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Abstract We review the variety of existing mod-

elling approaches applied to species habitat mapping

and we discuss issues arising from the availability

and nature of sampled biological data and corre-

sponding ecological and environmental habitat

descriptors, as well as the different spatial analysis

approaches that are selected according to specific

hypotheses. We focus on marine species habitat

mapping, presenting an overview of work on

modelling fish habitat carried out through a European

Communities Policy-Support Action, EnviEFH

‘Environmental Approach to Essential Fish Habitat

(EFH) Designation’ (2005–2008). The selection of

the appropriate habitat model is dataset-specific and

the resulting EFH maps are often similar in spite of

using different models. Derived EFH maps are based

on either environmental ranges (used as minimum

and maximum environmental habitat descriptors) or

probability of occurrence values. We apply model

outputs to regions larger than sampled areas making

use of the capacity of satellite data to cover wide

areas.

Keywords Marine species � Statistical modelling �
Fisheries � Environment � Ecology

Introduction

The identification of Essential Fish Habitats (EFH),

i.e. areas or volumes of water and bottom substrates

that provide the most favourable habitats for fish

populations to spawn, feed and mature throughout

their full life cycle, is important for the conservation

of biodiversity and sustainable fisheries management.

The sustainability of fish populations and their

associated fisheries could be conserved by limiting

anthropogenic stressors in such habitats.

One of the foundational concepts underlying the

ecosystem approach to fisheries management
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(EAFM) is that different geographic areas have

different biological production capacities and that it

may be advantageous to focus applying science and

management to protect overfished areas and areas of

degraded habitats (Lutchman, 2003). EFH analysis

should be able to identify those areas within the

distribution of a species that contribute most to

sustain the long-term viability of a population.

Although it may be difficult to define the boundaries

of EFH (for example, whether it should be the most

important 10% or 15% or 20%, etc, of habitat), the

definition of EFH areas, combined with management

which recognizes the importance of such areas,

represents a first step towards facilitating EAFM

concepts and will thus contribute to the sustainability

of marine ecosystems and their living marine

resources as well as delivering the socioeconomic

benefits with a healthy and sustainable fishery.

The extensive spatiotemporal variability, which

characterizes dynamic marine ecosystems, presents

inherent difficulties for the development of predictive

species-habitat models. In order to identify relation-

ships among ocean processes, environmental

parameter distribution, biological responses and cor-

responding species distributions, scientific

information and statistical analysis of habitat descrip-

tors must accommodate the life cycle characteristics

of the targeted species.

Satellite imagery provides an extensive (virtually

worldwide) knowledge-base of sea-surface condi-

tions, readily available in high or low resolution

forms, allowing the mapping of important ocean

processes that influence species distributions, albeit

with the limitations that sub-surface phenomena

cannot be described in this way and satellite data

are available only since the early 1980s. In addition,

extensive large-scale survey investigations often

provide time-series of certain species distributions

and sometimes also oceanographic data for the whole

water column, allowing studies of relationships

between environmental change and species environ-

mental preferences. Finally, spatial statistical analysis

and Geographic Information Systems (GIS) technol-

ogy provide the tools to model species-habitat

relationships and their variability and identify essen-

tial habitat areas (see, for example, Pierce et al.,

2001, 2002; Valavanis et al., 2002, 2004).

Overviews of predictive species-habitat modelling

approaches have been presented for various species

groups in terrestrial (Guisan & Zimmermann, 2000;

Elith & Burgman, 2002), freshwater (e.g. Olden &

Jackson 2002; Behrouz et al., 2006) and marine

ecosystems (e.g. Ferguson et al., 2006; Redfern et al.,

2006). Related studies underline the fact that many

marine species have wide distribution ranges and

respond to environmental variation by changing their

distribution patterns and habitat use (Perry et al.,

2005; Laurel et al., 2007; Morrell & James, 2008).

The marine environment is fundamentally dynamic:

over a fixed background of bathymetry and seabed

substrate, oceanographic conditions and prey avail-

ability vary in time (diurnally, seasonally,

interannually) and space (vertically and horizontally)

at various scales.

In the present article, we summarize a range of

modelling approaches available to model species-

habitat relations and map EFH for living marine

resources, particularly fish, although some of these

methods have been applied more often than others

marine species datasets.

Objectives of essential fish habitat modelling

Fundamentally, EFH modelling is an applied science

(in that it provides EFH maps based on analyzed

scientific data), very often with the ultimate aim of

providing tools to support the sustainable exploitation

of living marine resources. Given the relatively low

level of knowledge about external factors influencing

the population dynamics of marine species, many

published models are empirical, making few or no prior

assumptions about underlying causal mechanisms,

rather than mechanistic (process) or functional (e.g.

optimization) models. Thus a relationship described by

an empirical model may reflect a direct causal link, an

indirect link or simply a coincidental (and most likely

temporary) correlation. The whole process has been

denigrated as ‘‘data mining’’ rather than hypothesis-

driven science (Guisan et al., 2002). While various

philosophers of science (e.g. Popper, 1963) (and

indeed some national government funding bodies)

have viewed falsification of hypotheses as the only

legitimate form of scientific endeavor, in reality

science is a much more complex process (e.g. Lakatos,

1970; Kuhn, 1996) and, indeed, European research

funding under the Framework Programmes has mainly
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targeted at science that offers economic and societal

benefits rather science that aims solely to advance

theory. We would argue that, in the context of applied

sciences, such as fisheries science, data mining is a

perfectly legitimate approach, which can lead to

predictions and/or forecasts of fish distribution and

abundance that are both testable and can be used to

inform rational marine resource management. It is

important to recognize that empirical models remain a

form of hypothesis (regardless of whether an underly-

ing causal mechanism can be identified) until, after an

appropriate estimation of goodness-of-fit, they are

tested on independent datasets. The majority of

existing publications arguably fail in this respect,

although most advance testable hypotheses.

