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Modelling of ecological status of Polish lakes using deep
learning techniques
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Abstract

Since 2000, after the Water Framework Directive came into force, aquatic ecosystems’ bioassessment has acquired immense
practical importance for water management. Currently, due to extensive scientific research and monitoring, we have gathered
comprehensive hydrobiological databases. The amount of available data increases with each subsequent year of monitoring, and
the efficient analysis of these data requires the use of proper mathematical tools. Our study challenges the comparison of the
modelling potential between four indices for the ecological status assessment of lakes based on three groups of aquatic organisms,
i.e. phytoplankton, phytobenthos and macrophytes. One of the deep learning techniques, artificial neural networks, has been used
to predict values of four biological indices based on the limited set of the physicochemical parameters of water. All analyses were
conducted separately for lakes with various stratification regimes as they function differently. The best modelling quality in terms
of high values of coefficients of determination and low values of the normalised root mean square error was obtained for
chlorophyll a followed by phytoplankton multimetric. A lower degree of fit was obtained in the networks for macrophyte index,
and the poorest model quality was obtained for phytobenthos index. For all indices, modelling quality for non-stratified lakes was
higher than this for stratified lakes, giving a higher percentage of variance explained by the networks and lower values of errors.
Sensitivity analysis showed that among physicochemical parameters, water transparency (Secchi disk reading) exhibits the
strongest relationship with the ecological status of lakes derived by phytoplankton and macrophytes. At the same time, all input
variables indicated a negligible impact on phytobenthos index. In this way, different explanations of the relationship between
biological and trophic variables were revealed.
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Introduction

When the Water Framework Directive (WFD; Directive
2000/60/EC n.d.) came into force in 2000, lake assessment
based on aquatic organisms has acquired immense practical
importance. Based on the assumption that various ecosystem
components, called biological quality elements (BQEs), are

comprised of ecosystem status and reflect different aspects
of its condition, the significant development of biological
monitoring methods took place, and the approach to assess
the ecological status of aquatic ecosystems has becomewidely
used. As prescribed in Annex V ofWFD,many characteristics
of BQEs (i.e. species composition and abundance) should be
included in the assessment system, which, together with
supporting physicochemical parameters, give the overall view
of the ecological status of the water environment. Currently,
after over a decade of vast scientific research and environmen-
tal monitoring, extensive hydrobiological databases have been
gathered, which provide an opportunity to increase our knowl-
edge about the functioning of aquatic ecosystems (Carvalho
et al. 2019; Hering et al. 2010). Based on the large databases,
the precise prediction of the characteristics of BQEs and fore-
cast changes in aquatic biota under changing abiotic condi-
tions is possible (e.g. Rocha et al. 2017). Considering that the
ecological assessment is usually costly and requires extensive
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fieldwork efforts, ecological modelling may support water
managers by providing classification results into not investi-
gated waterbodies from the extrapolation based on a smaller
set of data (Benedini and Tsakiris 2013).

An ecological approach to surface water assessment and
management under WFD ensured a vast amount of ecological
data obtained in freshwater monitoring programmes both at
the national and European Union (EU) scale. However, the
limitations of monitoring data, such as their extensiveness,
variability, gaps and multiple sources of errors, can limit their
effective use (Hering et al. 2010). The above characteristics of
the data obtained in aquatic monitoring programmes allow
them to be classified as big data (Durden et al. 2017;
Hampton et al. 2013). The use of big data in various fields
of science, including freshwater research, has become com-
mon in recent years (e.g. Dafforn et al. 2016; Farley et al.
2018; Li et al. 2015). Their potential to solve complex ecolog-
ical issues will grow in the future as a result of an increase in
the existing data and the broader use of new analytical
methods (Hallgren et al. 2016; LaDeau et al. 2017; Secchi
2018). It must, however, be stressed that all of the disadvan-
tages of big datasets also require the use of adequate analytical
tools, such as random forests, genetic algorithms and deep
learning methods, which are based on artificial neural net-
works (Benedini and Tsakiris 2013; Secchi 2018; Shi 2018;
Sun and Scanlon 2019). The deep learning technics have the
potential to be applied to diverse research of any aquatic or-
ganisms (Iqbal et al. 2019; Joutsijoki et al. 2014; Tiyasha et al.
2020) as well as water quality issues (Alizadeh et al. 2018;
Kargar et al. 2020; Li et al. 2015; Zhu et al. 2019). Models
based on artificial neural networks are recommended to solve
complex and nonlinear relationships in ecological study (Park
and Lek 2016) and often provided more efficient results com-
pared with the classical modelling techniques (Heddam 2016;
Wu et al. 2014). Both, big data and machine learning tech-
niques, can also be effectively used in environmental and wa-
ter management (Sun and Scanlon 2019).

