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S U M M A R Y  
A method for synthetizing surface wave seismograms in anelastic 2-D structures is 
presented. It is based on the local mode coupling method, extended here to allow 
for propagation in any direction, and especially in the symmetry direction of the 
structure. This implies including both homogeneous and inhomogeneous waves in 
the wavefield representation. The complex wavenumbers of inhomogeneous waves 
require that a dual space of modes and a new bi-orthonormality relation between 
modes are defined. Combinations of local modes which are not singular for modes 
having an horizontal turning point in the 2-D structure are used as a basis for 
wavefield decomposition. This allows calculation of the propagation and coupling 
characteristics of homogeneous and inhomogeneous waves with a single set of 
equations. The mode coupling matrices are then combined with source terms and 
boundary conditions to yield synthetic seismograms with a procedure similar to the 
one used in the reflectivity method in 1-D structures. 

The method is applied to model Rayleigh wave fundamental modes propagating 
along the Hawaiian chain, in order to refine the interpretation of phase velocities 
measured for this area by LCvCque (1991). The a priori reheated and thinner 
lithosphere under the chain acts as lateral low-velocity waveguide where Rayleigh 
waves are trapped. We show that this waveguide has three lateral free modes in the 
period range 20 to 150 s. Synthetic seismograms for different source-receiver 
configurations are presented. The influence of the source-type, epicentral distance 
and channel width on the waveguide's amplification power is examined in the 
frequency domain. Apparent phase velocities between two stations situated in the 
middle of the channel are calculated, and the influence of the outer parts of the 
waveguide on these velocities is analysed. It is found that the velocities measured by 
LCvCque are probably influenced at 20 to 30 per cent by the normal lithosphere 
outside the reheated channel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Key words: Hawaii, lateral heterogeneities, mode coupling methods, surface waves. 

INTRODUCTION 

Several types of elongated structures in the Earth act as 
corridors where surface waves are slower than in the 
surroundings. For long-period surface waves, the most 
common of these corridors are probably the young regions 
around the oceanic ridges, where phase velocities of 
Rayleigh waves are distinctly slower than in older regions 
(e.g. Forsyth 1977; Montagner & Jobert 1981). In this 

* Present address: Institute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Geophysics, University of Oslo, PO 
Box 1022, 0315 Oslo, Norway. 

paper, we focus attention on surface wave propagation 
along another such kind of slow lateral channel: the 
lithosphere along the Hawaiian chain. 

Geoid and heat flow data suggest that the asthenosphere 
presents a swell under the Hawaiian chain, the lithosphere 
getting reheated and thinner over a zone of about 1200 km 
width after having passed over the hot-spot (Detrick & 
Crough 1978). In order to see if seismological data may 
corroborate this reheating model, Woods et al. (1991) and 
Levt2que (1991) have measured and analysed dispersion of 
Rayleigh waves between two broad-band stations situated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2000 km from each other along the chain, on Hawaii and 
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Midway islands. By measuring the interstation phase 
velocity, they obtain information about the shear-velocity 
structure with depth in between the two stations, which can 
then be interpreted in terms of lithospheric thickness along 
the chain. 

However, due to the wavelengths involved and the 
geometry of the wave paths along this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn priori low-velocity 
corridor, it is not obvious which parts of the structure 
influence the data. In order to interpret the dispersion data 
in terms of a model for the Hawaiian swell, it is necessary to 
determine the respective influence of the central and outer 
parts of the corridor on the measured dispersions. 

It is this influence that we quantify here, by presenting 
models of Rayleigh wave propagation in a model of the 
Hawaiian swell. Modelling methods exist for surface wave 
propagation in 3-D laterally heterogeneous structures 
(Snieder 1986; Bostock 1991). These very general methods 
are not well adapted here. The main reason is that we wish 
to take advantage of the 2-D nature of the structure in the 
modelling process. Therefore, starting from methods 
developed for surface wave propagation at  small incidence 
across 2-D structures (Gregersen 1978; Kennett 1984; 
Maupin 1988), we extend them in order to allow for 
propagation at large incidence or along the structure. These 
extensions are presented in the first part of the paper. In the 
second part, seismograms are synthesized in a model of the 
Hawaiian swell constructed according to the reheating 
model. The amplification power of the channel and the 
characteristics of two-station dispersions in the channel are 
analysed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LOCAL M O D E  COUPLING-EXTENSION OF 
THE METHOD 

In order to model surface waves propagating mainly in the 
symmetry direction of a 2-D structure with continuous 
lateral variations, we generalize the local mode coupling 
method described in Maupin (1988), hereafter called M88. 
The formalism was originally restricted to waves propagat- 
ing across the structure at  non-grazing incidence (Fig. la) .  
In order to allow for propagation in the symmetry direction, 
we need to include waves which propagate at  grazing 
incidence in the channel as well as inhomogeneous waves in 
the wavefield representation (Fig. Ib). The formalism then 
needs to be extended to allow for the complex horizontal 
wavenumbers of these waves. Moreover, specific problems 
connected with surface waves having turning points inside 
the channel have to be solved. In the following, we give a 
description of the method with emphasis on the aspects of 
the coupling method which are new compared to M88. We 
also add some elements for transforming the mode coupling 
information into synthetic seismograms. 