Aside from the ‘data mining’ argument, there are

at least two additional reasons for skepticism about

the power and validity of empirical models based on

environmental predictors. First, inclusion of a large

number of putative explanatory variables in a model

may led to overfitting, reducing predictive capacity

and generality (Clark, 2005), assuming, that is, that a

high ratio of explanatory variables to data points and/

or collinearity between explanatory variables do not

preclude fitting any model in the first place. A second

issue is that the population dynamics of many (if not

most) exploited species are driven by the amount,

distribution and variability of fishing mortality, past

and present. While this is true, the spatial distribution

of EFH and abundance is still likely to be strongly

dependent on the characteristics of the biotic and

physical environment. As abundance increases, it

may be expected that species expand from core

‘preferred habitat’ into increasingly marginal habi-

tats. In this sense at least, knowledge of both the

drivers of abundance and the habitat requirements

(EFH) remains essential. In addition, environmental

predictors may explain a high proportion of variance

in recruitment strength and thus, in short-lived

species (e.g. cephalopods, some small pelagic fish),

a high proportion of variation in total abundance

(Pierce et al. 2008, this volume).

The analysis of species distribution data has

reached high statistical sophistication in recent years

(Elith et al., 2006; Heikkinen et al., 2006). How-

ever, even the most complicated models cannot

guarantee the improvement of our knowledge on the

determinants of species distribution (Dormann et al.,

2007).

Data acquisition and preparation

Species distribution modelling is only as good as the

data used. The right sampling strategy can improve

model results considerably and reduce the risk of

making an inaccurate, biased or imprecise prediction.

For that purpose, Hirzel & Guisan (2002) suggested

some factors that could increase sampling efficiency.

These are the increase of sample size, the use of regular

sampling, and the use of environmental information to

stratify sampling. Uncertainty, on which model infer-

ence and prediction depends, declines asymptotically

with increasing sample size. The four strategies most

frequently discussed are regular sampling (i.e. grid

sampling), random sampling, equal random-stratified

sampling, and proportional random-stratified sam-

pling. A fifth approach, called gradsect (Austin &

Heyligers, 1989, 1991), is close to a random-stratified

sampling (either equal or proportional depending on its

design) but sampling is concentrated within a few

geographic transects designed across the main land-

scape gradients, mainly to reduce study costs (time-

and cost-effective surveys) (Hirzel & Guisan, 2002;

Hirzel & Arlettaz, 2003).

Examples of environmental and fish survey/fish-

eries datasets that may be used for EFH modelling are

listed in Table 1. Fishery-independent survey datasets

include a variety of surveyed parameters from

fisheries acoustic data, experimental trawl data,

ichthyoplankton and egg data. Usually at a coarser

spatial resolution, commercial catch and fishing effort

data can also provide distribution and abundance

information for post-recruit fish. Environmental (ec-

ogeographic) parameters that are likely to be relevant

include interpreted satellite images for sea surface

temperature (SST), chlorophyll-a (Chl-a), photosyn-

thetically active radiation (PAR), euphotic depth

(EUD), sea level anomaly (SLA), wind speed and

direction, and modeled data for sea surface salinity

(SAL) and surface currents (SSC). Hydrographic

survey data can provide additional information on

subsurface and sea bottom conditions. Spatial loca-

tion variables and spatial patterns analyzed with

statistical and geostatistical tools may add predictive

power by acting as surrogates for one or more

unknown environmental variables, or variables that

cannot be measured easily. They can also potentially

capture genuine geographic effects, such as proximity

to favourable habitat features (e.g. spawning sites), or

Hydrobiologia (2008) 612:5–20 7
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where juvenile dispersal is aided by particular habitat

combinations (Francis et al., 2005). Similarly, inclu-

sion of time of day, month/season and year in models

may capture temporal patterns without explaining

them.

For ocean processes, SST and Chl-a data can be

used to locate thermal and productivity-enhancing

fronts (Ullman & Cornillon, 2000; Valavanis et al.,

2005), and marine productivity hotspots (Valavanis

et al., 2004) and thus determine the distance of each

sampling point from such features. Fixed physical

features include bathymetry and derived variables,

such as seabed slope, depth and slope variability,

aspect, distances from coast and specific bathymetry

zones, and sea bottom substrate types (where avail-

able). The final selection of candidate explanatory

variables for EFH modelling is, as far as possible,

based on knowledge of the biology and ecology of

the species. Ideally, explanatory variables should

describe characteristics of the ecology of the species

and indicate the presence/strength of relevant ocean

processes (e.g. upwelling or fronts) by using, for

example, distances of surveyed points from such

processes (Table 2). It may be important to include

temporally and/or spatially displaced (e.g. time-

lagged and teleconnected) environmental conditions

(e.g. because the distribution of adults reflects

processes affecting earlier life stages).

Table 1 A list of datasets, their description and source that they were used in marine species habitat modelling

Parameter Sensor/Model Units Resolutions Source

Sea Surface

Chlorophyll-a

(CHLO)

SeaWiFS mg/m3 0.0833333� http://oceancolor.gsfc.nasa.gov

Sea Surface

Chlorophyll-a

(CHLO)

MODISA mg/m3 0.0833333�
and 0.0416667�

http://oceancolor.gsfc.nasa.gov

Sea Surface

Temperature

(SST)

AVHRR �C 0.0128748� http://eoweb.dlr.de:8080

Sea Surface

Temperature

(SST)

MODISA �C 0.0833333�
and 0.0416667�

http://oceancolor.gsfc.nasa.gov

Photosynthetically

Active Radiation

(PAR)

SeaWiFS einstein/m2/day 0.0833333� http://oceancolor.gsfc.nasa.gov

Sea Surface Wind

Speed and

Direction (WIND)