The WFD-compliant lake monitoring in Poland has started
in 2008, and initially it included phytoplankton and macro-
phytes as the only biological elements. These methods includ-
ed the Phytoplankton Multimetric for Polish Lakes (PMPL;
presented in Hutorowicz and Pasztaleniec 2014) and the
Ecological State Macrophyte Index (ESMI; presented in
Ciecierska and Kolada 2014). The method based on benthic
diatoms, the Diatom Index for Lakes (IOJ; Picinska-
Fałtynowicz and Błachuta 2010), has been introduced in rou-
tine lake monitoring since 2010 (Kolada et al. 2016). The
primary producers are strongly influenced by eutrophication
and are known to respond to changes in both abiotic and biotic
conditions clearly (Lyche-Solheim et al. 2013). In the assess-
ment of the ecological status, these elements are complemen-
tary. The response of elements with a short-generation time,
i.e. phytoplankton and benthic diatoms, to water nutrient

enrichment is rapid and direct, but it could be temporary. In
contrast, macrophytes respond slowly but they mirror long-
term trends. Within the monitoring of these elements, data
from several hundred lakes have already been collected so
far, and the amount of data is growing with each subsequent
year. The other biological indices required for the WFD-
compliant monitoring, i.e. these based on macrozoobenthos
and fish, have been elaborated relatively recently in Poland
and are available from a limited number of lakes so far. They
are also not sufficiently verified and tested on a national level;
therefore, they were not analysed in this study.

The study aimed to challenge modelling of the ecological
status of lakes based on the five fundamental eutrophication
parameters of water using artificial neural networks (ANNs).
We attempted to reveal the major environmental variables
predicting the pattern of autotroph communities.
Additionally, we explored whether the data gathered in na-
tional monitoring programmes can be efficiently used in eco-
logical modelling, providing good quality predictive models
and showing possible application for water management. We
hypothesised that the deep learning techniques based on se-
lected, easily measurable, physicochemical parameters of wa-
ter could efficiently and accurately estimate the values of eco-
logical status indices, which could not be reached by a tradi-
tional statistical approach. Moreover, we analysed the impact
of eutrophication on various groups of aquatic autotrophs re-
garding the stratification regime (type of water mixing)—the
main feature of the lake abiotic typology (Kolada et al. 2005,
2017). We hypothesised that neural networks and traditional
statistical approaches deliver different information on biolog-
ical reaction to habitat factors in the lake ecosystem.
Moreover, we expected a distinctive reaction of various
groups of aquatic autotrophs to habitat variables.

Materials and methods

Data collection

Our analyses were based on 393 records (lake-years) collected
from 366 lakes located within the Polish lake districts (Fig. 1).
The selection and number of lakes used in this study provide full
representation of abiotic conditions of lakes monitored under
WFD and cover the entire range of their geographical distribu-
tion in Poland. All of the analysed lakes are lowland
(≤ 200 m a.s.l.), with non-coloured highly alkaline waters
(> 1.0 meq L-1), but they differ in trophic conditions
(Appendix Tables 3 and 4). Of them, 221 lakes (60%) stably
stratify in the summer period (stratified lakes), while 145 are
permanently mixed (polymictic lakes). The national monitoring
data on water physicochemical parameters and three main
groups of plant organisms, i.e. phytoplankton, phytobenthos
and macrophytes, collected in the years 2010–2015 were used
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in the study. The survey period covers the second River Basin
Management Plan and the bioassessment results were fully ver-
ified and reported to European Environmental Agency. Our
study included four biological indices: chlorophyll a concentra-
tion, the phytoplankton index PMPL, the macrophyte index
ESMI and the phytobenthos index IOJ. We focused on primary
producers, i.e. phytoplankton, phytobenthos and macrophytes,
because their monitoring has been carried out the longest among
all the BQEs (Kolada et al. 2016) and the availability of data is
sufficient for the use of artificial neural networks (ANNs) in
ecological status modelling (e.g. Gebler et al. 2017). The phy-
toplankton, phytobenthos and macrophyte indices have been
sufficiently verified and tested on a national level (Kolada
et al. 2016) as well as internationally intercalibrated in the pan-
European intercalibration exercise (European Commission
2011; Kelly et al. 2014; Phillips et al. 2014; Portielje et al. 2014).