Wavefield decomposition on local modes with complex 
wavenumbers 

The local mode coupling method is a spectral method using 
a Fourier decomposition of the wavefield in time and in the 
horizontal symmetry direction of the 2-D structure: 

u(x, y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, t )  exp (ipy) exp ( - iwt )  dp dw,  

propagating waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

inhomogeneous waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
turn ing point - : i  turn ing point 

propagating waves 

I 
I 
I inhomogeneous waves 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Plot (a)-wave propagation problem treated in Maupin 
(1988): transmission and reflection of surface waves across a 
channel. Plot (b)-wave propagation problem treated in this paper: 
waves laterally trapped inside a channel. The two parallel lines 
represent the sides of a slow-velocity channel, seen from above. The 
arrows show wave propagation directions. The type of wave needed 
to represent the wavefield in the different parts of the channel are 
indicated. 

where x is the horizontal direction across the 2-D structure, 
y is the horizontal symmetry direction, and z is the vertical 
direction. 

A first-order form in x of the equation of motion is used, 
acting on a six-component vector u combining displacement 
w, and tension t ,  on a vertical plane perpendicular t o  the 
x-axis: 

al 
- = Au - (:) with u = (1:) , 
ax 

where A is an operator for the equation of motion, and f is 
the source term. 

The basic assumption of the method is that the wavefield 
can be decomposed at  each position x on the local modes, 
which are the modes of a laterally homogeneous structure 
having the same properties with depth as the local structure. 
We refer to M88 for the justification of this decomposition 
and to Maupin & Kennett (1987) for some numerical 
discussion pertaining to the truncation of the modal series in 
the decomposition. We analyse here only the characteristics 
of the local modes relevant for the extension of the method. 

More precisely, the local modes u, are defined as the 
independent solutions of equation (2) when the variation in 
x of A is considered as parametric. They satisfy the 
equation: 

-ik,u, = Au,, (3) 

where k j  is the horizontal wavenumber in the x-direction 
(transverse to the channel). 

In an isotropic or transversely isotropic model, k, also 
satisfies: 

kf + p 2  = Kf,  (4) 
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where K, is the total horizontal local wavenumber of the 
mode, independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. 

For real p and K,, the wavenumber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ,  may be either real 
or imaginary. The mode IS then either propagating or 
inhomogeneous with exponentially varying amplitude in the 
x-direction. k, may have positive or negative sign, 
corresponding to modes propagating or inhomogeneous, 
forward or backward in x .  When k, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, the mode is at a 
turning point in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. Modes with small k , ,  at the transition 
between being propagating and inhomogeneous, are the 
most important ones when modelling the propagation close 
to the symmetry direction of the 2-D structure. Therefore, it 
is necessary to include modes which are inhomogeneous in 
x ,  and which had been explicitly excluded from the 
representation used in M88. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A new scalar product valid for complex wavenumbers 

In order to perform the decomposition of the total wavefield 
on the local modes, a projection operator which gives an 
orthogonality relation between the modes is required. The 
projection operator used in Kennett (1984) and in M88 
provides an orthogonality relation between modes having 
real p and k , .  The same scalar product may be used to 
derive an orthogonality relation in a somewhat more 
complicated form for inhomogeneous modes in elastic 
models (k ,  imaginary). But it fails to give an orthogonality 
relation for complex values of p, as we will need when 
integrating in the complex p-plane, and for anelastic 
models. 

Therefore, we derive a more general form for the 
orthogonality relation, valid for complex p and k, values. In 
a similar way to the procedure used by Lognonne (1991) for 
calculating the coupling of the Earth's normal modes in 
anelastic models, we introduce a dual space of modes. The 
modes which satisfy the wave equation (2) with a reversed y -  
wavenumber -p instead of p in A form this dual space. To a 
primal mode satisfying equation (3) is associated the dual 
mode uf which satisfies: 

ik,ufL = A%:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) 

where A* is the dual operator. 
If of propagating type, primal and dual modes are simply 

modes which propagate in opposite directions both in x and 
y .  They are orthogonal with respect to the scalar product: 

(u", u)  = (= (w"t, - tyw) dz. 
JO 

Note that no complex conjugation is involved either in the 
definition of the scalar product or of the dual modes. The 
symmetry relations between primal and dual modes, the 
proof of their orthogonality and the symmetry properties of 
A with respect to the scalar product are detailed in 
Appendix A. 

A modal decomposition non-singular at turning points 

We now have a set of modes and dual modes satisfying a 
bi-orthogonality relation valid for complex p and k, values. 
We wish to normalize them such that: 

(u?, u,) = 6,. (7) 

In isotropic and transversely isotropii riiodels, we have for 
both Love and Rayleigh modes: 

k, 2iU,Ec, 
(u,", u,) =--, 

K,  

where U, is the mode group velocity and Ec, is its mean 
kinetic energy defined in Takeuchi & Saito (1972) as 
o * ~ , " ; w * w d z .  In this expression, all the elements are 
independent of p ,  except k , .  

For propagating modes, (u f ,  u,) is proportional to the 
flux of energy across a plane x = constant. When thc mode 
reaches a turning point in x ,  the wavenumber k , ,  the flux of 
energy, and ( u p ,  u,) go to zero. In this degenerate case, 
forward and backward modes are identical, and the scalar 
product (6) cannot be used simply to normalize the modes. 
Introducing anelasticity would solve the problem formally 
by adding an imaginary component to k,. A more 
numerically stable solution to this problem is to decompose 
the wavefield on a new set of modes, which are not 
independent solutions of A anymore, but which have the 
great advantage of presenting no singularity at a turning 
point in x .  These new modes, which we call basic modes 
since they form the basis for our wavefield decomposition, 
are: 

U&+ = f(U, + iiJ, 
(9) 

where u, is a forward mode, is, is the associated backward 
mode, and k, has sign definition for the forward mode (see 
details in Appendix B). 