QSCAT m/sec and � from N 0.25� www.ssmi.com

Sea Surface Current

Speed and

Direction (SSC)

Merged T/P, Jason–1,

ERS-2, Envisat

cm/sec and � from N 0.125� www.jason.oceanobs.com

Mean Sea Level

Anomaly (MSLA)

Merged Jason-1, Envisat,

ERS-2, GFO, T/P

cm 0.2942888� www.jason.oceanobs.com

Sea Surface

Salinity (SAL)

CARTON-GIESE SODA,

CMA BCC GODAS, and

NOAA NCEP EMC

CMB GODAS models

psu 0.3333309� http://iridl.ldeo.columbia.edu

Euphotic Depth

(ZEU)

SeaWiFS (Lee and/or

Morel)

m 0.0833333�
and 0.0416667�

http://oceancolor.gsfc.nasa.gov

Bathymetry (BATH) GEBCO m 0.0166666� www.ngdc.noaa.gov

Bathymetry (BATH) Geosat and ERS-1 m 0.0280322� http://ibis.grdl.noaa.gov/SAT/

The listed datasets are commonly georeferenced in a GIS database under the EnviEFH Project requirement (world-wide and/or

Mediterranean coverage, weekly and/or monthly resolutions for the general period 1997-current, some earlier to 1997)
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Data processing

Environmental and other habitat descriptor datasets

can be inserted into GIS and projected under a

common georeference system in order to extract a

suite of environmental parameters for each sampling

station. There are many tools available for this

purpose (e.g. ArcGIS, MapInfo, etc) as well as a

variety of data format conversion utilities for data

communication among tools. For example, in the

EnviEFH project, ESRI’s ArcGIS software and Arc

Macro Language (AML) programming language

were used to create vector and raster layers of

information (ESRI, 1994). Interpreted satellite

images are processed as regular grids (ArcGIS GRID

module) while fisheries data are placed in coverages

of point topology (ArcGIS ARC module). Environ-

mental data can be assigned to each sampling point of

fisheries data by means of controlled cursors (pointers

that move one-by-one through a selected set of

geographic features) between vector and raster data-

sets (e.g. among selected sets of spatial point features

and associated attribute tables and related remotely

sensed parameter grids) using ArcGIS INFO/

TABLES and ARCPLOT modules. An important

consideration is the extent of the buffer zone (area

around each sampling point), which is used to

calculate an average for environmental parameters,

e.g. the SST associated with a given sample could be

a weekly or monthly average within a range of

anything from 1 km to several kms of latitude and

longitude. Derived descriptors, such as closest dis-

tances from thermal and productivity-enhancing

fronts, marine productivity hotspots, temperature

and chlorophyll-a anomalies, sediment types (when

available) as well as distances from coast and

bathymetry zones, are quantified using ArcGIS

embedded distance functions under the ARC module.

Table 2 Typical GIS output table including surveyed fisheries data (spatiotemporal and biological measurements) as well as derived

habitat environmental and other descriptors*

*LAT-LON (decimal degrees) and X-Y (meters): coordinates

ANCH, SARD, species (anchovy and sardine abundance acoustic index)

SST-DEP, monthly-averaged environmental variables and bathymetry; Dcoast, distance to coast (m); Chl-AN-SST-AN,

environmental anomalies (indication of upwelling); MPH, presence/absence of marine productivity hotspots; SED, sediment

types; Dfronts, distance to thermal fronts (m)

Hydrobiologia (2008) 612:5–20 9
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Approaches to essential fish habitat modelling

Nature is too complex and heterogeneous to be

predicted accurately in every aspect of time and space

from a single, although complex, model (Guisan &

Zimmermann, 2000). Levins (1966) formulated the

principle that only any two out of three desirable

model properties (generality, reality, precision) can

be improved simultaneously while the third property

has to be sacrificed. According to this principle,

models can be classified to analytical (Pickett et al.,

1994), mechanistic (e.g. Prentice, 1986) and empir-

ical (Decoursey, 1992; Korzukhin et al., 1996).

According to Lehmann et al. (2002), mechanistic

models may provide more robust predictions than

statistical models but the former are much more

difficult to develop. Methods used to make spatial

predictions should meet several criteria; they should

be general enough to deal with the wide variety of

attributes that need to be predicted; they should be

rigorous and data-defined to make predictions in an

objective and defensible manner; they should be

standardized to produce uniform results and stream-

lined to facilitate the required analyses.

Modelling methods depend on data accuracy as

well as the type of data. We can discriminate among

various types of data, for example presence only data

and presence/absence data (i.e. binary presence/

absence 1:0). In the former case, we have available

samples from locations that a species is found

(1:presence) and in the latter we have samples from

locations where a species is found as well as from

those where it is not found (1:presence–0:absence).

Abundance data (e.g. counts, catch rates) may

sometimes be converted to presence only or pres-

ence/absence data depending on the biological and

logistical constraints governing a conservation mon-

itoring situation (Pollock, 2006).

With a short description provided later in the text,

common methods for modelling presence data

include ENFA, BIOCLIM, DOMAIN, GARP and

MAXENT, while ANN, GLM, GAM and CART

require accurate presence/absence data in order to

generate statistical functions or discriminative rules

that allow habitat suitability to be ranked according to

distributions of presence and absence of species

(Manel et al., 1999; Guisan & Zimmerman, 2000).

