s1 1

R r R r R r

s s1 1

R r R r R r

   
   

 
 

        
   
 
  
    

,  (2.11) 
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p

p

Sx

sp Sy

v

V v

 
 

  
 
  

.  (2.12) 

 

 In order to solve a forward kinematics problem, an inversion operation of matrix J should be 

performed. Matrix J is a rectangular matrix, therefore in order to perform its inversion one can use the 

Moore-Penrose theorem on inversion of rectangular matrices. Once the mentioned theorem is applied, the 

following relationship is obtained [8] 

 

      1
T T

odJ J J J J J
      (2.13) 

 

where matrix J+ is a pseudoinverse matrix (Moore-Penrose pseudoinverse) in relation to matrix J.  

 Matrix Jod calculated in accordance with relationship (2.13) is presented in the following matrix form 

 

  

       
       

 
 

 
 

 
 

 
 

od

x y x y x y x y

R r R r R r R r
1

J R r R r R r R r
4

R r R r R r R r

s s s s s s s s

   
      

  

 
 
 
 
 
 
 
  

  

   

.  (2.14) 

 

 The solution of a forward kinematics problem can be received from the following relationship 

 

  sp odV J  .  (2.15) 

 

 Relationship (2.15) is a source for the following equations 

 

   
pSx 1 2 3 4

R r
v

4

         
 

    ,  (2.16) 

 

   
pSy 1 2 3 4

R r
v

4

         
 

    ,  (2.17) 

 

  
   1 2 3 4

x y

R r

4 s s

         
  

     .  (2.18) 

 

 As proved in [6], a roller is a passive element and assuming the lack of skidding between the roller 

and the ground it does not affect the motion of a mecanum wheel. 

 

3. Description of dynamics of a WMR with mecanum wheels 

 
 Lagrangian formalism was used in order to obtain dynamic equations of motion of the WMR. 

Lagrange equations of the second kind for the described holonomic object can be noted in the following way 

[7, 9] 
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  j
j j

d T T
Q

dt q q

  
     

  (3.1) 

 

where: j = 1, 2,...,s, T – kinetic potential, jq  - value of the j-th generalised coordinate, jQ  – value of the j-th 

generalised force, s - number of degrees of the system’s freedom. 

 Afterwards, it was assumed that the WMR moves on a level surface, therefore the kinetic potential T 

appearing in Lagrange Eq.(3.1) can be presented in the following way 

 

    kT E   (3.2) 

 

where: kE  – kinetic energy of the system. 

 Due to the above-mentioned fact that rollers in the system under analysis are passive elements, the 

influence of the rollers on the dynamics of the analysed object is omitted in further deliberations, i.e., the 

kinetic energy of the rollers, the mass of the rollers, and the mass moment of inertia related to the mentioned 

element are omitted.  

 Considering the foregoing, the motion of the WMR is related to the motion of its components, i.e., 

the WMR platform and mecanum wheels. The WMR platform moves in plane motion, whereas the mecanum 

wheels move in complex motion [7, 10, 11, 12, 13]. 

 The kinetic energy of the WMR platform kpE  can be expressed in the following way 

 

      p p zp

2 2 2
kp p Sx Sy p

1 1
E m v v I

2 2
      (3.3) 

 

where: pm  - mass of the platform, 
zppI  – mass moment of inertia of the WMR platform determined in 

relation to the zp axis, of the xpypzp co-ordinate system, passing through point S. 

 The mecanum wheels in turn move in complex motion in consequence of the rotary motion of 

wheels determined around the axis of own rotation of the mecanum wheels and the plane lifting motion of 

the WMR platform. Therefore, the kinetic energy of the wheels kmE  can be expressed in the following way 

 

        p p zp

2 2 2 2 2 2 2
km k 1 2 3 4 k Sx Sy k

1 1 1
E I 4 m v v I

2 2 2

              
      (3.4) 

 

where: km  - mass of a mecanum wheel, kI  – mass moment of inertia determined in relation to the axis of 

own rotation of the wheel, 
zpkI  – mass moment of inertia of a mecanum wheel determined in relation of the 

zp axis, of the xpypzp coordinate system, with the middle of the axis in point S. 