Since lakes with various stratification regimes function dif-
ferently, the analyses were performed for records from strati-
fied (n = 237) and non-stratified lakes (n = 156), separately.
The significant vertical variation of water temperature, ob-
served particularly in the pelagic zone of deep lakes, is a
characteristic feature of lakes in the temperate zone. A thermal
stratification is one of the most important factors affecting
chemical and physical processes, decisive for nutrient avail-
ability, thus regulating ecological functioning, i.e. phyto-
plankton community abundance, structure and composition
during the summer (Yang et al. 2016). The essential role of
stratification in the functioning of the ecosystem makes it one

of the main criteria of the lake abiotic typology, also in Poland
(Kolada et al. 2005, 2017).

Lakes were sampled for physicochemistry and phyto-
plankton at least four times during the vegetation season,
from March to October (spring mixing, early summer, the
peak of the summer stagnation and autumn mixing). The
physicochemical parameters of the water were sampled
and analysed using standard protocols applied in routine
lake monitoring in Poland. The list of physicochemical
parameters we used was limited to fundamental eutrophi-
cation variables. They consist of total phosphorus (TP),
total nitrogen (TN), Secchi disk reading (SD), conductiv-
ity (Cond.) and oxygen concentration (O2): the mean hy-
polimnion saturation with oxygen at the peak of summer
stagnation (for stratified lakes; Appendix Table 3) or ox-
ygen content at the bottom in the summer (for non-
stratified lakes; Appendix Table 4). In the study we used
seasonal mean of all of these parameters.

For the quantitative analysis of phytoplankton, water samples
were taken in the deepest part of a lake according to a
harmonised national protocol (Hutorowicz 2009). In stratified
lakes, during the summer stagnation period, integrated water
samples were collected from the epilimnion layer, and in the
spring and autumn, from the euphotic layer. In polymictic lakes,
integrated samples were taken from the layer between
0 and 5 m. The quantitative analyses of phytoplankton followed
the standard Utermöhl method (1958). The phytoplankton
multimetric PMPL is composed of three metrics: “Chlorophyll

Fig. 1 Location of the study sites
within the Polish lakelands; black
circles, stratified lakes (n = 221),
and grey circles, non-stratified
lakes (n = 145)
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a”, “Total Biomass” and “Biomass of Cyanobacteria” (for
details see Hutorowicz and Pasztaleniec 2014).

In addition to the multimetric PMPL, we used its compo-
nent chlorophyll a (Chla) separately, as this measure is one of
the most commonly used parameters in lake assessment prac-
tice worldwide (Pasztaleniec 2016). The chlorophyll a con-
centration was analysed according to the spectrophotometric
method (PN-86/C-05560/02).

Macrophytes were investigated once a year, at the peak of
the vegetation season (from mid-June to mid-September)
using the belt transect method (Kolada et al. 2014). The mac-
rophyte multimetric ESMI is composed of three main compo-
nents: the Pielou’s index of evenness (Pielou 1975) and the
colonisation index Z, which is a ratio of a total vegetated area
and a lake area with a depth of less than 2.5 m (for details see
Ciecierska and Kolada 2014).

All lakes were studied for benthic diatoms once a year
using a standardised procedure (Kelly et al. 2014; Picinska-
Fałtynowicz and Błachuta 2010). For the majority of the lakes,
samples were taken in late summer/autumn and for nearly
20% of lakes, in spring/early summer. The phytobenthos
multimetric IOJ is calculated as a weighted mean of two mod-
ules: a trophic index derived from the diatom trophic values
according to Schaumburg et al. (2007), weighted by the factor
0.6 and the module of reference species weighted by the factor
0.4 (for details see Kelly et al. 2014).

Artificial neural networks

In the modelling of four biological indices, a deep learning
technique based on the artificial neural network was used. In
our investigation, we used the multi-layer perceptron (MLP)
type of network, which is commonly used in water quality
modelling (Tiyasha et al. 2020). The MLP has many advan-
tages such as self-adaptive iterative algorithms, highly flexible
function approximator, no need to know the mathematical
structure of the relationships studied and prior knowledge of
them, and the possibility of using in both linear and nonlinear

relationships. Of the various types of methods, the MLP is
often dedicated to nonlinear and complex data usually faced
in ecological studies (Park and Lek 2016). In our study, the
three-layer MLP was used (Fig. 2). The input layer included
five neurons corresponding to five water quality parameters
(TP, TN, SD, Cond., O2). In the output layer, there was one
neuron corresponding to each modelled biological index
(Chla, PMPL, ESMI and IOJ). The number of neurons in
the hidden layer was determined in the learning process; ac-
cording to recommendations by Fletcher and Goss (1993), it
ranged from 5 (2n1/2 + m) to 11 (2n + m), where n is the
number of input neurons andm the number of output neurons.
The algorithm of Broyden-Fletcher-Goldfarb-Shanno (BFGS)
was used to adjust the weights of the networks. Among other
algorithms that are available in the STATISTICA software
(Scaled Conjugate Gradient and Gradient Descent), the
BFGS algorithm allowed to obtain the best quality models
(Dell Inc. 2016). Before the ANN learning, the database was
divided into three independent subsets. The training dataset
used in the first phase of ANN learning consisted of 70% of
the data. For the validation and testing dataset, 30% of re-
search records were used (15% in each dataset). The testing
dataset was used only for final model evaluation, and it was
not available for the learning process.