Although a data-specific characteristic some of the

latter methods could be used with presence only data

(Brotons et al., 2004). Other categories of spatial

modelling, also using binary presence/absence data

are implemented via Kriging and Simulation tech-

niques. All together could be integrated with a

hierarchical Bayesian approach thinking about the

scientific method as an iterative process: First, a

hypothesis is formulated, rooted in current knowl-

edge. Then, data are collected against which the

hypothesis can be tested. Finally, current knowledge

is updated in light of the data, repeating the process

as appropriate. The Bayesian paradigm is similar,

replacing current knowledge with prior probability

distributions, data with a likelihood, and updated

knowledge with posterior probability distributions,

which may now serve as prior probability distribu-

tions for future studies. Zaniewski et al. (2002)

argue that pure presence-only methods (such as

ENFA) are more likely to predict potential distri-

butions that more closely resemble the fundamental

niche of the species, whereas presence/absence

modelling is more likely to reflect the present

natural distribution derived from realized niche.

However, both methods aim at predicting distribu-

tions by sampling real distributions, and therefore,

providing different estimations of the realized niche

of the species (Loehle & LeBlanc, 1996). MacLeod

et al. (2008, this volume) compared the performance

of several presence-only models with that of GLM

and showed that, although the latter had the highest

predictive power, presence-only models could per-

form almost as well. Where survey effort is very

uneven, both presence only and presence–absence

models can give biased results, but only in the latter

case is it possible to correct for the bias, e.g. by

using effort as a weighting variable. In both cases,

inadequate coverage of the full range of habitat

types could lead to biased models.

Applying a statistical model consists of various

main steps: parameter estimation, model selection,

uncertainty estimation, model validation, and gener-

ating and testing predictions. Several techniques can

be used in each step. For example, hypothesis testing

or information criteria like the Akaike Information

Criterion (Akaike, 1974) or Bayesian Information

Criterion (Schwarz, 1978) can be used for model

selection, uncertainty estimation can be done with

classical methods based on the Fisher information

matrix or using bootstrapping and jackknife tech-

niques (Efron & Tibshirani, 1991). Also for model

10 Hydrobiologia (2008) 612:5–20
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validation, many methods are available to verify the

underlying assumptions (e.g. auto-correlation and

semi-variograms for testing the independence

assumptions).

A common problem with ordinary least squares

regression approaches for modelling species responses

to environmental variables is a bias introduced due to

unmeasured variables. Typically, since only some of

the factors that affect a species distribution are

measured and included in statistical models, the

influence of an unmeasured factor could mask the

predictive relationship between response and explan-

atory variables. Even by taking into account all factors,

some systems include an unexplained stochastic com-

ponent or show chaotic behaviour.

An alternative approach is to view explanatory

variables as constraints rather than as correlates. This

approach stems from a fundamental ecological prin-

cipal, namely Liebig’s law of the minimum.

Conventional correlation and regression analyses

are not based on the concept of limiting factors

(Thompson et al., 1996; Cade et al., 1999). Quantile

regression is based on this principle and quantifies the

effects of limiting factors by fitting regression curves

in quantiles near the maximum response (e.g. 0.90

regression quantile) (Eastwood et al., 2001; Cade &

Noon, 2003; Hiddink, 2005). That way the effect of

other measured or unmeasured factors is disregarded

and only the cases when the tested factor has a

limiting effect are taken into account. At the same

time quantile regression reveals hidden bias and the

existence of important processes that are not ade-

quately represented by the measured variables (Cade

et al., 2005). Another technique based on the fact that

the upper boundary of the distribution of abundance

reveals the limiting effect of a factor was developed

by Blackburn et al. (1992). This method estimates the

regression slope of the upper boundary by dividing

the data into size classes and using the highest

abundance for the calculations. Other techniques

based on the law of the minimum have been proposed

by Maller (1990), Kaiser et al. (1994) and Thompson

et al. (1996). However, Liebig’s law is open to

criticism since resources might exhibit interactive

effects, i.e. a factor can have a limiting effect only in

the presence or absence of an other factor (Huisman

& Weissing, 2002) or all the resources can be limiting

simultaneously (‘multiple limitation hypothesis’, Ru-

bio et al., 2003).

Austin (2007) in a critical review of current

modelling approaches introduces structural equation

models as an alternative offering the possibility to

incorporate latent variables in the model. Structural

equation models are a descendant of ‘path analysis’

developed by Wright (1921) to provide a mathemat-

ical description of a hypothetical causal scheme

between traits of a species and abiotic/biotic envi-

ronmental variables. Structural equation models are a

contemporary fusion of factor analysis with path

analysis, which is able of testing causal claims. The

method is based on the fact that, although correlation

does not imply causation, causation does necessarily

imply particular types of statistical independencies

and this constraint is what is tested. Shipley (1999)

characterizes structural equation models as the most

sophisticated method of performing statistical control

on causal relationships. Its major disadvantages are

the inevitable linearity of the relationships, the

multivariate nature of the data, and the necessity for

large sample sizes.

These methods have been developed in an

attempt to solve technical problems associated with

ordinary least squares regression, such as hetero-

scedasticity, extreme values, overdispersion and bias

due to unmeasured explanatory variables, but most

importantly to introduce biological thinking into

statistical modelling. The lack of a biological basis

for the most broadly used statistical methods leads

to lack of interpretable results and, therefore,

biological processes and causal relationships are

being overlooked. Moreover results of null hypoth-

esis testing on observational studies are arbitrary

because of the lack of control over the response and

predictor variables. The information-theoretic

approach, namely the coupling of statistical tools

with ecological theory to develop robust and inter-

pretable models, has already started to dominate

species distribution modelling (Rushton et al.,

2004).

Presence-only models

ENFA (Ecological Niche Factor Analysis) compares

the statistical distributions of the ecogeographical

variables for a presence dataset consisting of loca-

tions where the species has been detected with the

predictors’ statistical distributions over a wider

geographic area. Like principal component analysis

Hydrobiologia (2008) 612:5–20 11
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(PCA), ENFA summarizes all predictors into a few

uncorrelated factors retaining most of the informa-

tion. However, in this case, the factors have specific

ecological meanings: the first factor is the ‘margin-

ality’, reflecting the direction and distance in which

the species niche differs most from the available

conditions in the wider area. Subsequent factors

represent the ‘specialisation’; they are extracted

successively by computing the direction that maxi-

mizes the ratio of the variance of the global

distribution to that of the species distribution (Hirzel

et al., 2001; Dettki et al., 2003; Brotons et al., 2004).

