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Abstract 

Immiscible fluid systems are ubiquitous in industry, medicine and nature. Understanding the phase 

morphologies and intraphase fluid motion is often desirable in many of these situations; for example, 

this will aid improved design of microfluidic platforms for the production of medicinal formulations. 

In this paper, we detail a Smoothed Particle Hydrodynamics (SPH) approach that facilitates this 

understanding. The approach includes surface tension and enforces incompressibility.  The 

approach also allows the consideration of an arbitrary number of immiscible phases of differing 

viscosities and densities. The nature of the phase morphologies can be arbitrary and change in 

time, including break-up (which is illustrated) and coalescence. The use of different fluid constitutive 

models, including non-Newtonian models, is also possible. The validity of the model is 

demonstrated by applying it to a range of model problems with known solutions, including the 

Young-Laplace problem, confined droplet deformation under a linear shear field, and a droplet 

falling under gravity through another quiescent liquid. Results are also presented to illustrate how 

the SPH model can be used to elucidate the behaviour of immiscible liquid systems. 

Key Words: Smoothed Particle Hydrodynamics; Incompressible flow; Immiscible liquid-liquid flow; 

Droplet deformation; Microfluidics. 

Abbreviations 
CSF Continuum Surface Force 
DPD Dissipative Particle Dynamics 
LBM Lattice Boltzmann Method 
LGA Lattice Gas Automata 
LJ Lennard-Jones 
PPE Pressure Poisson Equation 
SPH Smoothed Particle Hydrodynamics 
VOF Volume of Fluid 

1 Introduction 

Processing of immiscible liquid-liquid dispersions occurs widely in the manufacture of foods [1], 

pharmaceuticals [2], cosmetics [3], paints [4], and oil [5]. Examples of processes include 

emulsification [4, 6], encapsulation [7, 8], multiphase reaction systems [9, 10], electrochemical 



processes [11], bioprocesses [12], separation processes [13] such as liquid-liquid extraction [14], 

polymer blending [15], and oil recovery [16]. Processes involving immiscible liquids are also found 

beyond industry, including in environmental clean-up [17], artificial oxygen carriers [18], oil spills 

[19], and pyroclastic flows [20]. 

There is an increasing need to understand and exploit the link between liquid-liquid phase 

morphology and fluid dynamics within the phases on the one hand and the conditions that lead to 

them on the other. For example, the droplet size distribution of an emulsion produced through 

agitation is a function of the balance between droplet breakup and coalescence, which can be 

controlled by the surfactant and stabilizer concentration and relative velocities of the phases [21-

23]. Microfluidic production of encapsulates provides a further example: in this case, encapsulate 

morphology can be varied through the nature of the flow-focusing in the microchannels and, 

amongst other things, the continuous-to-dispersed phase flow rate ratio [24, 25]. The challenges 

faced in experimentally elucidating these types of relationships are significant, however. For 

example, the visualization of the morphologies of the phases and flow fields therein are still very 

much in their infancy [26-29]. Models that treat the phases and interfaces between them explicitly 

have, therefore, a key role to play in building understanding of liquid-liquid systems and exploiting 

this understanding in a systematic way. 

Models of liquid-liquid systems in which the individual phases and interfaces between them are 

treated explicitly are long-standing [30-33]. The earliest models, which focus on droplets in a 

continuous phase, include those of Taylor [34, 35], Mason and co-workers [36, 37], Cox and co-

workers [38, 39], and Acrivos and co-workers [40-42] amongst others. Whilst these models were 

important in building understanding, they are limited by a good number of simplifying assumptions 

[43], including negligible inertial effects (i.e. small Reynolds numbers), small viscosity ratio ranges, 

and regular droplet shapes (e.g. spheres; ellipsoids). Phenomenological approaches have been 

adopted to overcome some limitations associated with wholly analytical models. For example, 

Maffettone and Minale [44] used such an approach, determining the model parameters by ensuring 

it matches analytical results in appropriate limits. Such models are, however, also limited by 

underpinning assumptions such as, for example, specific droplet shapes and the absence of any 

connection between the model parameters and underlying fundamentals.  

Adoption of wholly numerical approaches can, in principle, overcome limitations faced by analytical 

and related models. Some of the earliest numerical models include those of Acrivos and co-workers 

[43, 45, 46], who studied the deformation and rupture of a viscous droplet suspended in another 

liquid within extensional and shear flow fields. More recent examples include the works of 

Loewenberg, Hinch and Davis [47-53], which are based on a boundary-integral approach. Interface 

tracking techniques such as Volume of Fluid methods (VOF) [54, 55] and level set methods [56, 

57] have been used even more recently. Whilst these works represent major advances in the field, 



they have two significant disadvantages that lead to algorithmic complexity, computational expense 

and numerical stability challenges [33, 58]: (1) the need to adjust the mesh as the phases deform; 

and (2) the need to track the interfaces between the different phases. Additionally, the treatment of 

coalescence and rupture of the interfaces between the phases is extremely challenging if not 

impossible in many of these techniques [59, 60]. 

