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Graphene nanoribbon (GNR) is a promising alternative to carbon nanotube (CNT) to overcome the chirality challenge as a
nanoscale device channel. Due to the one-dimensional behavior of plane GNR, the carrier statistic study is attractive. Research
works have been done on carrier statistic study of GNR especially in the parabolic part of the band structure using Boltzmann
approximation (nondegenerate regime). Based on the quantum confinement effect, we have improved the fundamental study in
degenerate regime for both the parabolic and nonparabolic parts of GNR band energy. Our results demonstrate that the band
energy of GNR near to the minimum band energy is parabolic. In this part of the band structure, the Fermi-Dirac integrals are
sufficient for the carrier concentration study. The Fermi energy showed the temperature-dependent behavior similar to any other
one-dimensional device in nondegenerate regime. However in the degenerate regime, the normalized Fermi energy with respect
to the band edge is a function of carrier concentration. The numerical solution of Fermi-Dirac integrals for nonparabolic region,
which is away from the minimum energy band structure of GNR, is also presented.

1. Introduction

Single layer of graphite which is also known as graphene
has been discovered as a material with attractive low-
dimensional physics, and possible applications in electron-
ics [1–6]. A single-wall carbon nanotube (SWCNT) is a

piece of rolled-up graphene sheet while a nanoribbon is
an unrolled nanotube. Band-gap opening is expected by
patterning narrow ribbons [7, 8] from Graphene which
can be achieved by chemical means [9]. This Graphene
nanoribbon (GNR) with quasi-one-dimensional structures
and narrow widths (<∼10 nm ) is predicted to be used as
a channel for field effect transistors with high switching
speed and excellent carrier mobility with ballistic trans-
port behavior [9–14]. Armchair and zigzag GNRs show
metallic or semiconducting electronic properties depending
on the number of dimer lines, N which gives the width
of the nanoribbon as depicted in Figures 1 and 2. The
semiconducting property in armchair GNRs occurs when
N = 3p or 3p + 1, where p is an integer [15]. The

width of the GNR, wGNR, is proportional to N given by the
expression

wGNR = (N − 1)

√
3

2
aC−C, (1)

where aC–C = 0.142 nm is the lattice constant [16].
Quantum confinement effect results in similarity of semi-
conducting and metallic behaviors in both nanotube and
nanoribbon configurations. A nanoribbon can be assumed
as an unrolled single-wall nanotube that results in two
different classes of GNRs depending on SWNTs unfolded
way. One is by unzipping the SWNT along the axial
direction through a row of atoms and then splitting
the atom row onto both edges of the resulting GNR
[17].

2. Graphene Nanoribbon Band Structure

The band energy throughout the entire Brillouin zone of
graphene is given by [18]
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where aC–C = 1.42 Å is carbon-carbon (C–C) bond length,
t = 2.7 eV is the nearest neighbor C–C tight-binding overlap
energy, and kx,y,z is the wave vector component [19, 20].
In low-energy limit [21] due to the approximation for the
graphene band structure near the Fermi point, the E (k)
relation of the GNR is obtained as

E
(−→
k
)

= ± t3aC–C

2

√

kx
2 + β2, (3)

where β is the quantized wave vector [22] given as

β = 2π

ac–c

√
3

(

pi
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− 2

3

)

, (4)

where pi is the subband index and N is the number of
dimmer lines which determine the width of the ribbon [21],
and kx is the wave vector along the length of the nanoribbon.
The energy band gap of the GNR is then simplified to be

Eg = 3tac–cβ. (5)

By using (5) as the band gap, we can rewrite the band energy
as [22]

E = ±
Eg

2

√

√

√

√

(

1 +
kx

2

β2

)

. (6)

According to (6), the relationship between energy and wave
vector is not parabolic. In the case of semiconducting GNR,
the square root approximation can be employed to formulate
the parabolic relation between energy and wave vector.
Therefore the band energy in the low-energy limit (k = 0)
is

E(k) ≈
Eg

2
+

Eg

4β2
k2
x , (7)

E ≈
Eg

2
+

�2k2
x

2m∗ , (8)

where m∗ is the effective mass of GNR. The square
root approximation leads to Fermi-Dirac integrals in the
parabolic band structure for the carrier concentration,
velocity, and current expression which is similar to the one-
dimensional devices [22]. By representing the GNR energy
band of (6) and (8) in Figure 3, it can be seen that the band
structure is parabolic at certain range of energy in the E-k
relationship. In the parabolic region it is sufficient to use the
Fermi-Dirac integral for carrier statistic study. However in
the nonparabolic part, it will lead to a different kind of Fermi
integral.