Although developed for modelling habitats of terres-

trial species, it has been recently applied to harbour

porpoises on the west coast of Scotland (UK)

(MacLeod et al., 2008, this volume).

BIOCLIM is an ‘envelope’ method that imple-

ments a bioclimatic envelope algorithm (Busby,

1991). Environmental envelopes are conceptually

closely related to niche theory, as they strive to

delineate the hyper-surface (or envelope) that best

circumscribes suitable conditions within the niche

hyper-space defined by the environmental variables.

For each environmental variable the algorithm finds

the mean and standard deviation (assuming normal

distribution) associated with the occurrence of

surveyed species presence points. Besides the enve-

lope, each environmental variable has additional

upper and lower limits taken from the maximum and

minimum values related to the set of occurrence

points.

DOMAIN (Carpenter et al., 1993) is a distance-

based method that assesses new sites in terms of

their environmental similarity to sites of known

presence by transforming the known occurrences

into an environmental space and computing the

minimum distance in environmental space from any

cell to a known presence of the species. The Genetic

Algorithm for Rule-Set Prediction (GARP) use a

genetic algorithm to select a set of rules (e.g.

adaptations of regression and range specifications)

that best predicts the species distribution (Stockwell

& Peters, 1999). MAXENT estimates a target

probability distribution by finding the probability

distribution of maximum entropy (i.e. that is most

spread out, or closest to uniform), subject to a set of

constraints that represent incomplete informa-

tion about the target distribution (Phillips et al.,

2006).

Presence/absence models

Classification and regression trees

Classification and regression trees (CART) function

by way of recursive binary partitioning of data into

increasingly homogenous groups with respect to the

dependent variable. The two most homogenous

groups of data with respect to the response variable

are chosen (using the explanatory variables) and the

resulting model is a tree-like structure consisting of a

series of nodes (Lawler et al., 2004; Bourg et al.,

2005).

In boosted regression trees (BRT), each of the

individual models consists of a simple CART while

the boosting algorithm uses an iterative method for

developing a final model in a forward stage-wise

fashion, progressively adding trees to the model by

re-weighting the data to emphasize cases poorly

predicted by the previous trees. Advantages offered

by a BRT model include its ability to accommodate

both different types of predictor variables and

missing values, its immunity to the effects of extreme

outliers and the inclusion of irrelevant predictors, and

its facility for fitting interactions between predictors

(Friedman & Meulman, 2003). Leathwick et al.

(2006a, b) used BRT to analyze fish species richness,

environmental parameters and trawl characteristics.

Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS)

provide an alternative regression-based method for

fitting non-linear responses, using piecewise linear

fits rather than smooth functions (Friedman, 1991).

MARS offer similar level of performance to other

non-linear modelling techniques but may be extended

by generalized boosted models (rarely used in

ecological studies) where the estimation of the

classifier’s prediction is based on learning algorithms

while systematically varying the training sample. For

example, MARS were used to predict the distribution

of freshwater diadromous freshwater fish in New

Zealand (Leathwick et al., 2005).

Generalized linear, additive and mixed models

Generalized linear models (GLM) are extensions of

linear regression in the sense that they use different

12 Hydrobiologia (2008) 612:5–20
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distributions (e.g. the Poisson distribution for count

data, the binomial distribution for binary and propor-

tional data, the negative binomial distribution for

overdispersed count data). Furthermore, they use a

link function between the expected values of the

response variable and explanatory variables that

ensures that the fitted values make sense (e.g. larger

than 0 for count data, or between 0 and 1 for binary

data) (McCullagh & Nelder, 1989). In the context of

EnviEFH, GLM were used with a predictive rather

than inductive goal. In such circumstances accuracy

of model predictions is more important than signif-

icance of particular ecogeographic variables

(Legendre & Lengendre, 1998). Nishida and Chen

(2004) applied GLM on yellowfin tuna CPUE data of

the Japanese longline fisheries in the Indian Ocean.

Generalized additive models (GAM, Hastie &

Tibshirani, 1990; Wood, 2006) are straightforward

extensions of GLM, which allow linear and other

parametric terms to be replaced by smoothing

functions; they are now widely applied in fisheries

science (e.g. Zuur et al., 2007). In a comparison of

modelling techniques, Moisen & Frescino (2002)

found that GAM built on real (as opposed to

simulated) data, performed marginally better than

other techniques (CART, ANN and GLM). In addi-

tion, GAM are well-suited to model continuous

relationships, provided the samples are spread out

over the entire measured gradient (GAM gives wide

confidence bands when most observations have the

same values for the explanatory variables, or if the

explanatory variables have extreme observations).

GAM is perhaps the most common and well devel-

oped method for modelling fish habitats. For

example, Maravelias et al. (2007) used GAMs to

identify the distribution of Morocco dentex (Dentex

maroccanus) in the NE Mediterranean and the

environmental factors that are related with species

distribution. Giannoulaki et al. (2006) used GAMs to

identify the relationship between anchovy presence

and environmental variables. Francis et al. (2005)

predicted small fish presence and abundance in

northern New Zealand harbours. Many authors sug-

gested several approaches to improve model fitting

and prediction capacity in GAM. Ridge regression

and lasso (Tibshirani, 1996; Harrell, 2001; Hastie

et al., 2001) and model averaging (Burnham &

Anderson, 2004; Johnson & Omland, 2004) are

promising alternatives in a model stepwise procedure.

The use of CART techniques in a complementary

way to GLM and GAM enables identification of

ecologically meaningful interactions (Guisan et al.,

2002).