Particle-based approaches have more recently been used as a remedy to the issues faced by 

mesh-based approaches. The most widely-adopted is the Lattice Boltzmann method (LBM) [61, 

62]. This method as well as its less widely-used antecedent, Lattice-Gas Automata (LGA) [63, 64], 

are also not without their problems and limitations, however. For example, Galilean invariance is 

lost in LGA, leading to a spurious density-dependent factor multiplying the inertial term in the 

momentum conservation equation whose effect cannot be removed [65]. LBM-based simulation of 

immiscible multiphase fluid flows, on the other hand, tend to suffer from stability problems [66]. An 

alternative approach is Dissipative Particle Dynamics (DPD) [58, 65, 67], which has been used to 

study the rheology of complex fluids [68]. A related but computationally far cheaper approach [69] 

of much longer standing is Smoothed Particle Hydrodynamics (SPH) [70]. In addition to avoiding 

all the issues associated with mesh-based methods, SPH has the advantages that it is derived 

directly from the underlying equations of continuum mechanics and, hence, can be easily extended 

to any non-Newtonian matter.  

In addition to being used to model multiphase fluid systems via the two-fluid model [71, 72], SPH 

has been used extensively to model such systems in which the interfaces are explicitly resolved. 

Many of these ignore surface tension (e.g. [73-78]), making them of limited value when interest lies 

in liquid-liquid systems where it plays a key role in dictating behaviour. Some have, however, 

sought to include surface tension effects. The first broad approach is that initially proposed by 

Morris [79], which embeds the continuum surface force (CSF) approach [80] within SPH. This 

approach is disadvantaged by the need to evaluate the curvature of interfaces, a computationally 

challenging task that also leads to numerical instabilities. Adams and co-workers [81] addressed 

this issue, although computational complexity and expense is still an issue. The CSF-based SPH 

approach has since been extended to systems involving solid surfaces of desired wettability [81, 

82] and strictly incompressible systems [83-90]. A second broad approach sees SPH combined 

with the Cahn-Hilliard model [91, 92]; this diffuse interface approach is yet to see wider use, 

however. The final broad approach to including surface tension within SPH is via incorporation of 

inter-particle forces that lead to phase separation. The earliest example of this approach was due 

to Nugent and Posch [93], whose inter-particle force was inspired by the intermolecular interaction 

term that arises in the van der Waals equation of state used to close their compressible SPH model. 

This particular model, which is far simpler and cheaper than the two alternative approaches 

mentioned above, has seen some use since (e.g. [94, 95]) along with similar models based on 

other inter-particle force models, including some inspired by DPD [96, 97] along with various other 



more arbitrary forms [98], including trigonometric [99] and inverse square law [100]. In all these 

cases, however, strict incompressibility has not been imposed; this has only been done once 

previously [101] using the trigonometric interaction model. 

In this paper, we report incorporation of surface tension within strictly incompressible SPH 

framework by including a Lennard-Jones (LJ) interaction between particles. The adoption of the LJ 

interaction to bring about surface tension has the advantage that it mirrors the almost universally 

used approach to incorporating solid boundaries within SPH, thus opening the way to unifying the 

treatment of interfaces in SPH. The paper first provides details of the SPH model and how it is 

parametrized to yield the desired surface tension. The new method is then validated by comparing 

its predictions to analytical results and experiments for a number of model problems, including 

deformation of a liquid droplet in a linear shear field and the same for a freely falling droplet in a 

quiescent continuous phase. 

2 The Method 

2.1 Governing Equations 

Smoothed-particle hydrodynamics builds on the Navier–Stokes equations expressed in the 

Lagrangian frame, which for an incompressible, isothermal system are of the form 

 ∇. 𝐯𝐯 = 0 (1) 

𝜌𝜌 
𝑑𝑑𝐯𝐯𝑑𝑑𝑑𝑑 =  ∇.𝛔𝛔 +  𝜌𝜌𝐠𝐠+ 𝐅𝐅𝐼𝐼 (2) 

where  𝜌𝜌, 𝐯𝐯 , and 𝛔𝛔  are the fluid density, velocity and stress tensor, respectively, and 𝐠𝐠 is the 

acceleration due to body forces such as gravity. The term 𝐅𝐅𝐼𝐼  is introduced into the momentum 

equation here to enable the imposition of immiscibility between the different liquids as described in 

more detail below. The form of this force is selected in a way that its sum across the entire 

multiphase system disappears, ensuring overall conservation of momentum. 

The stress tensor is described here by 𝛔𝛔 = −𝑃𝑃𝐈𝐈+ 𝛕𝛕 (3) 

where 𝑃𝑃 is the pressure, 𝐈𝐈 the unit tensor, and 𝛕𝛕 the shear stress tensor. The latter for a Newtonian 

fluid may be expressed as 𝛕𝛕 =  −𝜇𝜇 � ∇𝐯𝐯+ (∇𝐯𝐯)𝑇𝑇 � (4) 

where 𝜇𝜇 is the dynamic viscosity. 



2.2 SPH Discretization 

In SPH, the fluid is represented by a discrete set of particles of mass, 𝑚𝑚𝑖𝑖, and viscosity, 𝜇𝜇𝑖𝑖, that 

move with the local fluid velocity, 𝐯𝐯𝑖𝑖. Here, each particle also carries a colour, 𝑐𝑐𝑖𝑖, to indicate which 

of the immiscible fluids it belongs to. In principle, the approach here allows for any number of 

colours (i.e. fluids), each with its own viscosity and density – this opens the way for modelling 

systems with arbitrary sets of viscosity and density ratios. 

The velocity and other quantities associated with any particle are interpolated at a position, 𝑟𝑟, 

through a weighted summation of contributions from all neighboring particles within a compact 

support of radius 𝑂𝑂(ℎ) as illustrated in Figure 1, where ℎ is selected to balance the need for the 

weighting function, 𝑊𝑊(ℎ), to sample a sufficient number of particles-j around particle-i whilst not 

being so great that it deviates significantly from the ideal [70]. For example, the density of a particle-

i is given by [102] 

𝜌𝜌𝑖𝑖 = �𝑚𝑚𝑗𝑗𝑗𝑗 𝑊𝑊�𝑟𝑟𝑖𝑖𝑗𝑗,ℎ� (5) 

where 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between particles i and j. 