They satisfy the equations: 

-kfu; = Au:, 

u: = Au,- 

Their dual modes are: 

-* = -(uT + a", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-ui -* - -A%+", 

u, 

and satisfy the equations: 

kfu,+" = A"u,F". 

If the modal eigenfunctions are normalized such that: 

2 U, Ec, 
(13) -- - 1, 

0 Ki 

one may verify that the basic modes are orthonormal: 

(u:", u,:) = (u;", u;) = 0, 

(UT", UT) = (ut:", u,:) = 6,. 

The six-component vectors ut and u;, as a function of 
the Rayleigh and Love wave eigenfunctions, are given in 
Appendix B for transversely isotropic structures. With these 
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new modes, turning points are not singular cases anymore. 
Moreover, propagating, inhomogeneous modes, and modes 
with complex p and k, values, satisfy the same equations of 
motion and bi-orthonormality relations. They do not require 
separate treatments when calculating their propagation or 
coupling characteristics. 

Coupling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAacross the structure 

The procedure for calculating the coupling matrices in the 
structure is very similar to the procedure followed in M88. 
The expressions are somewhat more complicated because of 
the use of the new basic modes, which are not independent 
solutions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. However, no new concept or element is 
introduced. 

The total wavefield is decomposed on the basic modes: 
n 

u(x, p,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ,  0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c c:(x, p,  w)u+(x,p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 0 )  

+ C,Y(X, p ,  w)U,-(x, p,  z. 0).  

i = l  

(15) 

Constructing the total wavefield is now equivalent to 
solving for the different amplitude coefficients c: and c,: as 
a function of x. 

Inserting the decomposition (15) into the equation of 
motion (2 ) ,  and taking the scalar product with the dual 
modes, we obtain differential equations for cE+ and c;: 

dC + du + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau- - dX - c; = -.,+(.'y, -) dX - c;(Uqfft, -> ax ' 

2 dc - + k:c,' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-c:(uJ", 2) &I+ - c;(u;*, x). all; 

As in M88, the symmetry properties of the operator A with 
respect to the scalar product, may be used to transform the 

\ into terms in the symmetrized scalar 

product (u ts ,  '), defined in Appendix A. The latter ur 

contain lateral derivatives of the elastic parameters, but not 
of the eigenfunctions. We obtain the following expressions 
when r # q :  

f 

ax' 

(17b) 

Since several components of the eigenfunctions of the 
Love and Rayleigh basic modes are null, not all of the 
equations (17) are relevant for calculating the coupling for 
all mode pairs. Equation (17a) is non-zero only for pairs of 
Rayleigh modes or pairs of Love modes, whereas equation 

(17b) is non-zero only for a pair of a Love and a Rayleigh 
mode. 

For r = q, some self-coupling terms are non-zero, and we 
define: 

au: au- 1 dA 
Yr = ( U Y ,  a,) = - (u;*, 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=i ( u y ,  ax' u;). (18) 

Using constraints on the local mode phase, the 
self-coupling terms could be put to zero in M88. It is not 
possible to do the same here because a pair of dual-primal 
modes can only be defined up to a factor (f, l/f), possibly 
complex and x-dependent. The self-coupling terms eliminate 
the dependence of the wavefield on this factor. 

Inserting relations (17a) to (18) in the coupling equation 
(16), we obtain, in matrix form: 

dC 
-=Dc, 
d X  

where c is a 2 * n vector composed of the different (c,:, cJ 
pairs, and D can be decomposed in n 2 ( 2 x 2 )  submatrices 

Equation (19) is then used to construct propagators in x 
4 1 .  

for the amplitude coefficient vector c, 

C(XI) = P(x29 X,lC(X,). (20) 

We proceed in three steps for calculating this propagator. 
Intervals Ax are defined, for which the variations of D in x 
can be neglected. For each such interval, a first propagator 
is constructed which does not account for the mode coupling 
terms d , ,  i # j ,  but only for the diagonal submatrices. This 
first propagator describes phase and amplitude variations of 
the modes when they propagate independently through the 
structure. In the absence of very strong coupling effects, this 
propagator accounts for the dominant characteristics of the 
wavefield. It is composed only of diagonal terms Pi, which 
are: 

P;(x + Ax, x)  = 

(21) 

where L, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd m ,  and sin and cos are complex functions. 
Note that Pi is not singular when k;. = 0. 

In a second step, the non-diagonal mode coupling 
elements are introduced at first order in Ax for constructing 
the total propagator: 

P(x + Ax, x)  

1 PI dI2P2Ax . . . d,,P,AX\ 

Finally, the different interval propagators are combined 
iteratively to obtain the global propagator between two 
positions in x in the structure. 
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frequency domains. In order to  obtain the wavefield in the 
space domain, a Filon integral is performed in the complex 
p-plane along a contour similar to the one proposed by 
Frazer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gettrust (1984) for wavenumber integrals in the 
reflectivity method. In order to avoid problems around the 
poles of the integrand, we work only with anelastic models, 
where the poles are moved off the real p-axis. Finally, an 
inverse Fourier transform yields synthetic seismograms in 
the time domain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Synthesis of the wavefield 

Similar to the procedure used in the reflectivity method, the 
propagators are combined with source and boundary 
conditions in order to obtain the wavefield at the receiver 
position. 

The source function, after Fourier transformation to the p 
and frequency domains, is expressed as discontinuities 
Ac'(x) and Ac-(x)  in the modal amplitudes: 

Ac,? = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u:", (:)). 
For a point-source with moment tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ,  this can be 
replaced by: 

Acif = - eif" : m, (24) 

where e'" is the strain tensor for the dual mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi at the 
source depth. 