Prior to the modelling, the r-Pearson correlation coefficient
was also calculated to determine whether the input variables
were correlated with each other (Appendix Tables 5 and 6;
Dormann et al. 2013). The correlation was also calculated to
test the relationships between physicochemical parameters
and biological metrics. Due to the different ranges of the var-
iables used, all input and output variables were standardised.
This allows to avoid the problem of misinterpretation of the
impact of variables resulting not from existing relationships
but as an effect of high variation and different units (Park and
Lek 2016). For the input variables, the autoscaling was used
(Eq. 1) as recommended for environmental variables in eco-
logical studies. For outputs, the min-max normalisation within
0.1–0.9 range was used (Eq. 2).

Fig. 2 Artificial neural networks
structure for the addressed
problem
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The performance of each network was evaluated using the
coefficient of determination (R2; Eq. 5), which describes the
proportion of the variance of output data explained by the
model. Additionally, the root mean square error (RMSE;
Eq.4) and the normalised root mean square error (NRMSE;
Eq. 5) were calculated on the basis of values of biological
indices modelled by the networks and calculated on the basis
of the botanical research. These three evaluation criteria are
among the most common used in quantification of model
quality (e.g. see overview presented by Moriasi et al. 2007).
Therefore, they are considered as easy to interpret results and
enable wide comparison with other studies.
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wherebyi is the i-th normalised value of output variable derived from

the models, y
0

i is the mean of the empirical value of each output

variable, and n is the number of repititions.

To determine the effect of each input variable on the de-
pendent output variables, sensitivity analysis was applied. It is
one of the analytical methods, which shows the importance of
predictive variables for a model (Park and Lek 2016). The
value obtained for each variable is the ratio of the mean square
error of the network without this variable and the error with a
set of all explanatory variables.

Results

Relationship between biological metrics and
physicochemical parameters

The r-Pearson correlation coefficients between environmental
input data and biological metrics were the highest between SD
and phytoplankton index PMPL in both non-stratified (−0.79)
and stratified lakes (−0.77) (Table 1). A significant and rela-
tively strong correlation was also detected between SD and
macrophyte index ESMI as well as between SD and chloro-
phyll a. Significant correlations were also found betweenmost
of the considered biological indices and nutrients (TN and TP)
as well as conductivity, but these relationships were weaker.
The lowest coefficient values and, thus, the weakest links
between variables were obtained for the phytobenthos index
IOJ.

Values of r-Pearson correlation coefficient showed no col-
linearity (r < 0.70) between the five water quality parameters
(Appendix Tables 5 and 6). Correlations between five input
variables were low both for stratified and non-stratified lakes.
The level of correlation detected did not indicate a disturbance
of the neural network analyses; thus, they were all used further
as predictors.

Table 1 r-Pearson correlation
coefficient between biological
indices and physicochemical
parameters (*p < 0.001, **p <
0.01, ***p < 0.05)

Biological indices Lake mixing type Physicochemical parameters

TP TN SD Cond. O2

Chlorophyll a Chla Stratified 0.58** 0.59* −0.69* 0.52* −0.15***

Non-stratified 0.59* 0.69* −0.68* 0.44* 0.05

Phytoplankton
multimetric

PMPL Stratified 0.45* 0.51* −0.77* 0.42* −0.22*

Non-stratified 0.41* 0.63* −0.79* 0.36* 0.05

Macrophyte
multimetric

ESMI Stratified −0.40* −0.46* 0.65* −0.38* 0.05

Non-stratified −0.34* −0.46* 0.71* −0.26** −0.02

Phytobenthos index IOJ Stratified −0.38* −0.19** 0.15*** −0.29* 0.03

Non-stratified −0.42* −0.05 0.22** −0.29* 0.13
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Performance of models

For eachmodelled index and each lake type, one networkwith
the lowest mean square error and the highest coefficient of
determination, which gives the fraction of explained variance
of the analysed dataset, was chosen. The quality of the eight
models for the three processes of network learning has been
shown in Table 2 and graphically summarised in Figs. 3–6.