The pressure gradient associated with particle-i is given by [102, 103] 

𝛻𝛻𝑃𝑃𝑖𝑖 = 𝜌𝜌𝑖𝑖�𝑚𝑚𝑖𝑖  � 𝑃𝑃𝑖𝑖𝜌𝜌𝑖𝑖2 +
𝑃𝑃𝑖𝑖𝜌𝜌𝑖𝑖2�𝑖𝑖 𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 (6) 

where 𝑃𝑃𝑖𝑖 is the pressure associated with particle-i. 

Finally, the divergence of the shear stress tensor attached to a particle-i is given by [104] 

(𝛻𝛻. 𝝉𝝉)𝑖𝑖 = 𝜌𝜌𝑖𝑖�𝑚𝑚𝑗𝑗  � 𝛕𝛕𝑗𝑗𝜌𝜌𝑗𝑗2 +
𝛕𝛕𝑖𝑖𝜌𝜌𝑖𝑖2�𝑗𝑗 .𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗 (7) 

The components of the shear stress tensor in this expression, which are derived from Equation (4), 

are given by [105]  

𝜏𝜏𝑖𝑖𝛼𝛼𝛼𝛼 = −��𝑚𝑚𝑗𝑗𝜇𝜇𝑗𝑗 𝜌𝜌𝑗𝑗  𝑣𝑣𝑖𝑖𝑗𝑗𝛼𝛼𝑗𝑗 𝜕𝜕𝑊𝑊𝑖𝑖𝑗𝑗𝜕𝜕𝜕𝜕𝑖𝑖𝛼𝛼 +�𝑚𝑚𝑗𝑗𝜇𝜇𝑗𝑗 𝜌𝜌𝑗𝑗  𝑣𝑣𝑖𝑖𝑗𝑗𝛼𝛼𝑗𝑗 𝜕𝜕𝑊𝑊𝑖𝑖𝑗𝑗𝜕𝜕𝜕𝜕𝑖𝑖𝛼𝛼 � (8) 

where 𝐯𝐯𝑖𝑖𝑖𝑖 = 𝐯𝐯𝑖𝑖 − 𝐯𝐯𝑖𝑖. 
We have employed the following quintic spline kernel to ensure the second derivatives of the 

smoothing kernel that arise in the viscous SPH model are smooth, thus avoiding instabilities that 

are known to arise with lower order kernels [106, 107] 



𝑊𝑊(𝑟𝑟∗,ℎ) =
7

478𝜋𝜋ℎ2 × ⎩⎨
⎧(3− 𝑟𝑟∗)5 − 6(2− 𝑟𝑟∗)5 + 15(1− 𝑟𝑟∗)5              0 ≤ 𝑟𝑟∗ < 1   

(3− 𝑟𝑟∗)5 − 6(2− 𝑟𝑟∗)5                                         1 ≤ 𝑟𝑟∗ < 2   

(3− 𝑟𝑟∗)5                                                                 2 ≤ 𝑟𝑟∗ < 3   

 0                                                                               𝑟𝑟∗ > 3           

 (9) 

where 𝑟𝑟∗ = 𝑟𝑟 ℎ⁄  is a dimensionless radius. 

 

Fig. 1 An illustration of an SPH weighting function (solid black line) with compact support of 
radius O(h) (closed red arc) sited on particle-i (shown in red) that leads to the particle interacting 

with all other particles-j within the support radius (shown in blue). 

2.3 Immiscibility Model 

The immiscibility between the different fluids is enforced through the force, 𝐹𝐹𝐼𝐼, in Equation (2), which 

is dependent on the colour of the particles. We have adopted a force that is based on the following 

functional form that is motivated by the Lennard-Jones (LJ) interaction model 

𝜙𝜙𝑖𝑖𝑗𝑗 = ⎩⎪⎨
⎪⎧−𝜀𝜀𝑖𝑖𝑗𝑗 �𝐿𝐿0𝑟𝑟 �6

if 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗𝜀𝜀𝑖𝑖𝑗𝑗 �𝐿𝐿0𝑟𝑟 �12

if 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑗𝑗 (10) 

where 𝐿𝐿0 is a reference length and 𝜀𝜀𝑖𝑖𝑖𝑖 dictates the surface tension for the fluid pair as outlined 

further in sub-section 3.1 below (c.f. Figure 3 and associated text). The first part of this expression, 

which yields an attractive force between particles of the same colour (i.e. same fluid), leads to 

clustering of like-colored particles and is, therefore, the primary driving force for phase separation 

in the model. Restricting this term to like-colored particles is akin to setting the ratio 𝜀𝜀𝑖𝑖𝑗𝑗 𝜀𝜀𝑖𝑖𝑖𝑖⁄ = 0 for 𝑖𝑖 ≠ 𝑗𝑗, which has been shown to yield the sharpest interface between the phases in molecular 

simulations [108]. Experimentation by us supported this notion. The second term further limits inter-

mixing of different fluids by inducing a very short range repulsive force between particles of different 

O(h)

Kernel W(r)

i

ri j

j



colour. Although the 12-6 form of the LJ model is widely used in SPH, out of interest we did 

experiment with other exponent pairs (e.g. 12-12, 12-4) but found none yielded behaviour superior 

to that given by the more commonly used form. 