The boundary conditions can now be introduced. Only 
forward waves, as defined in Appendix B, are allowed 
outside the channel in the direction of increasing x ,  and only 
backward waves in the direction of decreasing x .  The 
wavefield at  a receiver located in x ,  is then expressed as: 

JX" 

where xo and x ,  are the 
B, - P(xl, xo)Bo, B, expresses 
X O :  

1 0 0 0 . . .  0 
0 0 0 . . .  0 

0 0 1 0 . . .  0 
0 ik, 0 . . .  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 0 0 0  . . .  1 
0 0 0 0 . . .  ik, 

. . . .  . . .  . . .  

channel boundaries, M = 
the boundary conditions at 

0 j ,  0 

0 

and B, expresses the boundary conditions at  xl: 

0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 . . .  0 0 
0 - i k , O  0 . . .  0 0 

. .  

. . . 0 -ik, 

Note the presence of an inverse matrix M-' in equation 
(25). In elastic models, the determinant of M is zero for a 
finite number of p values. At these poles of the coupling 
equation, non-trivial solutions exist which satisfy the 
boundary conditions on both sides of the channel without 
any source term. These free solutions are lateral modes of 
the structure for which dispersion curves and eigendisplace- 
ments as a function of x and z may be calculated. They play 
a dominant role in the wavefield at  large distances from the 
source. 

Inserting the coefficients c(x,) in expression (IS), we 
obtain the wavefield at  the station in the wavenumber and 

M O D E L L I N G  OF R A Y L E I G H  W A V E S  IN 
T H E  H A W A I I A N  S W E L L  

The method described above will now be used to calculate 
synthetic seismograms for different source-station con- 
figurations in the Hawaiian swell, and to analyse the 
apparent dispersion between stations situated in the 
channel. We choose the model so that it reflects as well as 
possible the expected structure of the swell between 
Hawaiian and Midway islands according to the reheating 
model. 

Model of the swell 

Geoid and heat-flux data suggest that the lithosphere under 
the Hawaiian swell is thinner than normal lithosphere of the 
same age. According to Detrick & Crough (1978), this 
thinning may be due to  a reheating of the lithosphere by the 
hotspot, equivalent t o  a rejuvenation which puts the 
structure back to  a 2SMyr old stage when it passes over 
the hotspot. Woods et al. (1991) have compiled information 
about the age of the structures between Hawaii and Midway 
islands in order to predict the lithosphere structure in this 
region according to the reheating model. Considering the 

p ( W s )  

3.5 4.0 4.5 

- - 
150 - - 

- 
- 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

200 - - 
- 
- 

h - 

250- 
A v - - 

5 
5 300' n 

- 

Figure 2. S-wave velocities as a function of depth in the models of 
Nishimura & Forsyth (1989) for a 20-52Myr Pacific lithosphere 
(labelled young), and a 52-1 10 Myr Pacific lithosphere (labelled 
old), used as extreme models of our 2-D swell structure. 
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age of the hotspot features on Hawaii and Midway islands, 
of 3 and 28 Myr respectively, they find that the lithosphere 
along the swell is expected to be equivalent to a 28-52 Myr 
one. In the region between the two islands but outside the 
swell, the normal oceanic lithosphere is between 85 and 
110Myr old. They conclude that two Pacific Ocean models 
of Nishimura zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Forsyth (1989) should be very well adapted 
to describe the lithosphere respectively in the middle and at  
the outskirts of the swell: the one for the lithosphere 
between 20 and 52 Myr old, and the one for the lithosphere 
with age between 52 and 110Myr. These two models are 
transversely isotropic. Their S-wave velocities with depth 
are presented in Fig. 2. We also choose them to  construct a 
model of the 2-D channel, continuous in x .  The model for 
the oldest lithosphere is used to represent the structure with 
depth outside the swell and on its boundaries. The model 
for the youngest lithosphere is used to  represent the 
structure with depth in the middle of the channel. For any 
other x-position inside the channel, the model with depth is 
defined by interpolating between these two extreme models 
with one period of a cosine function. The width of the 
channel is taken as 1200km, in accordance with the 
observations of Detrick & Crough (1978). Calculations with 
a more narrow channel of 300 km are also performed in 
order to analyse the influence of the channel width on the 
results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Modal representation of the wavefield 

We are primarily interested in studying the dispersion of the 
Rayleigh wave fundamental mode in the swell. Therefore, 
this mode has to be included in the set of modes used to  
represent the wavefield. The higher Rayleigh modes and the 
Love modes which are coupled through the structure with 
the Rayleigh fundamental mode should also be included. In 
order to test this coupling, we have performed calculations 
adding to the Rayleigh wave fundamental mode either the 
Rayleigh wave first overtone, either the Love wave 
fundamental mode. The source was artifically constrained to 
generate only Rayleigh wave fundamental modes, so that all 
contributions to the wavefield from higher modes would 
come only from coupling through the structure. In all cases, 
the effect of the coupling was extremely small and could 
hardly be detected. 

That no coupling with higher modes occurs when a 
Rayleigh wave fundamental mode propagates through the 
Hawaii swell can be explained by the combination of two 
factors. First, the model is a smooth long-wavelength 
structure. Therefore only modes having very similar 
wavenumbers may couple in this structure. Second, due to 
its very low phase velocity, the Rayleigh wave fundamental 
mode always has a wavenumber rather different from the 
wavenumbers of the other modes. It is therefore a very 
stable mode which couples with other modes only in the 
presence of rather sharp heterogeneities, absent in the 
Hawaiian swell. 