 The total kinetic energy of the system kE  is presented in the form of the following relationship 

 

      k kp kmE E E  .  (3.5) 

 

 Once the summation operation is performed, relationship (3.5) takes the following form 

 

     p p

2 2 2 2 2 2 2
k pc Sx Sy pc k 1 2 3 4

1 1 1
E m v v I I

2 2 2
                  (3.6) 

 

where: pcm  and pcI  are in the following relationships 
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  pc p km m 4m  ,  (3.7) 

 

  pcI  = 
zp zpp kI 4I .  (3.8) 

 

 Next, in order to simplify the notation of the kinetic energy of the system kE , ancillary variables are 

adopted in the form of formulas presented below 

 

  
 2pcm R r

A
8


 ,  (3.9) 

 

  
 

 

2
pc

2

x y

I R r
B

16 s s





,  (3.10) 

 

  kC I .  (3.11) 

 

 After the variables described by means of relationships (3.9), (3.10), (3.11) are introduced in the 

formula of the kinetic energy of the system (3.6), the relationship describing kinetic energy of the WMR is 

presented in the form of the following relationship 

 

  

.

2 2 2 2 2 2
k 1 2 3 4 1 4 2 3 1 2

2 2
3 4 1 2 3 4 1 3 1 4 2 3 2 4

2 2 2 2
1 2 3 4

1 1
E A2 2 2 2 4 4 B

4 2

2 2 2 2 2 2

1
C

2

                  

                    

         



         

             

   

  (3.12) 

 

 After the notation is simplified and shared factors are factored out, formula (3.12) can be noted as 

Eq.(3.13) 

 

  
   

 

 

.

2 2 2 2
k 1 2 3 4 1 4

2 3 1 2 3 4 1 3 2 4

1
E A B C A B

2

B

                

           

     

         
  (3.13) 

 

 The analysed WMR model has four degrees of freedom, therefore the generalised coordinates are 

assumed to be the following variables noted in the following form 

 

  

1 1

2 2

3 3

4 4

q

q

q

q

   
      
   
      

.  (3.14) 

 

 Figure 4 and Fig.5 present in turn the forces and moments of forces acting on pairs of mecanum 

wheels, in succession 2, 4 and 1, 3, taking into account the forces of gravity acting on the WMR platform. In 

the analysis conducted it has been assumed that the interactions of the pair of elements: engine, mecanum 
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wheel are down to the fact that the i-th mecanum wheel is propelled by means of driving moment i  (i = 1, 

2, 3, 4) originating from the i-th power transmission system. Furthermore, it has been assumed that the 

weight of the WMR platform is pG , whereas the weight of the i-th mecanum wheel is iG  and it moves on a 

flat, rough (coefficient of dry friction i ) and deformable (coefficient of rolling friction if ) surface without 

skidding. The analysis also takes into account the dry friction force iT  and the pressure force iN  for the i-th 

wheel.  

 

 
 

Fig.4. Forces and moments of forces acting on mecanum wheels no. 2 and 4. 

 

 
 

Fig.5. Forces and moments of forces acting on mecanum wheels no. 1 and 3. 

 

 Elementary work of the system of forces amounts to 

 

         1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4L N f N f N f N f                 .  (3.15) 

 

 Relationship (3.15) indicates that particular generalised forces satisfy the following equations 

 

  1 1 1 1Q N f   ,  (3.16) 

 

  2 2 2 2Q N f   ,  (3.17) 

 

  3 3 3 3Q N f   ,  (3.18) 

 

  4 4 4 4Q N f   .  (3.19) 
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 The moments of rolling friction appearing in relationships (3.16), (3.17), (3.18), (3.19) are then made 

dependant on the sense of the value of angular velocity of the wheels i  with the use of the signum function 

 

   1 1 1 1 1Q N f sgn    ,  (3.20) 

 

   2 2 2 2 2Q N f sgn    ,  (3.21) 

 

   3 3 3 3 3Q N f sgn    ,  (3.22) 

 

   4 4 4 4 4Q N f sgn    .  (3.23) 

 

 Furthermore, the following relationship is correct in the current case, which significantly simplifies 

formula (3.1) 

 

  
T

0





.  (3.24) 

 

 Considering the foregoing Lagrange Eq.(3.1) can be presented in the form of a matrix 

 

  

     

     

     

     

2
1 4 2 3

12
2 3 1 4

2

2 3
3 2 4 1

4

2
4 1 3 2

1
A B C A B B

2
Q1

A B C A B B
Qd 2

Q1dt
A B C A B B

2 Q

1
A B C A B B

2

         
                                  
         
 

   

   

   

   

. (3.25) 

 

 Once a differentiation operation is performed in relation to the matrix time located on the left side of 

the equal sign in formula (3.25), the relationship can be noted in the following way 