Species distributional or trait data based on range

map (extent-of-occurrence) or atlas survey data often

display spatial autocorrelation, i.e. locations close to

each other exhibit more similar values than those

further apart. If this pattern remains present in the

residuals of a statistical model based on such data,

one of the key assumptions of standard statistical

analyses, that residuals are independent and identi-

cally distributed, is violated. The violation of this

assumption may bias parameter estimates and can

increase type I error rates (falsely rejecting the null

hypothesis of no effect) (Dorman et al., 2007). Often,

spatial correlation is due to a missing covariate or

interaction term in the model, the use of the wrong

link function, or modelling a non-linear effect as

linear. If refitting the model still gives residuals with

spatial correlation, then a spatial correlation structure

has to be incorporated in the model. It is also possible

that due to the nature of the data, there is spatial

correlation, in which case, a correlation structure has

to be included anyway. Zuur et al. (2007) showed

that falsely ignoring residual spatial autocorrelation,

can give P-values that result in incorrect ecological

interpretation. Including a spatial correlation struc-

ture provides more accurate predictions. In this case,

modellers can quantify and integrate the spatial

correlation structure (but should not ignore it).

Wagner & Fortin (2005) describe three different

approaches to deal with spatial autocorrelation in

models: (1) regression models incorporating a spatial

term (autoregressive models: Keitt et al., 2002), (2)

partialling-out of the spatial component in the

species-environment relationship (variance partition-

ing: Legendre, 1993), and (3) residuals analysis

(multiscale ordination, Maggini et al., 2006). Redfern

et al. (2006) separated methods for addressing spatial

autocorrelation into two general categories: (1)

removing autocorrelation from the data and (2)

explicitly accounting for autocorrelation in statistical

tests and models. Fotheringham et al. (2002) dis-

cussed the approach of geographically weighted

regression (similar to kernel regression) where spatial

autocorrelation in parameter estimation is treated

through the assignment of weights, such that those

observations near the point in space where the
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parameter estimates are desired have more influence

on the result than observations further away.

In Generalized Regression Analysis and Spatial

Prediction (GRASP), which uses GAM for spatial

predictions, improvement is achieved by using either

cross-validation as a model selection method, or

weighted absences, or limited absences, or predictors

accounting for spatial autocorrelation, or a factor

variable accounting for interactions between all

predictors (Maggini et al., 2006). With regard to

spatial autocorrelation, model performance and sta-

bility can be improved by incorporate large spatial

trends, although better models are obtained by

accounting for local spatial autocorrelation. Interac-

tion factors built from a regression tree on residuals

of a first environmental model proved to be an

efficient way to account for interactions between all

predictors but this can lead to some overfitting

(Maggini et al., 2006). BRUTO provides a rapid

method to identify both variables to be included and

the degree of smoothing to be applied in a GAM

(Leathwick et al., 2006a, b). The final choice of

model strategy should always depend on the nature of

the available data and the specific study aims

(Maggini et al., 2006).

Artificial neural networks

Artificial neural networks (ANN) are non-linear

mapping structures based on hundreds or thousands

of simulated neurons connected together in much the

same way as the brain’s neurons. ANN learn from

experience (not from programming) and their behav-

iour is defined by the way its individual computing

elements are connected and by the strength of those

connections (weights). ANN can be trained to

recognize patterns, classify data, and forecast future

events (Kohonen, 1996; Ripley, 1996; Bishop, 1997).

They have been shown to be universal and highly

flexible function approximations for any data and any

data dependencies. These make powerful tools for

models, especially when the underlying data rela-

tionships are unknown (Lek & Guegan, 1999).

However, ANN are not very common for fish habitat

modelling. Brosse et al. (1999) used ANN to assess

fish abundance and occupancy in the littoral zone of

the lake Pareloup (SW France). Lek & Guegan

(1999) presented an introduction of ANN as a tool in

ecological modelling.

Model comparisons

The development of validation tools for prediction

methods provides comparison methods. Although

validation and comparison of models depends on

specific datasets, predictions based on presence/

absence data perform generally better than presence

only data (Brotons et al., 2004) while presence/

absence models perform generally better than abun-

dance models (Francis et al., 2005). Presence only

models can perform as well if survey coverage is

evenly and widely distributed (see MacLeod et al.,

2008, this volume) but they contain no mechanism to

control for biased sampling. Given effort data, effort

can be used as a weighting factor to compensate for

unevenly distributed survey effort, although compen-

sation for inadequate survey coverage of the full range

of habitats is not possible. In principle, abundance

models should be more informative, however, their

poor performance in practice relates to the fact that

real abundance data rarely conform to standard

distributions, thus violating model assumptions. The

assumptions associated with presence/absence data

(binary distribution) are more easily met.

Brotons et al. (2004) suggested that GLM with

presence/absence data predict more accurately than

ENFA (presence data), although MacLeod et al.

(2008, this volume) show that the performance of

the two classes of model is similar given good survey

coverage. Elith et al. (2006) evaluated the prediction

of eleven distinct models and sixteen approaches that

use presence-only data. They classified the models in

three performance categories. The first highest

performing group includes MARS, BRT, generalized

dissimilarity (GDM and GDM-SS) and maximum

entropy (MAXENT and MAXENT-T) models. A

second group of methods includes most of the

standard regression methods (GAM/BRUTO, GLM,

MARS and GARP). A third group includes the

methods that use presence data only (BIOCLIM,

DOMAIN and LIVES, Li & Hilbert, in press).

Studies of presence–absence modelling methods

suggest that several non-linear techniques (e.g.