For the synthetic seismograms and dispersion curves 
presented below, only the fundamental Rayleigh wave mode 
has been included in the representation of the wavefield, 
since it is the only one which appears to be necessary. Its 
dispersion and vertical eigenfunctions in the different 
reference structures are calculated with a program package 

from Saito (1988), in which the sphericity of the Earth is 
accounted for. The local mode coupling method is derived 
for flat structures only. Therefore, the sphericity of the 
Earth in the direction transverse to the channel is neglected 
in the calculations presented below. However, we will 
evaluate the order of magnitude of the errors introduced by 
this approximation. 

The 2-D structure is defined as a cosinusoidal 
interpolation between two extreme models. For calculating 
the different elements for the synthetization of the 
wavefield, namely the propagators (equation 20) and the 
excitation terms (equation 24), we have to map the local 
wavenumbers and eigenfunctions in this structure as a 
function of x .  In practice, we need to determine how often 
in x we should recalculate the local wavenumbers and 
eigenfunctions with Saito’s programs in order to obtain a 
satisfactory approximation of the wavefield. 

The wavenumbers appear as isolated elements in the 
propagators and play a prominent role in the characteristics 
of the wavefield. It is therefore necessary to have a precise 
representation of their variation with x .  However, 
wavenumbers vary rather linearly with structural variations. 
In order to evaluate the degree of linearity in our 2-D 
structure, we compare the mean of their extreme values, 
computed in the extreme models of the structure, with their 
value in the mean model of the structure. We find 
differences of 0.03 to 0.06 per cent, which, compared to the 
difference between the extreme wavenumbers, is of the 
order of 1 to 2 per cent. Considering this very good 
linearity, the wavenumbers, as a function of x ,  can be 
evaluated by a direct cosinusoidal interpolation between 
their extreme values. 

The terms which involve an integral with depth of the 
modal eigenfunctions have a first-order variation in sin ( x ) ,  

which arises from the lateral derivatives of the elastic 
coefficients and from interface slopes. The variations in x of 
the eigenfunctions, which would contribute as second-order 
terms only, are not very large for the Rayleigh wave 
fundamental mode (for example 10 per cent at  a period of 
28 s). They can be neglected and the eigenfunctions 
calculated only in the mean model between the two extreme 
models of the structure. 

Therefore, we calculate the local modes in only three 
models: the two extreme models, t o  obtain the extreme 
wavenumbers in the structure, and the mean model in order 
to have the eigenfunctions to be used in the self-coupling or  
coupling terms. 

The attenuation is laterally homogeneous in the model, 
and is taken identical to the attenuation in the internal 
model. The synthetic seismograms are computed between 
periods of 20 and 150 s, and convolved with the response of 
an High Gain Long Period instrument. 

Lateral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodes 

Before presenting any synthetic seismogram, we analyse the 
characteristics of the lateral modes in our two channel 
models. Their dispersions are computed by searching for the 
poles of the coupling equation in structures made perfectly 
elastic. Inside the channel, the eigenfunctions are calculated 
by following the evolution of the wavefield through the 
structure when propagating the boundary conditions on one 
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Laterally trapped surface waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA559 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are shown in Fig. 4(a). They show that this mode is 
dominantly symmetric, only its small x-component being 
antisymmetric. The displacement which is plotted cor- 
responds to  the displacement at the surface of the model. 
The displacement at  depth may be obtained by modulating 
these surface displacements by the vertical Rayleigh wave 
displacement for the z-component, and by the longitudinal 
displacement for the x and y-components. The surface 
vertical displacement of the first and second higher modes, 
dominantly antisymmetric and symmetric modes respec- 
tively, are shown at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28 s of period in Fig. 4(b). 

For the 300km channel, only the fundamental mode 
exists at  periods larger than 20s (Fig. 5). The vertical 
components of the surface displacement at  28 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 s in the 
wide and in the narrow channel can be compared in Fig. 6. 
The absolute amplitudes of the eigenfunctions are arbitrary, 
and have been chosen here to facilitate comparison. It 
appears that the shape of the eigenfunctions is not very 
dependent on the swell width. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A W l D E S W E L L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA// 1 
4.25; 

4 

t 
25 50 75 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA125 150 

PERIOD ( 5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. Phase velocities as a function of period for the three 
lateral modes of a 1200 km wide swell. The dotted lines show the 
phase velocities of the fundamental lateral mode (labelled 0) .  the 
first (1). and the second higher lateral mode (2). For reference, the 
phase velocities in the models of Nishimura & Forsyth (1989) for a 
20-52 Myr Pacific lithosphere (lower solid curve), and a 52-1 10 Myr 
Pacific lithosphere (upper solid curve) are shown. 

side of the channel t o  the other side. They can be extended 
outside the channel with the appropriate exponential 
functions. 

For the 1200 km wide channel, three lateral modes exist 
for the Rayleigh wave fundamental mode between 20 and 
150 s of period. Their dispersion curves are shown in Fig. 3. 
The two higher modes have cut-off periods at  56 and 33s. 
Only the fundamental mode exists over the whole period 
range. Its three displacement components a t  28s of period 

Seismograms for a source in the middle of the channel 

We now present synthetic seismograms produced by a 
source situated in the middle of the channel. In order to 
avoid superposing a source radiation pattern on the 
amplitude variations related to the channel itself, we use an 
explosive source. The influence of the source mechanism on 
the results compared to the effect of the channel itself has 
been checked by performing the calculations with various 
source mechanisms. It is small, typically a few per cent in 
amplification variations at  the largest epicentral distances, as 
long as we d o  not consider seismograms in a direction close 
to a node of the radiation pattern. 