The force between SPH particles that induces immiscibility is obtained from the gradient of the LJ 

expression 𝐅𝐅𝐼𝐼 = −∇𝜙𝜙 (11) 

In SPH form, this equation leads to the following force acting on particle-i due to surface tension  

(𝐅𝐅𝐼𝐼)𝑖𝑖 = � 𝑚𝑚𝑗𝑗𝜌𝜌𝑗𝑗 ϕ𝑖𝑖𝑗𝑗 𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗  (12) 

The motivation for adopting the 12-6 LJ model here is two-fold. It has long been known that this 

model admits phase separation in the molecular context when the kinetic energy of the particles 

(which is quantified by the temperature) is smaller than a critical value of 𝜀𝜀𝑖𝑖𝑖𝑖 [108, 109]. It is also 

widely used in SPH to include solid surfaces and, as such, its use here opens the pathway to using 

a unified approach to including solid/fluid and fluid/fluid interfaces with desired wettabilities and 

surface tensions, respectively. 

2.4 Solution Algorithm for Incompressible Flow of Immiscible Fluids 

Combining Equations (2), (6), (7), and (12) leads to the following SPH formulation for the 

momentum equation 

d𝐯𝐯𝑖𝑖𝑑𝑑𝑑𝑑 = −�𝑚𝑚𝑗𝑗 � 𝑃𝑃𝑗𝑗𝜌𝜌𝑗𝑗2 +
𝑃𝑃𝑖𝑖𝜌𝜌𝑖𝑖2�𝑗𝑗 𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗 +�𝑚𝑚𝑗𝑗 � 𝛕𝛕𝑗𝑗𝜌𝜌𝑗𝑗2 +

𝛕𝛕𝑖𝑖𝜌𝜌𝑖𝑖2�𝑗𝑗 .𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗 + 𝐠𝐠 − 1𝜌𝜌𝑖𝑖�𝑚𝑚𝑗𝑗𝜌𝜌𝑗𝑗 𝜙𝜙𝑖𝑖𝑗𝑗𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗  (13) 

This is solved using a two-step predictor-corrector scheme based on that proposed by Cummins 

and Rudman [110] for single phase strictly incompressible flows and later extended to multiphase 

flows without surface tension by Shao and Lo [111]. Firstly, an initial estimate of the particle 

velocities at time 𝑑𝑑 + ∆𝑑𝑑, 𝐯𝐯�, is made using only the shear stress, 𝐅𝐅𝛕𝛕, body, 𝐅𝐅𝐠𝐠, and surface force, 𝐅𝐅𝛟𝛟, 

terms (i.e. last three terms) in Equation (13) at time step-t (indicated by the subscript-t) [110, 111]. 

𝐯𝐯� = 𝐯𝐯𝑡𝑡 + �𝐅𝐅𝛕𝛕 + 𝐅𝐅𝐠𝐠 + 𝐅𝐅𝛟𝛟�𝑡𝑡∆𝑑𝑑 (14) 

The corresponding initial estimates for the particle positions are then evaluated using [111]  𝐱𝐱� = 𝐱𝐱𝑡𝑡 + 𝐯𝐯�∆𝑑𝑑   (15) 

At this point incompressibility has not been enforced, and thus the density obtained from use of 

these initial particle position estimates in Equation (5), 𝜌𝜌�, will be unlikely to be equal to that desired. 



The desired density is recovered by correcting the initial estimates of the particle velocities using 

[111] 𝐯𝐯𝑑𝑑+1 =  𝐯𝐯� + ∆𝐯𝐯� (16) 

where the velocity correction is evaluated using the pressure gradient term of the momentum 

equation only 

∆𝐯𝐯� = −1𝜌𝜌� ∇𝑃𝑃𝑡𝑡+1 ∆𝑑𝑑 (17) 

To obtain the pressure at the new time, 𝑃𝑃𝑡𝑡+1 , Equations (16) and (17) are combined and the 

divergence is taken to give [110] 

∇. �𝐯𝐯𝑡𝑡+1 − 𝐯𝐯�∆t
� = −∇. �1𝜌𝜌� ∇𝑃𝑃𝑡𝑡+1   � (18) 

Imposing the incompressibility condition at the new time step, ∇. 𝐯𝐯t+1 = 0, leads to the Pressure 

Poisson Equation (PPE) [110] 

∇. � 
1𝜌𝜌� ∇𝑃𝑃𝑡𝑡+1� =

∇.𝐯𝐯�∆t
 (19) 

The left hand side is discretized based on Shao’s approximation for the Laplacian in SPH [111], 

which is a hybrid of a standard SPH first derivative with a finite difference computation 

∇. �1𝜌𝜌 ∇𝑃𝑃�𝑖𝑖 = �𝑚𝑚𝑖𝑖  
8�𝜌𝜌𝑖𝑖 + 𝜌𝜌𝑖𝑖�2 �𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖�𝐫𝐫ij.∇𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖�𝐫𝐫𝑖𝑖𝑖𝑖�2 + 𝜔𝜔2𝑖𝑖  (20) 

where 𝜔𝜔 is a small value (e.g. 0.1ℎ ) to ensure the denominator is always non-zero. 

The right hand side of equation (19) is discretized in SPH using [110] 

(∇.𝐯𝐯�)𝑖𝑖 = 𝜌𝜌𝑖𝑖�𝑚𝑚𝑗𝑗  �𝐯𝐯�𝑗𝑗𝜌𝜌𝑗𝑗2 +
𝐯𝐯�𝑖𝑖𝜌𝜌𝑖𝑖2� .∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗  (21) 

Discretization of the PPE equation leads to a system of linear equations, 𝐀𝐀𝐀𝐀 = 𝐛𝐛, in which 𝐀𝐀 is the 

vector of unknown pressure gradients to be determined, and the matrix 𝐀𝐀 is not necessarily positive 

definite or symmetric. In the present work, the biconjugate gradient algorithm [112] was used to 

solve this set of equations.  