Among the four biological indices, networks for Chla, both
in stratified and non-stratified lakes, had the highest precision
(Table 2). For these two networks, the values of the R2

exceeded 0.8 at every phase of the network learning. For the
final testing, which was based on independent calibration da-
ta, the determination ratio in the two lake types was 0.851 and
0.861, respectively. This means that over 85% of the variance
of the modelled variable has been explained by these two
models. Furthermore, the NRMSE values for these models
were lower than 10%. The relation between observed and
modelled values of Chla was strong (Fig. 3a and 3b). It can
also be noted that the fitness of the models is close to the
expected regression line. The quality of models for phyto-
plankton multimetric PMPL was lower compared with its sin-
gle component Chla. The performance parameters for strati-
fied and non-stratified lakes achieved by the models were
0.737 and 0.807, respectively, in the testing stage of network
learning process. Nevertheless, these networks were the last,
with the explained variance above 70 and 80%, and relatively
good fitness of modelled values was observed (Fig. 4a and
4b). The normalised errors of both PMPLmodelling networks
exceeded 10%.

The macrophyte index ESMI performed weaker compared
with networks for both phytoplankton indices, PMPL and
Chla. The coefficient of determination in the testing phase
was about 0.570 for both types of lakes, explaining less than
60% of the variability. Moreover, the normalised errors were

around 15% for these networks. The fitness of the modelled
values is shown in Fig. 5a and 5b.

For the phytobenthos index IOJ, the model quality was
significantly lower than for the other three biological indices,
and the relation between observed and modelled values of the
IOJ was relatively weak (Fig. 6a and Fig. 6b). In both analysed
networks, models explained less than 20% (stratified lakes)
and less than 36% (non-stratified lakes) of variance in the
testing procedure. Moreover, NRMSE in both cases exceeded
20%.

It can also be noted that modelling quality for non-stratified
lakes was higher than this for stratified lakes, giving a higher
percentage of variance explained by the networks and lower
values of errors. The most significant differences concerned
the IOJ index, for which variance explained for non-stratified
lakes varied between 12.4 and 16.4%, depending on the stage
of learning of the network. For the other indices, the differ-
ences were lower than 10% of the explained variance, and
they were the weakest for Chla not exceeding 5% (1.0–4.4%).

Sensitivity analysis

Sensitivity analysis demonstrated that the prediction models
for Chla and PMPL and, to some extent, for ESMI, were
primarily sensitive to changes in water transparency (Fig. 7).
These results correspondwell with the quality of the networks.
Networks, for which Secchi disk values were the most essen-
tial predictors, achieved the best prediction quality. For the
phytoplankton indices, the removal of this variable from the
models would cause an increase in error from three to more
than five times. For the majority of the other predictors, the
values were around 1, indicating their low impact on the
models. The exception was the second network for Chla,
where the strong effect of total phosphorus and total nitrogen,
next to the Secchi disk values, was also observed. The

Table 2 Performance parameters
of the artificial neural network
models for computation of four
ecological status indices
(*number of neurons in three
layers: input→ hidden→ output)

Index Dataset ANN-
structure*

R
2 RMSE

(NRMSE)
ANN-
structure*

R
2 RMSE

(NRMSE)
Stratified lakes Non-stratified lakes

Chla Training 5→7→1 0.824 0.056 (7.1%) 5→8→1 0.853 0.067 (8.4%)

Validation 0.843 0.077 (9.8%) 0.887 0.066 (9.1%)

Testing 0.851 0.046 (9.4%) 0.861 0.071 (9.8%)

PMPL Training 5→7→1 0.722 0.100 (12.6%) 5→9→1 0.809 0.092 (11.7%)

Validation 0.764 0.100 (12.9%) 0.829 0.085 (11.9%)

Testing 0.737 0.119 (15.1%) 0.807 0.100 (12.7%)

ESMI Training 5→6→1 0.589 0.096 (12.8%) 5→10→1 0.610 0.089 (13.4%)

Validation 0.562 0.106 (14.0%) 0.638 0.100 (15.4%)

Testing 0.570 0.117 (16.2%) 0.571 0.133 (16.9%)

IOJ Training 5→6→1 0.243 0.126 (16.5%) 5→10→1 0.395 0.159 (19.9%)

Validation 0.220 0.131 (20.1%) 0.344 0.150 (20.0%)

Testing 0.193 0.156 (22.8%) 0.357 0.165 (21.4%)
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apparent dominance of Secchi disk measures as a predictor
may also result from numerous relationships between most
of the analysed physicochemical parameters (Appendix
Tables 5 and 6). Although these parameters were not collinear,
they were related to each other and represented the same sig-
nal (information) to the network. The information was repre-
sented primarily by water transparency and was not doubled
by other parameters.