By taking the derivatives of energy E over the wave
vector k (dE/dk) for (8), the density of state (DOS) [22]
for parabolic part of one-dimensional GNR band energy
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Figure 1: Armchair GNRs with dimer lines N and width w.
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Figure 2: Zigzag GNRs with dimer lines N and width w.

incorporating the effect of electron-spin parameter (gs = 2)
[23] is given by

DOSGNR(E) = ∆n

∆E · L =
1

2π

(

2m∗

�2

)1/2
(

E −
Eg

2

)−1/2

, (9)

where L is the length of the ribbon. By substituting Eg /2 with
shifted conduction band energy EC , this DOS equation can
be readily applied to another one-dimensional material.

3. Result and Discussion

3.1. Carrier Statistics in Parabolic Band Structure. Carrier
concentration is an essential parameter for semiconductor.
The numbers of electrons/cm3 and holes/cm3 with ener-
gies between E and E + dE have been established to be
DOS(E) f (E)d(E) and DOS(E)[1− f (E)]dE.

Therefore the total carrier concentration in a band can be
obtained by simply integrating the Fermi-Dirac distribution
function over energy band as follows [23]:

n =
∫ Etop

EC
DOS(E) f (E)dE, (10)

p =
∫ EV

Ebottom

DOS(E)
[

1− f (E)
]

dE. (11)

By substituting the density of state DOSGNR(E) and Fermi-
Dirac distribution function f (E) expressions into carrier
concentration, we obtained [24]

nD = NCI(D−2)/2

(

ηD
)

, (12)

where D is dimensionality D = 3 (3D), 2(2D), and 1(1D),

NC is effective density of states, NC = (2m∗kBT/π�2)
1/2

,
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Figure 3: The band structure of GNR near the minimum energy is
parabolic.

I(D−2)/2 is the Fermi-Dirac integral of order (D − 2)/2, and
normalized Fermi energy is ηD = (EF − ECD)/kBT . The
Fermi-Dirac integral of order i is defined as

Ii

(

ηD
)

= 1

Γ(i + 1)

∫∞

0

xi

e(x−ηD) + 1
dx. (13)

Under nondegenerate condition, the “1” from the denomi-
nator can be neglected and hence the Fermi integral reduces
to

Ii

(

η
)

≈ e η . (14)

In degenerate regime, the exponential part of (14) is very
small because all the levels are occupied by electrons up to
Fermi level. Thus, the occupation probability is 1 and the
Fermi- Dirac integral can be solved analytically resulting in

Ii

(

ηD
)

= 1

Γ(i + 1)

ηDi+1

i + 1
. (15)

The inequalities adjacent to (14) are simultaneously satisfied
if the Fermi level lies in the band gap more than 3KBT from
either band edge. Figure 4 shows the energy band diagram
indicating the degenerate and nondegenerate regions. Con-
versely, if the Fermi level is within 3KBT of either band
edge or lies inside a band, the semiconductor is said to
be degenerate. It should be noted that a nondegenerate
positioning of the Fermi level makes f (E) ≈ e−((E−EF )/KBT)

for all conduction band energies and 1− f (E) ≈ e((E−EF )/KBT)

for all valence band energies for all dimensions.
The simplified form of the occupancy factors is a

Maxwell-Boltzmann-type function that also describes, for
example, the energy distribution of molecules in a high
temperature. The simplified occupancy factors lead directly
to the nondegenerate relationships. In closed-form relation-
ships we find limited usage in device analysis since the
nondegenerate relationships are only valid for an intrinsic
and low-doped semiconductor [22]. Quasi-one-dimensional
GNR in Figure 5 has two axis (x and z) directions that are
less than De Broglie wave-length (one layer atomic thickness

EC

EF

EF

EV

Degenerate

3kBT

3kBT Degenerate

Nondegenerate

Figure 4: Energy band diagram showing degenerate and nondegen-
erate regions.

W ≪ λD

L≫ λD

Figure 5: Cross-section of a rectangular one-dimensional GNR
with W ≪ λD and≫ λD .

with width less than 10 nm). However, GNR has length that
is more than De Broglie wave-length, L ≫ λD. The width is
less than De Broglie wave-length≪ λD.

In nondegenerate limit condition, the carrier concentra-
tion of GNR can be expressed as

nGNR(non deg enerate) = NCe
−((EC−EF )/kBT). (16)

Here EC = EC0+ε0y+ε0z is the shifted conduction band due to
the confinement effect. This simplified distribution function
is extensively used in determining the transport parameters.
It is applicable for nondegenerately doped semiconductors
and also GNR near the minimum band energy. However,
most nanoelectronic devices today are degenerately doped
[25, 26]. However, any design based on the Maxwellian
distribution is not strictly correct and often leads to errors
in the interpretation of the results.