GAM, ANN and MARS) are comparable in terms

of predictive ability and are often superior to methods

such as traditional single decision trees (Ferrier &

Watson, 1997; Elith & Burgman, 2002, Moisen &

Frescino, 2002, Munoz & Felicisimo, 2004; Segurado

& Araujo, 2004).
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Among some available methods for predictions

(e.g. GLM, GAM, ANN) and based on specific

datasets, Lehmann et al. (2002) selected GAM

because of the ecological interpretability of its

non-parametric response curves and of the advan-

tage of being statistically well defined, allowing

good inference, but also flexible enough to fit the

data closely. Leathwick et al. (2006a, b) fitted

GAM and MARS models between the distributions

of 15 freshwater fish species and their environment,

and based on ROC values, results indicated little

difference between the performances of both mod-

els. According to Olivier & Wotherspoon (2005),

GLM classification accuracy on both test and

training data was higher than that of CART and

these authors finally suggested that the application

of CART in a complementary way to GLM and

GAM proved very useful in the model building

phase as a guide to identify meaningful interactions

using tree nodes.

Essential fish habitat mapping

Prediction versus range

There are at least two ways to produce an EFH map

from a model. The first one is based on the model’s

graphical and numerical output. Estimated regres-

sion parameters, their signs, and significance levels

indicate the strength and (partial) effect on the

response variable. Some methods also provide

graphical output for the explanatory variable (e.g.

GAMs), which can be used for assessing its (partial)

effect. Application of these ranges within GIS grids

generates maps and indicates areas where variable

ranges simultaneously meet, as potential EFH.

Environmental ranges extracted from a specific

surveyed area (e.g. North Aegean Sea in Eastern

Mediterranean) can be applied to satellite data that

cover the whole region (e.g. the whole Mediterra-

nean basin), thus providing potential EFH maps for

the region of interest.

The other approach includes the use of either a

new set of values (or the original ones) for the

explanatory variables of a fitted GAM model, in order

to produce predictions. In this case, the predicted

values can directly be mapped. The interpretation of

prediction maps depends on the model’s response

variable (e.g. predicted values from a GAM with a

response variable in presence/absence format gives

probabilities of presence). The extent and the reso-

lution of the predicted area depend on the set of the

values used as the explanatory variables.

Use of satellite data

There are many advantages in using satellite datasets

in prediction models. Due to the great spatial and

temporal coverage of satellite data, it is easy to

extract EFH maps that expand the sampling area. The

outcome can sometimes lead to underestimated or

biased predictions for the areas outside the sampling

area. Since the model is based on environmental

parameters within specific ranges at the sampling

area, predictions out of those ranges might be

unrealistic. Applying the models to a new area or

different time period (prospective sampling) provides

different results on habitat availability and this will

usually result in a change in the model coefficients

and apparent selection. However, one measure of the

robustness of a habitat model is its capacity to be

applied in other areas (Boyce et al., 2002; Olivier &

Wotherspoon, 2005).

Seasonal or pooled

Given seasonal data, GAM can be applied in each

season or in the whole dataset. In each case, there

are advantages and disadvantages. The final choice

depends on the study’s objectives (prediction or

description). If the whole dataset is used, the model

will have a wider applicability because of the wider

range of values of the explanatory variables. If

only one season is used, the model will describe

accurately the specific season (better than the

previous model) but would be weak to predict

other seasons. As a general rule, although always

depending on the nature of specific datasets, the

use of whole year datasets is recommended for

predictive models whereas seasonal datasets might

be used for descriptive models. The same type

of argument can be applied to data collected

across several years or several areas. Boyce et al.

(2002) concluded that an overall model (all-year

pooled data) is generally not a good indicator for

individual-year models.
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Model validation

There are several techniques to validate a model or to

compare the accuracy of prediction among different

models. Kappa statistics, Receiver Operating Char-

acteristic (ROC), k-Fold cross validation, confusion

matrices and classification tables are well described

by Boyce et al. (2002) for presence/absence data.

ROC statistics are preferable to Kappa, because,

unlike Kappa, the ROC method avoids the problem of

choosing a threshold value (Lehmann et al., 2002).

For presence data, better model evaluation is

achieved by withholding data (k-Fold partitioning)

for testing model predictions or by comparing

Resource Selection Function (RSF) predictions using

models developed at other times and places (pro-

spective sampling) (Boyce et al., 2002). One step

towards improving evaluation of model performance

in predicting distributions of species is to use

independent, well structured presence–absence data-

sets for validation (Elith et al., 2006). On the other

hand, Lehmann et al. (2002) indicated that cross-

validation is generally more practical because it

creates relatively independent random subsets and

allows the use of all available data in the modelling

process. By using entirely independent datasets, there

is a risk of comparing different sampling strategies

instead of evaluating a model (Lehmann et al., 2002).

In addition, adequate data for independent validation

may be difficult to collect and modelers usually

prefer to use all available data to fit their model

(Araujo et al., 2005; Maggini et al., 2006). The

jackknife is also used (Jaberg & Guisan, 2001) for

model validation.

False positives and false negatives are the types

of prediction errors in modelling based on pres-

ence/absence data. Some data partitioning methods

for the allocation of cases to training and testing

datasets are resubstitution (Stockwell, 1992),

which tends to provide optimistic measures of

prediction success, bootstrapping (Buckland &

Elston, 1993) in which accuracy is usually

reported as a mean and confidence limits, random-

ization and prospective sampling (Capen et al.,

1986) that could be from a different region or

time, k-fold partitioning and jackknife sampling

(Fielding & Bell, 1997).

Conclusions

We conclude this overview with the statement that

the best model selection depends on the specific

dataset and on the aims of the modelling process. In

the EnviEFH project, the final objective was to

produce essential fish habitat maps for small, large

pelagic and demersal fish resources in the Mediter-

ranean and adjacent seas, thus we focused more on

the fact that different methods produce similar maps

rather than examining in great detail the pros and

cons of the statistics behind each model.