Conductivity seems to be a more reliable predictor in
the modelling of ESMI in non-stratified lakes compared

with stratified ones. In the sensitivity analysis, higher
values were obtained for conductivity than for Secchi
disk, whereas SD remained the most crucial predictor
in stratified lakes. For the IOJ network, meanwhile, low
values obtained in the sensitivity analysis for all input
variables indicate the negligible impact of these predic-
tors on the models, which also corresponded to the low
quality of these neural networks. In all of the analysed
networks for each index, oxygen weakly contributed to
the models.

Fig. 3 Modelled and observed normalised values of the chlorophyll a concentration in stratified (a) and non-stratified (b) lakes

Fig. 4 Modelled and observed normalised values of the phytoplankton index—PMPL in stratified (a) and non-stratified (b) lakes
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Discussion

Our study showed that national monitoring programmes
carried out under WFD requirements can be significant
sources of freshwater research data. Despite various disad-
vantages of data gathered in broad monitoring programmes
(Hering et al. 2010), they can provide valuable information
about the state and functioning of aquatic ecosystems (e.g.
Carvalho et al. 2019; Gebler et al. 2017; Kelly et al. 2016;
Kolada et al. 2016). On the contrary, it is argued in various

fields that a smaller number of data, which is more compre-
hensive and accurate, may be a more useful research mate-
rial (Faraway and Augustin 2018; O’Hare et al. 2020;
Whitaker 2018). The use of monitoring data for Polish lakes
has enabled the creation of models for four indicators of
ecological status. It was stressed that the use of appropriate
analysis methods can also significantly increase the possi-
bilities of using this type of data (Secchi 2018; Shi 2018).
The use of one of the recommended methods, deep learning
techniques (Sun and Scanlon 2019), provided efficient

Fig. 5 Modelled and observed normalised values of the macrophyte index—ESMI in stratified (a) and non-stratified (b) lakes

Fig. 6 Modelled and observed normalised values of the phytobenthos index—IOJ in stratified (a) and non-stratified (b) lakes
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results giving valuable information for environmental and
water management. The simple relationships demonstrated
in many studies (Hutorowicz and Pasztaleniec 2014;
Kolada et al. 2016) as well as in our research based on the
correlation analysis (Table 1) can be significantly supple-
mented by the results obtained using artificial neural net-
work that br ings complementary informat ion as
emphasised also by Park and Lek (2016).

The r-Pearson correlation between biological indicators
and environmental variables showed a particularly strong
relationship between water transparency (SD) and phyto-
plankton indices (PMPL, Chla). Transparency was also
strongly associated with the macrophyte index (ESMI).
Nevertheless, all these indicators were also related to
nutrients and conductivity. The effect of nitrogen was
more substantial than that of phosphorus. Extensive
studies carried out by Kolada et al. (2016) based on anal-
yses of 256 lakes surveyed in 2010–2013 showed similar
trends demonstrating a relevant correlation range between
biological indicators and nutrients to that of our research.

Ecological status assessment indices based on three main
groups of aquatic plants showed the various capability to be
modelled on the basis of physicochemical parameters of wa-
ters in the following order: phytoplankton > macrophytes >
phytobenthos. The highest model precision was obtained for
both phytoplankton indices, including the best quality for
Chla, which is a parameter that has been widely used in lake
monitoring and classification schemes as a quick and easy-to-
measure indicator of trophy (e.g. Carlson 1977). It is currently
the most common element of ecological status assessment
methods (Carvalho et al. 2013; Pasztaleniec 2016). In contrast
to Chla, the PMPL is a multimetric index consisting of three
components (“Chlorophyll a”, “Total Biomass” and
“Biomass of Cyanobacteria”), which represent a different ap-
proach to the ecological degradation assessment. As PMPL

provides more complex information about the phytoplankton
community (including both abundance and taxonomic com-
position) than chlorophyll a alone, it exhibits not only a strict
relationship with trophy parameters but also reflects the level
of lake ecological degradation (Hutorowicz and Pasztaleniec
2014). As pointed out by Reynolds (2000), there is no single
variable or relationship that will predict the taxonomic com-
position of the phytoplankton. It is extremely difficult to sep-
arate the influence of water chemistry compounds on specific
taxa within complex, environmental matrix, which includes
also physical water mixing, light availability, carbon dynam-
ics and biotic interactions. For this reason, input variables that
mainly represent trophic degradation were not sufficient for
better quality modelling of PMPL, as well as of ESMI and
IOJ.