Once the velocity at the next time step is determined via use of Equation (16), the new particle 

positions are finally obtained using 𝐱𝐱𝑑𝑑+1 =  𝐱𝐱𝑑𝑑 +
1

2
(𝐯𝐯𝑑𝑑 + 𝐯𝐯𝑑𝑑+1)∆𝑑𝑑   (22) 



3 Results and Discussion 

3.1 Young-Laplace and Parameterization of Immiscibility Model 

The validity of the new method was first assessed by ensuring that an initially square droplet 

transformed into a circular droplet that conforms to the Young-Laplace equation. The two liquids 

were quiescent and of the same density (𝜂𝜂 = 𝜌𝜌𝑑𝑑 𝜌𝜌𝑐𝑐⁄ = 1) and viscosity (𝜆𝜆 = 𝜇𝜇𝑑𝑑 𝜇𝜇𝑐𝑐⁄ = 1).  The droplet 

was initially a square of size 6ℎ × 6ℎ (ℎ = 1.25𝐿𝐿0, where 𝐿𝐿0 = 5 × 10−5 m) within a periodic domain 

of 24ℎ × 24ℎ ; the total number of SPH particles was  𝑁𝑁𝑝𝑝 = 961 . A timestep size of ∆𝑑𝑑∗ =∆𝑑𝑑�𝛾𝛾 𝜌𝜌ℎ3⁄ = 0.1 was used. 

Figure 2 shows, as expected, that the perimeter of the droplet, 𝐶𝐶𝑑𝑑 , gradually decreases as it 

changes from its initial square shape to a circle. This figure also shows that the pressure difference 

across the interface between the two phases, shown in dimensionless form, ∆𝑃𝑃∗ = ∆𝑃𝑃ℎ 𝛾𝛾⁄ , 

increases as the droplet transforms in shape, in line with the physics where the pressure difference 

is counter-balanced by the surface tension (in this case, 𝛾𝛾 = 0.045 N/m, which corresponds to 𝜀𝜀 =

56.25 N/m2). 

 

Fig. 2 Variation through time, 𝑑𝑑∗ = 𝑑𝑑�𝛾𝛾 𝜌𝜌ℎ3⁄ , of the circumference, 𝐶𝐶𝑑𝑑, of an initially square, 
neutrally buoyant, stationary droplet suspended in a second continuous phase and the associated 

change in pressure difference, ∆𝑃𝑃∗ = ∆𝑃𝑃ℎ 𝛾𝛾⁄ , across the interface between the two liquids. 
Snapshots of the droplet along the transformation pathway are shown at various points in the 

transformation. 

Figure 3(a) shows the variation of the pressure droplet across the interface between the droplet 

and continuous phase obtained as a function of the inverse of the droplet size. The linear behaviour 

seen in this figure clearly conforms to the Young-Laplace equation 

∆𝑃𝑃 =
γ𝑅𝑅 (23) 

 

This expression shows that the surface tension between two fluids can be straightforwardly equated 
to the gradient of the line in Figure 3(a).  
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Fig. 3. Demonstration that the immiscibility model conforms to the Young-Laplace equation and 
use of this equation to determine the relationship between the immiscibility model parameter, 𝜀𝜀𝑖𝑖𝑖𝑖, 
and the surface tension, 𝛾𝛾𝑖𝑖𝑖𝑖, between two fluids of colour 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑖𝑖: (a) variation of dimensionless 
pressure drop across the droplet interface with the inverse of its dimensionless radius, 𝑅𝑅∗ = 𝑅𝑅 ℎ⁄ , 
obtained using 𝜀𝜀 = 16 N/m2 – the slope of this line is 𝛾𝛾 = 0.0142 N/m; (b) variation of the surface 

tension for a pair of fluids with the immiscibility model parameter obtained for a single SPH 
smoothing length (ℎ = 1.25 × 10−5 in this case) – the error bars show relative error in the 

interfacial tension values evaluated from the time series obtained for each simulation; and (c) 
variation of the ratio of the immiscibility model parameter and interfacial tension with the SPH 

smoothing length. 

The relationship between the immiscibility model parameter in Equation (10) for a fluid pair, 𝜀𝜀𝑖𝑖𝑖𝑖, and 

the interfacial tension, 𝛾𝛾𝑖𝑖𝑖𝑖, can be determined by repeating the simulations that lead to Figure 3(a) 

for various values of the former. Doing this leads to Figure 3(b), which shows that the interaction 

model parameter varies in a linear fashion with the interfacial tension. The slope of this linear 

relationship is dependent on the smoothing length as revealed in Figure 3(c).  
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3.2 Deformation of a Confined Droplet in a Linear Shear Field 

The new method was further validated by considering the deformation of an initially circular droplet 

under linear shear in a second immiscible liquid as illustrated in Figure S1; for simplicity, the 

densities and viscosities of the two liquids were the same (i.e. 𝜂𝜂 = 𝜌𝜌𝑑𝑑 𝜌𝜌𝑐𝑐⁄ = 1 and 𝜆𝜆 = 𝜇𝜇𝑑𝑑 𝜇𝜇𝑐𝑐⁄ = 1). 