 

   

1 1

2 2

3 3

4 4

Q

Q
M

Q

Q

   
      
   
      






  (3.26) 

 

where matrix M is in the following relationship 

 

  

 
 

 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

A B C B B A B

B A B C A B B
M

B A B A B C B

A B B B A B C

     
          
 

     

.  (3.27) 
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 Furthermore, formula (3.26) can be transformed so as to obtain a solution of an inverse dynamics 

problem, i.e., calculate the relationships describing driving moments i  of particular mecanum wheels 

 

  

 
 
 
 

1 1 11 1

2 2 22 2

3 3 33 3

4 4 44 4

N f sgn

N f sgn
M

N f sgn

N f sgn

     
                   
             






.  (3.28) 

 

 Relationship (3.26) can also be transformed in order to obtain angular acceleration of the wheels i  

(i = 1, 2, 3, 4) 

 

  

 
 
 
 

 

1 1 1 11

2 2 2 22 1

3 3 3 33

4 4 4 44

N f sgn

N f sgn
M

N f sgn

N f sgn



    
               
          






  (3.29) 

 

where matrix 
1M 
 is in the following relationship 

 

          

       

       

   

( ) ( )
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         

 (3.30) 

 

 The analysed object can also be described in a stationary coordinate system xyz (Fig.3). When 

describing the object in an xyz coordinate system, one can use the homogeneous transformation matrixes and 

note the following equations 

 

  cos sin
pSx S Sv x y     ,  (3.31) 

 

  sin cos
pSy S Sv x y      .  (3.32) 

 

 After differentiation with respect to time of Eqs (3.31), (3.32) and Eqs (2.16), (2.17), (2.18), and then 

by means of equating them to each other, the following three relationships are obtained 

 

  
   cos sin sin cosS S S S 1 2 3 4

R r
x x y y

4

  
                 

 
         ,  (3.33) 
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   sin cos cos sinS S S S 1 2 3 4

R r
x x y y

4

  
                 

 
         ,  (3.34) 

 

  
 
   1 2 3 4

x y

R r

4 s s

         
  

     .  (3.35) 

 

 By means of introduction of angular accelerations of wheels i  (i = 1, 2, 3, 4) resulting from matrix 

relationship (3.29) in Eqs (3.33), (3.34), (3.35), a dynamic equation of motion of the WMR is obtained in the 

form of the following relationships 

 

  

  

       

cos sin sin cos
( )

sgn sgn sgn sgn ,

S S S S 1 2 3 4

1 1 1 2 2 2 3 3 3 4 4 4

R r
x x y y

4 2A C

N f N f N f N f


                



      





    

   
  (3.36) 

 

  

  
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R r
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 
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

      





    

   
  (3.37) 

 

  

 
   

     
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R r
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 
           

 

     

 

  

  (3.38) 

 

 Next, it is assumed that the WMR moves on an identical surface, which means that all the rolling 

resistance coefficients for particular wheels are equal and in the following relationship 

 

  1 2 3 4f f f f f    .  (3.39) 

 

 Once relationship (3.39) is taken into account and the notation of Eqs (3.36), (3.37), (3.38) is 

ordered, the following relationships are obtained 

 

   
      

        

cosβ β sinβ - β

sgn φ sgn φ sgn φ sgn φ ,

k
pc S S S S 1 2 3 42

1 1 2 2 3 3 4 4

4I 1
m x y y x

R rR r

f N N N N

                     


 

    

    

   

 (3.40) 

 

   
      

        
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k
pc S S S S 1 2 3 42
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4I 1
m y x x y

R rR r

f

                      


 
    

    

   

  (3.41) 
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   







   

  (3.42) 

 

 Figure 6 in turn presents force relationships, i.e., the pressure forces of particular wheels on the base 

iN , the weight of particular wheels of the WMR iG  and the weight of the platform of the WMR pG  in a 

two-dimensional projection to axes xp, zp. Furthermore, it is assumed that the centre of gravity of the WMR 

overlaps the geometric centre of the WMR platform, i.e., point S. 

 

 
 

Fig.6. Force relationships of the WMR model. 

 

 In order to determine the values of the pressure forces iN  one needs to analyse the case of 

equilibrium of the WMR positioned in accordance with Fig.6. In the discussed system, there are no forces 

acting in the direction of the xp axis. By means of projecting the present forces to the zp axis, it is possible to 

note the following equation 

 

  1 2 3 4 p 1 2 3 4N N N N G G G G G 0         .  (3.43) 

 

 The next equation can be obtained by means of calculating the general moment of the force system 

in relationship to point S. 