The quality of the networks for both phytoplankton indices,
however, was comparable with similar ANN models for phy-
toplankton (e.g. Shamshirband et al. 2019; Tian et al. 2019;
Wu et al. 2014). Compared with other studies on the model-
ling of ecological status indices based on macrophytes in riv-
ers (Gebler et al. 2017, 2018), our models for macrophyte
index in lakes had a similar quality. Model quality for both
phytoplankton indices can be taken as efficient or very good
and for macrophyte index as satisfactory or good (Moriasi
et al. 2007). Moreover, a higher quality of all networks was
obtained for non-stratified lakes, and the most significant dif-
ferences of model performance were for PMPL modelling.
Better relationships between this index and water quality in
non-stratified lakes were also indicated by correlation analysis
(Hutorowicz and Pasztaleniec 2014).

The water mixing pattern highly influences the dynamics
of algae population development by determining a complex
group of drivers (i.e. depth of euphotic layer and the preva-
lence of N and P limitations) (Reynolds 2000). Generally, the
phytoplankton abundance response to nutrients increases

Fig. 7 Sensitivity analysis for all
constructed ANNs based on five
biological indices (Chla, PMPL,
ESMI and IOJ) and five
physicochemical variables in two
mixing types of lakes
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significantly as depth decreases, and deep lakes are less re-
sponsive to nutrient enrichment (Phillips et al. 2008). On the
other hand, for very shallow lakes, interactions with macro-
phytes are also likely to be important and top-down control
mediated through zooplankton grazing is likely to play a key
role in reducing planktic algae in lakes dominated by macro-
phytes. Kufel (1999), based on a Great Masurian Lakes study,
showed a strong correlation between chlorophyll a and total
phosphorus or SD in deep, stratified lakes, whereas such a
relationships were not found in shallow macrophyte-
dominated lakes. Moreover, the strength of the relationship
between nutrient concentrations and phytoplankton abun-
dance (expressed as chlorophyll a as well as phytoplankton
biomass) depends on a range of variables and the relationship
is linear; in lower nutrient concentrations at higher ranges, the
relation appears to be asymptotic (Borics et al. 2013; Phillips
et al. 2008). The ANN seems to be a powerful technique for
modelling such complex relationships, especially in situations
when the relationship is non-linear (Chen and Billings 1992).

The development of macrophytes was determined strongly
by water transparency according to ANN, although it was
slightly less evident than for phytoplankton. This was partic-
ularly evident in shallow waters, where SD revealed to be a
comparable predictor as conductivity basing on sensitivity
analysis. The relationship between conductivity and macro-
phyte development is generally strong since this factor reflects
the trophic state of lakes well (Stefanidis and Papastergiadou
2019; Szoszkiewicz et al. 2014; Toivonen and Huttunen
1995). Generally, the water transparency does have a large
influence on submerged macrophytes, whereas emergent
plants are less strongly influenced by underwater conditions
(Middelboe and Markager 1997; Stefanidis and
Papastergiadou 2019; Toivonen and Huttunen 1995).
Therefore, shallow lakes are generally more abundant in emer-
gent plants, which are less dependent on water transparency
than submerged ones, and the impact of other trophy-related
metrics is more evident.

The response of benthic diatoms to environmental factors
was weak based on both r-Pearson correlation and ANN.
Generally, diatoms are regarded as good indicators of ecolog-
ical status reacting to nutrients, dissolved inorganic carbon,
conductivity and calcium (Cellamare et al. 2012; Kelly et al.
2008). Although habitat conditions are not always quickly
reflected by macrophytes and benthic algae, diatoms with a
short-generation time usually closely follow environmental
parameters. Thus, diatoms reflect temporary water chemistry
changes, whereas macrophytes follow long-term ecological
tends (Cellamare et al. 2012; Schneider et al. 2012). In our
study benthic diatoms did not reflect water transparency,
which was obviously the most apparent habitat pattern re-
vealed by planktonic algae and macrophytes. Moreover, the
ANN was not able to identify environmental drivers influenc-
ing diatom communities. One of the reasons for the poor

performance of the model for IOJ may be the Polish sampling
protocol, which requires phytobenthos sampling from stable
substrata (preferably emerged macrophytes or stones) from
the depth of at least 30 cm below water level (Picinska-
Fałtynowicz and Błachuta 2010). In fact, phytobenthos is
sampled from the depth of exactly 30 cm, which is probably
insufficient to capture the effect of water visibility on the
phytobenthic community. It should be emphasised that in
our dataset the Secchi disk visibility hardly reached the depth
of less than 30 cm irrespective of the lake ecological status
(Appendix Tables 3 and 4) and in lakes in bad or poor status,
the SD was at least 30 cm providing favourable light condi-
tions for diatom development at this depth. Other reasons for
the lower quality of networks for the IOJ can be a limited set
of explanatory variables and the lack of some habitat param-
eters, e.g. calcium content, which may be important for the
development of these organisms as demonstrated in other
studies (Fidlerová and Hlúbiková 2016; Kolada et al. 2017;
Mao et al. 2018).