For degenerate GNR we have

nGNR(deg) =
[

8m∗(EF − EC)

π2�2

]1/2

. (17)

In quasi-one-dimensional semiconducting GNR, the Fermi-
Dirac integral is a proportion of exponential of η in
nondegenerate approximation and a proportion of 2/

√
πe1/2

in degenerate approximation as shown in Figure 6. This
significant result proves that the Fermi-Dirac integral can
be simplified into degenerate and nondegenerate approxima-
tion and therefore a simplified equation can be obtained.
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Also shown in Figure 6 are those for D = 3(bulk),
2(quasi-2-dimensional), and 1(quasi-1-dimensional). The
normalized Fermi energy ηFd as a function of normalized
carrier concentration in the nondegenerate regime of GNR
is given by [24]

(EF − EC)non deg enerate = kBT ln

(

n

N

)

d
, (18)

where (EF − EC)non deg enerate is a weak (logarithmic) function
of carrier concentration. It varies linearly with temperature
in the nondegenerate (ND) regime. However, for strongly
degenerate statistics, the Fermi energy is independent of tem-
perature and it is a strong function of carrier concentration
given by [24]

(EF − EC)deg enerate =
�2

m∗ 2π

[

Γ

(

d

2
+ 1

)

nd/2

]2/d

. (19)

The Fermi energy is proportional to n2
1 for 1D nanostructure

specifically for the GNR. Equations (18) and (19) are
important as we would like to know the position of the Fermi
level with respect to the carrier concentration in GNR. The
higher doping concentration on GNR will lead to higher
carrier concentration and hence Fermi level is further from
conduction band.

3.2. Carrier Statistics in Nonparabolic Band Structure. As
illustrated in Figure 3, the energy band is only parabolic
near the low-energy limit in a range of −0.5 < k < 0.5.
The non-parabolic part remains unsolved outside that range.
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Figure 7: Comparison of the GNR Fermi-Dirac integral in
degenerate and nondegenerate regimes in non-parabolic region.
Also shown is the comparison with general equation (W = 3.5663,
m = 10, p = 21, and N = 30).

The carrier concentration in the non-parabolic region is
determined by

nGNR =
∫∞

−∞

1

3πac–ct

E
√

E2 −
(

Eg /2
)2

1

e(E−EF )/kBT + 1
dE.

(20)

However, this integral cannot be solved analytically. Rear-
ranging (20) we obtained

nGNR = NC

∫∞

−∞

(

x + Eg /2kBT
)

√

x2 + x
(

Eg /kBT
)

(

1

ex−ηFGNR + 1

)

dx, (21)

where NC = kBT/3πac–ct, x = E − (Eg /2)/kBT , and ηFGNR =
EF − (Eg /2)/kBT . NC is the effective density of states in the
nonparabolic region of the GNR. For the nondegenerate
condition which neglected 1 in the denominator, (21) will
be similar to the other one-dimensional devices which
showed temperature dependence effect for the Fermi energy.
By replacing the graphene nanoribbon Fermi integral with
another integral M, the equation for electron concentration
in non-parabolic region of the GNR will be simplified as

nGNR = NCMeηGNR , (22)

where

M =
∫ Etop

EC

x + EG/2kBT
√

x2 + xEG/kBT

(

1

ex−η + 1

)

dx. (23)

As the carrier occupancy probability is unity in the degen-
erate regime, the exponential part can be neglected, which
leads to

nGNR = NC

∫ η

0

x + EG/2kBT
√

x2 + xEG/kBT
dx. (24)
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Thus, the carrier concentration is a simple integral which can
be solved analytically. Expanding (24)

nGNR = NC

∫ η

0

x
√

x2 + xEG/kBT
dx +

∫ η

0

EG/2kBT
√

x2 + xEG/kBT
dx.

(25)

By substituting x and ηFGNR into (25), the normalized
Fermi energy is dependent on the carrier concentration and
independent of temperature. Thus, the non-parabolic carrier
concentration of the GNR can be expressed as

nGNR = NC

(
√

(EF − EC)2 + (EF − EC)2EG

)

. (26)

In quasi-one-dimensional semiconducting nanoribbon the
Fermi-Dirac integral is proportional to the exponential of
η in nondegenerate approximation and it is proportional to
carrier concentration in degenerate approximation. Figure 7
shows that the nanoribbon Fermi integral in non-parabolic
region is closely approximated by the exponential of η when
η ≤ −3 for the nondegenerate regime. Thus GNR Fermi
energy is a function of temperature that is independent of
the carrier concentration in the nondegenerate regime. In
the other strongly degenerate regime for (η ≥ 6), the Fermi
energy is a function of carrier concentration appropriate for
given dimensionality and it is independent of temperature.

4. Conclusion

The modeling of carrier statistic in a both parabolic and non-
parabolic region is presented. The one-dimensional GNR
approaches degeneracy at relatively lower values of carrier
concentration as compared to 2D and 3D structures. The
Fermi energy with respect to the band edge of the GNR is
a function of temperature but is independent of the carrier
concentration in the nondegenerate regime. In the strongly
degenerate regime, the Fermi energy is a function of carrier
concentration but it is independent of temperature.
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