A droplet of diameter 𝐷𝐷 = 17ℎ (ℎ = 1.2𝐿𝐿0, where 𝐿𝐿0 = 1 × 10−5 m) was initially located centrally 

within a domain of height 𝐻𝐻 = 34ℎ  and length  𝐿𝐿 = 100ℎ ; the total number of SPH particles 

was  𝑁𝑁𝑝𝑝 = 4961. To compensate truncation of the support domain of the kernel at the wall boundary, 3ℎ layers of uniformly spaced dummy particles were arranged on the outside of the boundary walls 

[113, 114] (see Figure S1). Equal but opposite velocities of magnitude 𝑈𝑈 were applied to the top 

and bottom of the domain with no slip boundary conditions (i.e. the top and bottom were treated as 

moving solid surfaces) to yield a linear shear field with shear rate 𝐺𝐺 = 2𝑈𝑈 𝐻𝐻⁄ . The state of the 

system was evolved through time using timesteps of size ∆𝑑𝑑∗ = 𝐺𝐺 ∆𝑑𝑑 = 0.001. 

Under suitable conditions, the initially stationary circular droplet deforms to take on a stable 

ellipsoidal shape as illustrated in Figure S1 and Figure S2, which illustrates that a sharp interface 

between the two liquids is obtained even when the original droplet deforms significantly. The 

character of this droplet may be described in part by the deformation parameter [115] 

𝐷𝐷𝑓𝑓 =
𝑎𝑎 − 𝑏𝑏𝑎𝑎 + 𝑏𝑏 (24) 

where 𝑎𝑎 and 𝑏𝑏 are the lengths of the major and minor axes of the ellipsoid, respectively. Figure 4 

compares this parameter as obtained from the SPH simulations at a confinement ratio of 𝐷𝐷 𝐻𝐻⁄ =

0.5 with the experimental results of Sibillo et al. [116] and Taylor’s model for an unconfined droplet 

in a shear field [115] 

𝐷𝐷𝑓𝑓 =
19𝜆𝜆+ 16

16𝜆𝜆+ 16
 𝐶𝐶𝑎𝑎 (25) 

where 𝐶𝐶𝑎𝑎 = 𝜇𝜇𝐺𝐺𝐷𝐷 𝛾𝛾⁄  is the Capillary number. This figure shows that the deformations predicted by 

SPH match very well the experimental results up to the 𝐶𝐶𝑎𝑎 = 0.3 limit probed by Sibillo et al. [116], 

with little dependency on the number of SPH particles. The results also match well those predicted 

by Taylor’s model up to this Capillary Number. However, beyond this one can see a significant 

deviation from Taylor’s model, indicating that confinement has an effect at higher Capillary 

Numbers where shear is starting to dominate over surface tension.  



 

Fig. 4 Variation of the deformation parameter (circles and solid line) as defined in Equation (24) 
and droplet tilt angle as defined in Figure S1 (squares and broken line) with Capillary Number, 𝐶𝐶𝑎𝑎 = 𝜇𝜇𝐺𝐺𝐷𝐷 𝛾𝛾⁄ , as predicted by SPH with 𝑁𝑁𝑝𝑝 = 7701, 𝐿𝐿0 = 8.0 × 10−6 and ℎ = 1.2 × 𝐿𝐿0 (solid 

points), SPH with 𝑁𝑁𝑝𝑝 = 4961, 𝐿𝐿0 = 1.0 × 10−5and ℎ = 1.2 × 𝐿𝐿0 (open points), experimental data of 
Sibillo et al. [116] (shaded points), and Taylor theory [115] as defined by Equations (25) and (26) 

(lines). 

The other key parameter characterizing the droplet behaviour is the angle the major axis of the 

ellipsoid subtends to the primary direction of flow, 𝜑𝜑  (see Figure S1). Figure 4 also shows a 

comparison of this angle as obtained from the SPH simulations with the experimental data and 

Taylor’s model [115] 

𝜑𝜑 =
𝜋𝜋
4
− (19𝜆𝜆 + 16)(2𝜆𝜆 + 3)

80(𝜆𝜆 + 1)
 𝐶𝐶𝑎𝑎 (26) 

Once again, comparison with experiment is very good. The deviation of the SPH values from 

Taylor’s theory is modest but grows with Capillary number, indicating that the tilt angle is also 

sensitive to confinement in the same way as the deformation parameter is. 

The model can be used to understand the behaviour of droplets in such systems as a function of 

the key dimensionless groups such as Capillary number. This is illustrated in Figure 5 where the 

SPH model is used to model droplet rupture (see Figure S3 and associated text for greater details). 

We will report at a later date the use of the SPH model to evaluate the critical Capillary Number for 

rupture as a function of the various physical parameters that characterize this system. 

  

Fig. 5 The new model yields velocity fields in both phases and droplet morphology change 
without complex interface tracking algorithms, which is particularly important for stable simulation 

of droplet break-up as shown here for 𝐶𝐶𝑎𝑎 = 0.5, Re = 0.1, 𝜆𝜆 = 1, 𝐷𝐷 𝐻𝐻⁄ = 0.5,𝑁𝑁𝑝𝑝 = 4961, 𝐿𝐿0 =

1.0 × 10−5, and ℎ = 1.2 × 𝐿𝐿0: (a) prior to droplet rupture; and (b) after droplet rupture as the two 
daughter drops move away from each other. 
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3.3 Deformation of Free-Falling Droplet 

The new method was finally validated by considering the descent of an initially stationary circular 

droplet accelerating under gravity through a second stationary liquid whose density, 𝜌𝜌𝑑𝑑 =