The use of deep learning techniques as artificial neural
networks revealed a different pattern in biological response
to habitat factors in the lake ecosystem than that obtained with
the use of the traditional statistical approach. Sensitivity anal-
ysis strongly exposed water transparency expressed by Secchi
disk depth as the principal incentive responsible for the differ-
entiation of phytoplankton andmacrophyte indices. The infor-
mation based on r-Pearson correlation showed that Chla,
PMPL and ESMI are significantly correlated with transparen-
cy and also with nutrients and conductivity. The correlation
was generally the strongest with SD, but (1) the level of cor-
relation, even though significant, was not very convincing,
and (2) the level of correlation with nutrients was also very
high, especially with total nitrogen (which was even more
influential in the case of Chla in shallow lakes). The statistical
pressure-response relationship between phosphorus and phy-
toplankton biomass (Chla) is often stronger than that for ni-
trogen; however, in regions where lakes with low N/P ratio
predominate, nitrogen is often a better predictor of phyto-
plankton biomass, particularly in non-stratified lakes
(Dolman et al. 2016).

Themethods used in our studymanaged to avoid confusion
in the interpretation of correlation analysis resulting from the
synergistic effect of algal growth on water transparency
(Kolada et al. 2016) as well as the synergistic impact of nutri-
ents and conductivity (which can be used as a general measure
of the trophic state of lakes; Toivonen and Huttunen 1995) on
water transparency. Ultimately, the use of ANN allowed con-
nections and synergies to be resolved and reveal that water
transparency is a principal direct element of the habitat, which
determines biota development. Moreover, another study
showed that Secchi disk transparency can be also predicted
efficiently based on chlorophyll a concentration (Heddam
2016), and the use of Secchi disks was also reported as an
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efficient method for estimating the depth of a euphotic zone
(Luhtala and Tolvanen 2013).

Conclusions

The relationship between biological and environmental vari-
ables was explained differently under deep learningmodelling
and traditional statistical approaches. The use of the neural
network technique revealed that the phytoplankton and mac-
rophyte patterns exceptionally depend on physical factors
(water transparency), whereas r-Pearson analysis indicated
the comparable influence of various factors such as transpar-
ency, nutrients and conductivity.

A strong impact of water transparency on phytoplankton
and to some extent on macrophytes is particularly clear in
deep lakes. In shallow lakes, where light can effectively pen-
etrate the entire water column, the water transparency gradient
is less evident, and its impact on macrophyte growth is less
influential. In contrast, a strong reaction of conductivity was
revealed. The relationships between habitat variables collect-
ed during yearly monitoring and summer-collected benthic
diatoms appeared weak or absent.

In our study, despite a limited number of input variables
that characterise trophic degradation, we obtained a good
quality of models for the three of four biological indices. We
can expect, however, that employing of other environmental
variables could improve the quality of models, especially in
the case of diatom index. Other variables, e.g. calcium con-
tent, can influence plant development and biological indices
calculated on their basis. Further studies should include larger
scope of ecological variables, which may deliver more com-

prehensive picture of relationships existing in lake
ecosystems.
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Appendix

Table 3 Basic statistics of physicochemical parameters and biological indices for stratified lakes (n = 237)

Parameter Abbreviation Unit Min Max Mean SD CV

Conductivity Cond. μS·cm-1 143 723 349 121 0.35

Hypolimnion oxygenation O2 % 0.00 90.60 7.93 14.68 1.85

Secchi disk—water transparency SD m 0.50 6.40 2.73 1.30 0.47

Total nitrogen TN mg N·dm-3 0.42 5.35 1.25 0.63 0.50

Total phosphorus TP mg P·dm-3 0.003 0.45 0.05 0.05 0.99

Multimetric Diatom Index for Lakes IOJ - 0.29 0.94 0.72 0.12 0.17

Ecological State Macrophyte Index ESMI - 0.09 0.91 0.52 0.16 0.31

Phytoplankton Multimetric for Polish Lakes PMPL - 0.00 4.86 1.81 1.22 0.67

Chlorophyll a Chla μg/l 0.8 102.0 17.1 18.1 0.94
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