The stations are placed at 1000, 3000 and 5000 km from 

-1.0 -0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 
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DISPLACEMENT 

Figure 4. Surface displacement of the lateral modes as a function of position x in the 1200 km swell at a period of 28 s. On plot (a) are shown 
the three components of the fundamental lateral mode, and on plot (b) the vertical components of the three lateral modes. The displacements 
inside the swell are shown as solid lines, and outside the swell as dotted lines. 
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560 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMaupin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

75 50 75 100 125 150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P E R I O D  ( s )  

Figure 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe same as Fig. 3 for the unique lateral mode of a 
300 km wide swell. 

the source along the channel axis, and at  seven different 
offsets from this axis. The vertical components of the 
synthetic seismograms produced by a source at  15 km depth 
are shown in Fig. 7. The amplitudes are normalized for each 
set of seven plots at the same epicentral distance along the 
axis. 

Despite the small contrast between the two extreme 
models of the structure, which reaches only 1.5 per cent 8 t  
the maximum in phase velocity, and its large wavelength of 
1200 km, the waveguide effect of the lateral channel is very 
clear at large epicentral distances. In the case presented 
here, the waveform itself is changing little, but the 
amplification of the signal in the middle of the channel is 
significant. 

In order to get more insight into the amplification power 
of the channel, we compare the amplitude spectra of the 
synthetic seismograms calculated in the laterally heteroge- 

-15 -10 -05 0 0  05  10 
1000-I W! I I > '  ' ' I ' ' 1 

, .  
, 

-1000 

I ! ,  , 
WIDE SWELL 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

DISPLACEMENT 

Figure 6. Surface displacement of the fundamental lateral mode as 
a function of position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx at periods of 28 and 60 s in the 1200 km 
swell (left side curves) and in the 300 km wide swell (right side 
curves). The displacements inside the swells are shown as solid 
lines, and outside as dotted lines. The normalization of the different 
curves is chosen to facilitate their comparison. 

neous structure with those of synthetic seismograms 
computed in an homogeneous model. The latter is chosen 
identical to the model in the middle of the channel. Fig. 8(a) 
presents the spectral amplitude ratios of the seven 
seismograms of Fig. 7 at about 3000 km epicentral distance, 
relative to a seismogram at the same epicentral distance in 
the homogeneous model. The amplification is largest within 
100 km around the middle of the channel, with a peak of 
1.25 at  35 s of period. There is a slight decrease of amplitude 
at the shortest periods when the station is situated at the 
outskirts of the swell. 

Fig. 9 presents synthetic seismograms for the same 
source-station configurations as in Fig. 7, but for a more 
narrow swell of 300 km width. In this case, 15 out of the 21 
stations are located outside the channel. The waveforms are 
more affected by the lateral heterogeneity. The amplitude 
variations between the different stations are larger and 
appear at smaller epicentral distance than in the wider swell. 
As can be seen from Figs 8(b) and 10, this trend is even 
more clear in the frequency domain. Besides, the 
amplification occurs in a more restricted frequency band and 
at  shorter periods in the narrow swell. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Seismograms for a source offset by 6OOkm from the 
channel axis 

The effect of the channel is of course also dependent on the 
source position. When the source is situated at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 km from 
the channel axis, that is at  the outer boundary of the wide 
swell and at 450 km from the narrow one, the amplitude of 
the Rayleigh wave vertical component is less dependent on 
the receiver offset, as can be seen in Figs 11 and 12. The 
main effect of the waveguide is to produce resonance at  the 
shortest periods, which lengthens the wavetrains. In the 
wider channel, the spectral amplitude is slightly decreased at 
all stations (Fig. 13a). The variations of amplification with 
frequency are more complex and station dependent in the 
narrow channel (Fig. 13b). 

When the source is far off the channel axis, the energy 
which reaches the stations departs from the source in 
different directions in the homogeneous and in the laterally 
heterogeneous structures. This direction difference is 
frequency dependent. Therefore, the radiation pattern at 
the source influences the amplification curves more than 
when the source lies in the middle of the channel. However, 
as long as the source-station direction is not close to a node 
of the source radiation pattern, this effect is small compared 
to the effect of the lateral heterogeneity itself. 

Seismograms for a he-source 

The Hawaiian swell is not the infinite 2-D structure that we 
are using in our models. It has a finite length of about 
3000km, starting at  Hawaii, and turning north lo00 km 
north-west of Midway island. Therefore, the seismic sources 
that Woods et al. (1991) and LCv&que (1991) utilize to 
obtain dispersion data between Hawaii and Midway stations 
are not situated inside the swell. Rather, they produce a 
wavefront which enters the swell at  one o r  its other end. 

In order to approach this situation better, we can replace 
the point-source used in the previous examples by 'a 
line-source situated at  right angles through the structure, 
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Laterally trapped surface waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA561 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SOURCE IN  THE MIDDLE OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA W I D E  SWELL 

EPICENTRAL DISTANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m  3000 k m  5000kni 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Vertical components of Rayleigh wave synthetic seismograms for propagation in a 1200 km wide swell. The source is an explosion at 
15 km depth in the middle of the swell. The stations are situated every 100 km on lines perpendicular to the swell axis, at 1O00, 3000 and 
5000 km epicentral distance, as shown on the diagram in the top right corner of the figure. The  seven seismograms at a given epicentral 
distance are normalized to the same vertical scale. Timing is relative to the source time. 