1150 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  differed from that of the continuous phase, 𝜌𝜌𝑐𝑐 , by ∆𝜌𝜌 = 𝜌𝜌𝑑𝑑 − 𝜌𝜌𝑐𝑐 = 150 kg/m3. The 

droplet was initially of diameter 𝐷𝐷 = 14ℎ  (ℎ = 1.2𝐿𝐿0 , where 𝐿𝐿0 = 1 × 10−4𝑚𝑚 ), and was located 

within a periodic domain of size 34ℎ × 34ℎ; the total number of SPH particles was  𝑁𝑁𝑝𝑝 = 1681. The 

droplet motion and deformation was followed through time (∆𝑑𝑑∗ = ∆𝑑𝑑�𝑘𝑘 𝐷𝐷⁄ = 0.004 ) until the 

terminal velocity was reached and the droplet shape remained unchanged (𝑑𝑑∗ = 45). This problem 

is characterized by four dimensionless numbers: the Morton Number,  Mo = 𝑘𝑘∆𝜌𝜌𝜇𝜇𝑐𝑐4  𝜌𝜌𝑐𝑐2γ3⁄ , 

Ohnesorge Numbers of the dispersed and continuous phase, Oh𝑑𝑑 = 𝜇𝜇𝑑𝑑 � 𝜌𝜌𝑑𝑑𝛾𝛾𝐷𝐷⁄ , and Oh𝑐𝑐 =𝜇𝜇𝑐𝑐 � 𝜌𝜌𝑐𝑐𝛾𝛾𝐷𝐷⁄  respectively, and Eötvös Number, 𝐸𝐸𝐸𝐸 = 𝑘𝑘 ∆𝜌𝜌 𝐷𝐷2 γ⁄ . 

Figure 6 compares the variation with time of the droplet descent speed, 𝑢𝑢𝑑𝑑∗ = 𝑢𝑢𝑑𝑑 �𝑘𝑘𝐷𝐷⁄ , obtained 

here from SPH with that predicted by Han and Tryggvason [117] using a finite difference front 

tracking method. This figure shows that the two predictions are very similar, with an average 

difference of about 1.4%. Snapshots of the deforming droplet at various times indicate the coupling 

between the deformation and droplet descent speed. After the initial rapid rise in the speed of the 

droplet, it first decelerates as its tail deforms before mildly accelerating again to steady state. 

 

Fig. 6 Variation of the droplet descent speed with time as predicted by SPH (broken line) and 
Han and Tryggvason [117] (solid line) for 𝜂𝜂 = 1.15, 𝜆𝜆 = 1, Eo = 10, Oh𝒅𝒅 = 0.24 and Mo = 0.04. 

Snapshots of the deforming droplet are shown as inserts at various times. 

As with droplets under shear, the SPH model provides the possibility of exploring the behaviour of 

falling drop systems as a function of the relevant system variables. This is illustrated in Figure S4, 

which show the results for droplet descent at two markedly different Eötvös Numbers, Eo.  
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4 Conclusion 

A new SPH-based approach was developed for incompressible immiscible liquid-liquid systems in 

which interfacial tension is important. The approach has a number of advantages over prior SPH 

models. It does not require any interface tracking or gradient evaluation at the interface, unlike the 

most widely used method in the field to date [79, 81-90]. Instead, phase separation with finite 

interfacial tension emerges naturally through the inclusion of a Lennard-Jones (LJ) interaction 

between particle pairs that is dependent upon the fluid species of the particles. The adoption of the 

LJ form here opens the way to unifying the treatment of all interfaces – fluid/solid, fluid/fluid and 

solid/solid – and associated interfacial energies. The method presented here can be 

straightforwardly extended to more than two fluids and allows for non-unity viscosity and density 

ratios. The SPH basis of the method means it can also be straightforwardly extended to non-

Newtonian constitutive models. 

The new approach was validated against different model problems including Young-Laplace 

equation, confined droplet deformation under a linear shear field, and a liquid droplet falling under 

gravity through another quiescent liquid. These results show that the model can predict the fluid 

dynamics of immiscible liquid-liquid systems in terms of both the phase morphologies and dynamics 

with no complex interface tracking algorithm or numerical stability issues that are commonly 

encountered with existing techniques [54, 55, 57, 61].  

The use of the new approach to elucidate the behaviour of non-trivial immiscible liquid systems 

was also demonstrated. Of particular note is its use to model droplet break-up under shear, which 

can be straightforwardly modelled, unlike in many other approaches where the need to evaluate 

gradients at the interfaces between fluids makes interface rapture a challenge to capture if not 

impossible [59, 60]. Work is now underway to use the new method to improve understanding of the 

link between phase morphology and intraphase flows of immiscible liquid flows in microfluidic 

devices and various system parameters such as viscosity ratios, Capillary number, hydrodynamic 

focusing micro-geometry and associated flowrate ratios, and wall wettabilities.  This work is of 

particular relevance to microfluidic production of drug and vaccine formulations [118, 119] and 

multiphase microreactors [120, 121]. 
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Supplementary Information 

Investigating the parameter space for a droplet in a confined linear shear field 

Figure S1 shows a schematic of the model configuration used when considering a droplet in a 

confined linear shear field. The droplet, which is initially circular, is located at the centre of a channel 

of width, H, confined by walls that move at equal speed, U, but opposite direction. The walls are 

modelled by layers of SPH particles as illustrated in the insert at the top wall. For Capillary numbers 

below a critical value, the droplet deforms into an ellipsoid of dimensions a and b along the major 

and minor axes, and tilts at an angle 𝜑𝜑 to the direction of flow – such a case is illustrated in Figures 

S2 and S3. Beyond the critical Capillary number, as illustrated by the case shown in Figure S4, the 

droplet deforms beyond the ellipsoidal shape shown here and ruptures to form two, smaller droplets. 