Published studies have moved from using simple

correlation and regression (assuming normal distri-

butions, homogeneity of variance and linear/non-

linear relationships) to techniques that can account

for the effects and interactions of multiple explana-

tory variables, response variables with a range of

different distributions, non-linear relationships, het-

eroscedasticity, time-lagged effects and temporal

autocorrelation and, one of the less tractable of these

issues, spatial autocorrelation. Particular attention

should be given to ensuring adequate and represen-

tative sampling and robust model validation methods.
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2008. A review of cephalopod-environment interactions

in European Seas and other world areas. Hydrobiologia.

Pierce, G. J., J. Wang & V. D. Valavanis, 2002. Application of

GIS to cephalopod fisheries: workshop report. Bulletin of

Marine Science 71: 35–46.

Pierce, G. J., J. Wang, X. Zheng, J. M. Bellido, P. R. Boyle,

V. Denis & J.-P. Robin, 2001. A cephalopod fishery GIS

for the Northeast Atlantic: development and application.

International Journal of Geographical Information Science

15: 763–784.

Pollock, J. F., 2006. Detecting population declines over large

areas with presence–absence, time-to-encounter, and

count survey methods. Conservation Biology 20:

882–892.

Popper, K. R., 1963. The Growth of Scientific Knowledge.

Routledge, London.

Prentice, I. C., 1986. Some concepts and objectives of forest

dynamics research. In Fanta, J. (ed.), Forest Dynamics

Research in Western and Central Europe. PUDOC, Wa-

geningen: 32–41.

Redfern, J. V., M. C. Ferguson, E. A. Becker, K. D. Hyrenbach,

C. Good, J. Barlow, K. Kaschner, M. F. Baumgartner, K.

A. Forney, L. T. Ballance, P. Fauchald, P. Halpin, T.

Hamazaki, A. J. Pershing, S. S. Qian, A. Read, S. B.

Reilly, L. Torres & F. Werner, 2006. Techniques for

cetacean-habitat modelling. Marine Ecology Progress

Series 310: 271–295.

Ripley, B. D., 1996. Pattern Recognition and Neural Networks.

Cambridge University Press, London: 416.

Rubio, G., J. Zhu & J. P. Lynch, 2003. A critical test of the two

prevailing theories of plant response to nutrient avail-

ability. American Journal of Botany 90: 143–152.

Rushton, S. P., S. J. Ormerod & G. Kerby, 2004. New para-

digms for modelling species distributions? Journal of

Applied Ecology 41: 193–200.

Schwarz, G., 1978. Estimating the dimension of a model.

Annals of Statistics 6: 461–464.

Segurado, P. & M. B. Araujo, 2004. An evaluation of methods

for modelling species distributions. Journal of Biogeog-

raphy 31: 1555–1568.

Shipley, B., 1999. Testing causal explanations in organismal

biology: causation, correlation and structural equation

modelling. Oikos 86: 374–382.

Stockwell, D. R. B., 1992. Machine learning and the problem

of prediction and explanation in ecological modelling.

Ph.D. Thesis, Australian National University.

Stockwell, D. & D. Peters, 1999. The GARP modelling system:

problems and solutions to automated spatial prediction.

International Journal of Geographical Information Science

13: 143–158.

Thompson, J. D., G. Weiblen, B. A. Thompson, S. Alfaro & P.

Legendre, 1996. Untangling multiple factors in spatial

distributions: lilies, gophers and rocks. Ecology 77:

1698–1715.

Tibshirani, R., 1996. Regression shrinkage and selection via

the lasso. Journal of the Royal Statistical Society 58:

267–288.

Ullman, D. S. & P. C. Cornillon, 2000. Evaluation of front

detection methods for satellite-derived SST data using in

situ observations. Journal of Atmopheric and Oceanic

Techology 17: 1667–1675.

Valavanis, V. D., S. Georgakarakos, A. Kapantagakis, A. Pa-

lialexis & I. Katara, 2004. A GIS environmental

modelling approach to Essential Fish Habitat Designation.

Ecological Modelling 178: 417–427.

Valavanis, V. D., S. Georgakarakos, D. Koutsoubas, C. Ar-

vanitidis & J. Haralabous, 2002. Development of a marine

information system for cephalopod fisheries in the Greek

seas (eastern Mediterranean). Bulletin of Marine Science

71: 867–882.

Valavanis, V. D., I. Katara & A. Palialexis, 2005. Marine GIS:

identification of mesoscale oceanic thermal fronts. Inter-

national Journal of Geographical Information Science 19:

1131–1147.

Hydrobiologia (2008) 612:5–20 19

123



Wagner, H. H. & M. J. Fortin, 2005. Spatial analysis of

landscapes: concepts and statistics. Ecology 86: 1975–

1987.

Wood, S. N., 2006. Generalized Additive Models: An Intro-

duction with R. CRC Press, London.

Wright, S., 1921. Correlation and causation. Journal of Agri-

cultural Research 20: 557–585.

Zaniewski, A. E., A. Lehman & J. Overton, 2002. Predicting

species spatial distributions using presence-only data: a

case study of native New Zealand ferns. Ecological

Modelling 157: 261–280.

Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing

Ecological Data. Springer Series: Statistics for Biology

and Health.

20 Hydrobiologia (2008) 612:5–20

123


	Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS
	Abstract
	Introduction
	Objectives of essential fish habitat modelling
	Data acquisition and preparation
	Data processing
	Approaches to essential fish habitat modelling
	Presence-only models
	Presence/absence models
	Classification and regression trees
	Multivariate adaptive regression splines
	Generalized linear, additive and mixed models
	Artificial neural networks


	Model comparisons
	Essential fish habitat mapping
	Prediction versus range
	Use of satellite data
	Seasonal or pooled

	Model validation
	Conclusions
	Acknowledgement
	References