SOURCE IR  THE MIDDLE O F  T H E  SWELL 

Figure 8. Spectral amplitude ratios for the vertical components of Rayleigh wave synthetic seismograms propagating in a 1200 km wide swell 
(plot a), and in a 300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkrn wide swell (plot b). The source is an explosion at 15 km depth in the middle of the swell. The stations are situated 
every 100 km on lines perpendicular to the swell axis at 3000 km epicentral distance. The amplitude ratio is varying continuously with station 
offset, from null offset (curve labelled l ) ,  to 600 km offset (curve labelled 7). 
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562 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV .  Maupin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
m 
la 
la zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASOURCE IN THE MIDDLE O F  A NARROW SWELL x 

EPICENTRAL DISTANCE : 1000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3000 kni 5000km 

Figure 9. The same as Fig. 7 for a swell of 300 km width. 

and extending to infinity on both sides in the homogeneous 
external structure. Synthetic seismograms for such line- 
sources are shown in Fig. 14 for the wide swell, and in Fig. 
15 for the narrow one. At  large epicentral distances, the 
waveforms are more affected by the lateral heterogeneity 
than they were when produced by a point-source. A 
particularly interesting example in Fig. 14 at 5000 km 

s 
h 
4 
& 

epicentral distance shows how an  early arriving phase, 
visible at  the station a t  600 km from the channel axis, 
interferes destructively at 300 km with the later arriving 
phase, dominant in the middle of the swell. 

Fig. 16 shows the spectral amplitude ratios for a 
line-source signal in the middle of the swell at  an epicentral 
distance of 3000 km both for the wide and the narrow swell. 
The difference in amplification between the two swells is far 
less than for a point-source signal. The frequency band over 
which the amplification occurs is still smaller in the narrow 
swell, but the order of magnitude of the amplification is the 
same in the two swells. Analysing how the amplification 
varies with epicentral distance (Fig. 17), one notices that the 
gain in amplification when going from 3000 to 5000km 
distance is smaller with a line-source signal than with a 
point-source one (Fig. lo), especia!ly in a narrow swell. It 
seems that a stationary situation in terms of amplification is 
reached at  shorter distances with a line-source than with a 
point-source. One also notices that at  large epicentral 
distances, it is now in the wide swell that the amplification is 
the most important. 

Tbe horizontal components 

The discussion up to now has been based only on the 
vertical component of the signals. W e  should also mention 
how the channel affects the horizontal ones. For a 
line-source, the displacement calculated along the x -  and 
y-axis of the channel directly yields the longitudinal and 
transverse displacements. For a Point-~ource, we rotate 
these displacements in the source-station direction. 

The longitudinal displacements in the swell behave very 

Figure 10. Spectral amplitude ratios of the vertical components of 
Rayleigh wave synthetic seismograms for propagation in a 1200 km 
wide swell (solid lines), and in a 300 km wide swell (dotted lines), 
The is an at 15km depth in the middle of the 
swell. The stations are situated on the swell axis at 1O00, 3000 and 
5000 km epicentral distance. The amplification is increasing with 
epicentral distance. 
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Laterally trapped surface waves 563 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SOURCE AT 600 K M  OFFSET IN A WIDE SWELL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EPICENTRAL DISTANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 1000 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?OOO km 

p%ure 11. The same as Fig. 7 for a source offset by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 km from the swell axis. 

5000km 

SOURCE AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 KM OFFSET IN A NARROW SWELL :- 

* 

TIME (s) 

EPICENTRAL DISTANCE : 1000 km 3000 km 

Figure U. The same as Fig. 1 1  for a swell of 300 km width. 

5000km 
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564 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Maupin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I -> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SOURCE AT 600 K M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOFFSET zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 1.254 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Fl.25 

25 50 75 100 125 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 75 100 125 150 
PERIOD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s) 

Figure 13. The same as Fig. 8 for a source offset by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 km from the swell axes. 

much like the vertical ones, both in terms of amplitude and 
waveform variations. They keep their quarter-of-period 
phase shift. Seen in the vertical plane of propagation, the 
wavefield has therefore the same characteristic ellipticity as 
in an homogeneous model. 

Due to the lateral heterogeneity, some transverse 
components also appear in source, station and swell 
non-symmetric configurations. These transverse components 
are predominantly high frequency and are usually maximum 
at stations offset by 100 to 200 km from the channel axis. 
They reach in most cases 10 per cent of the longitudinal 
components at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5000 km epicentral distance, and 5 per cent 
at 3000 km. One exception is for a line-source in the wide 

LINE-SOURCE I N  A WIDE SWELL 

swell, where an amplitude two times larger is observed. The 
three components of the wavefield in that case of largest 
computed transverse component is shown in Fig. 18. The 
longitudinal and transverse components are not in phase, 
which shows that the presence of the transverse component 
is a complex waveguide effect, and not only the result of a 
deviation of the wavepath from the great circle. 

Phase velocities between two stations 

Up to now, we have focused attention on the relative 
amplitude of the seismograms. We have not discussed the 
effect of the lateral heterogeneity on the wavetrain arrival 

l ' ' ' ' I I I I I , , I I I , I 1 I I , . . . 1 , . I . . , . . . . ,  ~ ' ' " , ' I ' I , I I I I , I . ' 1 ~ , . , , , . , , , , , , , ' ,  , , , , , , , , , , , , . , , l , , . ,  , , . ,  , , , ,  , , , ,  

T I M E  (s)  

a0 150 200 250 3W 550 4 0 0  450 800 650 7 0 0  750 800 850 900 950 1100 No 1200 1250 1x0 050 l4W W M  

EPICENTRAL DISTANCE : 1000 km 3000 km 5000km 

Figure 14. The same as Fig. 7 for a line-source in the 1200 km wide swell. 
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2 300- 

vi 
Lr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

400- 

500 - 

600- 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LINE-SOURCE IN A NARROW SWELL 