 
Fig. S1 Schematic of the model used when studying a droplet in a confined shear field. 

Figure S2 shows a contour plot of fluid colour for a condition where the droplet significantly deforms 

from its initial circular shape but does not rupture. The contour behaviour at the leading and tail 

ends of the droplet reflect the small number of SPH particles of the droplet colour rather than 

penetration of the continuous phase into the droplet. Comparison of the colour variation at the 

interface with the support size of the SPH kernel (shown as a white bar in the figure) shows the 

new method can produce a sharp interface even when significant deformation occurs.  

 

Fig. S2 Contour plot showing the spatial variation of the fluid colour from that of the dispersed 
(red) to the continuous phase (blue) for a confined droplet at steady state where Ca = 𝜇𝜇𝑅𝑅𝐺𝐺 𝛾𝛾⁄ =

0.2, Re = 𝜌𝜌𝑅𝑅2𝐺𝐺 𝜇𝜇⁄ = 0.1, 𝜆𝜆 = 1, 𝐷𝐷 𝐻𝐻⁄ = 0.5, 𝑁𝑁𝑝𝑝 = 4961, 𝐿𝐿0 = 1.0 × 10−5 and ℎ = 1.2 × 𝐿𝐿0. The 
radius of the kernel size (3ℎ) is shown as a solid white line in the bottom right hand corner. 
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Figure S3 illustrates how the velocity field and droplet shape changes through time for a typical set 

of conditions under which the droplet ruptures into two daughter droplets. The shear across the 

droplet induces it to elongate and rotate gradually. This in turn leads to a distortion of the velocity 

field around the droplet as illustrated by the colour plots of the wider velocity field shown on the left-

hand side of the figure. As seen in the close-ups of the droplets in the right hand of Figure S3, the 

flow around the droplet also leads to a circulatory flow within the droplet. The velocity vector plate 

for 𝑑𝑑∗ = 9 reveals very clearly the segregation of the velocity field within the droplet that presages 

its rupture soon thereafter. 

  𝑑𝑑∗ = 0 

  
  𝑑𝑑∗ = 1  

  
  𝑑𝑑∗ = 5 

  
  𝑑𝑑∗ = 9 

  
  𝑑𝑑∗ = 12 

  
Fig. S3 Velocity field & droplet morphology through dimensionless time,   𝑑𝑑∗ = 𝐺𝐺 𝑑𝑑, for a confined 
droplet where Ca = 0.5, Re = 0.1, 𝜆𝜆 = 1, 𝐷𝐷 𝐻𝐻⁄ = 0.5,𝑁𝑁𝑝𝑝 = 4961, 𝐿𝐿0 = 1.0 × 10−5, and ℎ = 1.2 × 𝐿𝐿0. 
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Figure S4 illustrates how the velocity field and droplet shape changes through time for the same 

conditions associated with Figure S2.  𝑑𝑑∗ = 0 

  𝑑𝑑∗ = 1  

 𝑑𝑑∗ = 3 

 𝑑𝑑∗ = 7 

 𝑑𝑑∗ = 10 

  

Fig. S4 Velocity field & droplet morphology through dimensionless time,   𝑑𝑑∗ = 𝐺𝐺 𝑑𝑑, for a confined 
droplet where Ca = 𝜇𝜇𝑅𝑅𝐺𝐺 𝛾𝛾⁄ = 0.2, Re = 𝜌𝜌𝑅𝑅2𝐺𝐺 𝜇𝜇⁄ = 0.1, 𝜆𝜆 = 1, 𝐷𝐷 𝐻𝐻⁄ = 0.5, 𝑁𝑁𝑝𝑝 = 4961, 𝐿𝐿0 =

1.0 × 10−5 and ℎ = 1.2 × 𝐿𝐿0. 
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Investigating the parameter space for a droplet descending in a stationary column 

of less-dense liquid 

We present here a further result to demonstrate the capacity the new method provides to 

investigate the parameter space associated with a droplet descending in a stationary column of 

less-dense liquid. Figure S5 illustrates the effect that the Eötvös Number has on the droplet 

behaviour. In both cases, the droplet rapidly accelerates before achieving a steady state decent 

speed with some degree of overshoot in between. Increase in Eo sees a greater overshoot followed 

by an undershoot before it reaches steady-state. This difference in behaviour seen here is 

understood by considering the extent of change in the droplet shape during descent, which is 

illustrated in Figures S5(b) and (c). These results are in agreement with the shape regime maps 

developed by Han and Tryggvason [117]. 

 
(a) (b) (c) 

Fig. S5 Droplet descending in a stationary column of less-dense liquid: (a) Variation of droplet 
descent speed with time as predicted by SPH for 𝜂𝜂 = 1.15, 𝑂𝑂ℎ𝑑𝑑 = 0.23 and 𝑂𝑂ℎ𝑜𝑜 = 1.25 with 𝐸𝐸𝐸𝐸 =

24 (solid line) and 𝐸𝐸𝐸𝐸 = 144 (broken line); (b) SPH particle positions at steady state showing final 
droplet shape for 𝐸𝐸𝐸𝐸 = 24; and (c) SPH particle positions at steady state showing final droplet 

shape for 𝐸𝐸𝐸𝐸 = 144. In (b) and (c) the black outline demarks the interface between the two 
phases. 
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