 

         1 2 x 3 4 x 3 4 x 1 2 xN N s N N s G G s G G s 0        .  (3.44) 

 

 It was then assumed that all the wheels are of the same weight equal to k 1 2 3 4G G G G G     and 

that the total weight of the WMR is equal to r p kG G 4G  . Therefore, Eqs (3.43) and (3.44) can be 

presented in the following form 

 

  1 2 3 4 rN N N N G 0     ,  (3.45) 
 

     1 2 x 3 4 xN N s N N s 0    .  (3.46) 

 

 Assuming in addition that 1 2N N  and 3 4N N , it is possible to solve the system of Eqs (3.45), 

(3.46) and obtain the following relationship 

 

  r
1 2 3 4

G
N N N N

4
    .  (3.47) 
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 By means of introducing relationship (3.47) in Eqs (3.40), (3.41), (3.42) the following equations are 

obtained 

 

  
 

 

          
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R r

k
pc S S S S2
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m x y y x

R r
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4

 
         

                     

    

   

  (3.48) 
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    

   

  (3.49) 
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

   

  (3.50) 

 

 The defined Eqs (3.48), (3.49), (3.50) describing the dynamics of the object can be used in the 

analysis of an inverse dynamics problem during the synthesis of control algorithm, and as a forward 

dynamics problem during simulation studies of motion control algorithms for a wheeled mobile robot with 

mecanum wheels. 

 

4. Numerical simulations 

 
 The analysis of the dynamics of the object presented in the previous chapter was used to perform 

numerical simulations for the solution of an inverse dynamics problem of a WMR with mecanum wheels, 

and then the forward dynamics problem in order to perform numerical verification of correctness of the 

obtained dynamic equations of motion. The studies have been performed in the Matlab/Simulink 

environment. The following geometric dimensions of the WMR have been adopted in the simulations: 

R = 0.035[m], r = 0.015[m], sy = 0.158[m], sx = 0.095[m]. The simulations also assumed the approximation 

of the adopted profile of velocity of the characteristic point of the WMR in the form of the following 

relationship 
 

  
( ) ( )r h

S ust c t t c t t

1 1
v v

1 e 1 e
   

     
  (4.1) 

 

where: vust[m/s] is the setpoint velocity of the characteristic point of the WMR in stationary state, c[1/s] is the 

coefficient affecting the rate of change of velocity at the time of acceleration and breaking, whereas tr[s] and 

th[s] are parameters describing average acceleration and braking times. For the purpose of the approximation 

of the function ( ) sgn( )i if      appearing in dynamic equations of motion by means of a continuous 

function with subsequent continuous derivatives, a bipolar sigmoid function  ig   is used, described by 

means of the following relationship 
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   
i

i 10

2
g 1

1 e
   

  .  (4.2) 

 

 Figure 7 presents a graphical comparison of behaviours of functions ( )if   and ( )ig  . 

 
 

Fig.7. Comparison of behaviours of function f( i ) and g( i ). 

 

 In order to describe the mass of the platform and the mass of a single mecanum wheel, the following 

values have been adopted: mp = 2[kg], mk = 0.4[kg]. The mass moments of inertia appearing in dynamic 

equations of motion are equal to: Ik = 0.0005[kg·m2], 
zppI  = 0.0178[kg·m2], 

zpkI  = 0.0139[kg·m2]. Next, a 

coefficient of rolling friction has been adopted, equal to f = 0.002[m].  

 

5. Results of numerical simulations 

 
 In the course of numerical studies, a simulation was performed, presenting the motion of the 

characteristic point of the WMR on a rectilinear trajectory inclined at an angle of [rad]
6


   in relation 

to axis x of the xyz coordinate system with non-zero value of angle   [rad]t
4


    that was constant in the 

course of the simulation The position parameters of the initial characteristic point of the WMR in the 

discussed numerical situation are the following 
 

   sx 0 0 ,        sy 0 0 ,        [rad]0
4


   , 

 

     , s sx 0 0 y 0 0   ,       0 0  .  

 

 In accordance with the previous description, the trajectory of the motion of the characteristic point of 

the WMR in this case is described by the following relationship 

 

  
π

( ) tgs s sy x x
6

   
 

.  (5.1) 
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 The results of numerical studies for the discussed simulation are presented in Figs 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17. The trajectory of motion of the characteristic point of the WMR is presented graphically 

together with the configuration of the platform of the WMR in Fig.8. 

 

 
Fig.8.  Trajectory of motion of the characteristic point with graphical reflection of configuration of the 

WMR platform in the course of simulation. 

 

 Figure 9 presents the system of coordinates of the characteristic point of the WMR and the angle of 

rotation of the frame, whereas Fig.10 presents projections of velocity of the characteristic point of the WMR 

and the angular velocity of the platform of the WMR. Figure 11 in turn illustrates the solution of the inverse 

kinematics problem for the discussed case of motion of the characteristic point of the WMR, being two 

behaviours of angular velocity identical to the pairs of wheels no. 1, 4 and 2, 3. 

 

 
Fig.9.  Behaviours of the set kinematic parameters of the characteristic point of the WMR:    , s sx t y t  and 

 t . 
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Fig.10. Behaviours of the set kinematic parameters of the characteristic point of the WMR:    , s sx t y t   and  t . 
 

 
Fig.11. Behaviours of angular velocities of wheels no. 1, 2, 3, 4 

 

 Figure 12 presents angular accelerations of the wheels i  (i  = 1, 2, 3, 4). Figure 13 in turn presents 

the solution of the inverse dynamics problem, which for the discussed case of motion of the characteristic 

point of the WMR are two behaviours of driving moments of mecanum wheels identical for the pairs of 

wheels no. 1, 4 and 2, 3. 
 

 
Fig.12. Behaviours of angular accelerations of wheels no. 1, 2, 3, 4. 
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Fig.13. Behaviours of driving moments of wheels no. 1, 2, 3, 4. 
 

 For the purpose of verification of the correctness of the derived dynamic equations of motion, a 

forward dynamics problem has been solved, results of which are illustrated in Fig.14 and Fig.15. 
 

 
 

Fig.14. Solution of a forward dynamics problem: behaviours:    , s sx t y t  and  t . 
 

 
 

Fig.15. Solution of a forward dynamics problem: behaviours    , s sx t y t   and  t . 
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 The difference between the set kinematic behaviours (Figs 9 and 10), and the kinematic behaviours 

obtained as a result of solution of a forward dynamics problem (Figs 14 and 15) is presented graphically in 

Figs 16 and 17. 

 

 
 

Fig.16.  Calculation errors of coordinates of the characteristic point of the WMR: ( ), ( )
s sx ye t e t  and the angle 

of rotation of the frame ( )e t . 

 

 
 

Fig.17.  Calculation errors of the projections of velocity of the characteristic point of the WMR: 

   ,
s sx ye t e t   and the angular speed of the frame ( )e t . 

 

 Maple V software for symbolic operations has been used in the course of generation of the 

mathematical description of the WMR. 
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6. Conclusions  

 
 This work contains an analysis of the dynamics of a four-wheeled WMR with mecanum wheels with 

the use of Lagrange equations of the second kind without multipliers. The mentioned formalism enables the 

creation of a description of the dynamics of the object in the form that allows its application in the 

construction of control systems and in simulation studies. The presented analysis of the dynamics of WMR 

was conducted for the purpose of a synthesis of tracked motion control algorithms for the discussed object. 

 The conducted theoretical considerations allowed numerical simulations presenting a solution of the 

inverse dynamics problem for the motion of the characteristic point of the discussed object on the set 

trajectory with the determined configuration of the platform. In order to verify the correctness of the obtained 

solutions, the results of the forward dynamics problem are also presented, which are in turn compared with 

the set behaviours. As a result, small errors were obtained (order of magnitude 10-5[m]), which confirmed the 

correctness of the entirety of numerical studies and the correctness of the derived dynamic equations of 

motion for the analysed object. 

 

Nomenclature 

 
 kE   – kinetic energy 

 f   – coefficient of rolling friction 

 G   – vector of weight of the element 

 I   – mass moment of inertia 

 L   – work of the system of forces 

 m  – mass of the element 

 N   – vector of pressure force 

 , R r   – radius of mecanum wheel and roller 

 sx, sy  – length and width of the platform 

 T   – vector of dry friction force  

    – angle of inclined trajectory  

    – angle of rotation of the platform 

    – construction angle of mecanum wheel 

    – coefficient of dry friction 

 v   – linear velocity 

    – driving moment of mecanum wheel 

    – angle of rotation of mecanum wheel 
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