3000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m  500Okm EPICENTRAL DISTANCE : 1000 km 

Figure 15. The same as Fig. 14 for a swell of 300 km width 

time, or more generally, on its phase and phase velocity. In 3000 and 5000 km. The interstation distance of 2000 km is 
order to analyse the phase characteristics of the synthetic similar to the distance between Midway and Hawaii stations. 
seismograms, we calculate for the different source cases The difference between the phase spectra of the vertical 
presented above, the apparent phase velocity between components at the two stations is used directly to measure 
stations situated in the middle of the channel. The stations the interstation phase velocity. Only explosive source cases 
are situated at epicentral distances of loo0 and 3000 km, or are presented. Phase velocities calculated with other source 

LINE-SOURCE 

-20 
h L U U ! I I  1 I I I 1 1  I L L---- 

i E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 ;  (4 -(bJ 

I 
1 7 F  

WIDE SWELL NARROW SWELL - 
25 50 75 100 125 50 75 100 125 150 

PERIOD (s) 

FIpw 16. The same as Fig. 8 for a line-source. 
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0 2.5j 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWIDESWELL t 
LINE-SOURCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_ _ _ _ _  N A R R O W  SWELL 

t 

25 50 75 100 125 150 
PERIOD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

Fiiure 17. The same as Fig. 10 for a line-source. 

mechanisms than an explosion do not show significant 
differences, when imposing the same restriction as for the 
amplification curves, namely that we are not close to a node 
of the radiation pattern. 

In Fig. 19 are gathered six different cases of interstation 
apparent phase velocities. The upper bound of the period 
range is reduced to 120 s to enlarge the short period part of 
the figure, where the most interesting features are seen. On. 
each plot, the apparent interstation phase velocities appear 
as short-dotted lines. The phase velocities of the Rayleigh 

T 

~ ~ ~ I ~ " ' I " " I " " I ' " ' I " ' ' I " " 1 ' ' " 1  
1100  1150 1200 12% 1300 1350 1400 1450 I500 

TIME ( s )  

Figure 18. The three components of a Rayleigh wave synthetic 
seismogram for a line-source in a 1200 km wide swell. The station is 
at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5000 km epicentral distance and offset by 200 km from the swell 
axis. Timing is relative to the source time. The three components 
are plotted at the same scale. 

wave fundamental mode in the two models of Nishimura & 
Forsyth (1989), which form our extreme models for the 
swell, and the phase velocity curves for the lateral modes of 
the structure are superimposed for reference. 

In the wider swell, and for an explosive source situated in 
the middle of the channel (Fig. 19a), the interstation 
dispersion is little influenced by the outskirts of the 
structure, and the measured phase velocity is a rather good 
approximation of the dispersion in the middle of the swell, 
especially at short periods. 

When the source is offset by 600km from the channel 
axis, we account for the slightly smaller difference in 
epicentral distance between the stations. Each source- 
station line crosses exactly half the swell width. The mean 
velocity along these lines is then the average phase velocity 
of the structure. This agrees very well with the calculated 
interstation phase velocities shown in Fig. 19(c). In these 
cases, no effect other than the averaging of the slowness 
along the direct path has to be accounted for in the 
interpretation of the measurements. 

For a line-source, the slowness average along the direct 
path predicts that the interstation phase velocities should be 
the velocity in the middle of the structure. The ones 
measured on the synthetic seismograms show actually a 
non-negligible shift towards the velocities of the outer parts 
of the structure (Fig. 19e). Frequency-dependent propaga- 
tions off the direct wave path influence the wavefield 
significantly. Considering the length of the Hawaiian swell 
and the positions of the seismic sources and stations utilized 
by LCvSque (1991), it appears that the phase velocities 
presented for this line source and between stations at 
epicentral distances of loo0 and 3000km are the most 
relevant ones for interepreting their data. Their data period 
range is 25 to 50s. The influence of the outer part of the 
swell on their measured phase velocities can therefore be 
evaluated to be between 16 and 20 per cent. 

For the more narrow swell, the dispersion curve of the 
unique lateral mode has a dominant influence on the 
interstation phase velocities, whatever the source, as 
illustrated in Figs 19(b), (d) and (f). A stationary situation 
in terms of phase velocity as a function of epicentral 
distance is reached much faster in the narrow swell than in 
the wider one. Moreover, the presence of only one lateral 
mode prevents the occurrence of interference phenomena 
which complicate the phase velocity behaviour in the wider 
swell at very large epicentral distances. 

The effect of the Earth's sphericity 

Our modelling is done assuming flat laterally heterogeneous 
structures. Considering the epicentral distances involved and 
the width of the Hawaiian swell, which amounts to 11" of 
the Earth's circumference, it is worth examining the possible 
biases introduced in our results by neglecting the Earth's 
sphericity. 

The coupling method is derived for flat structures, but we 
account for the sphericity of the Earth when calculating the 
local modes. Considering that we are modelling waves 
propagating along the channel, this is equivalent to 
accounting for the sphericity in the channel direction, and 
neglecting it in the transverse direction. Our model can 
therefore be thought of as a cylindrical projection of the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
0
/3

/5
5
3
/5

5
7
6
1
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



W I D E  S W E L L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALaterally trapped surface waves 567 

N A R R O W  S W E L L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4.15 J (a) 4 15 

4.1 

4.05 

4.0 

S O U R C E  

I N  T H E  M I D D L E  

O F  T H E  S W E L L  

m rT 
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S O U R C E  AT 
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L I N E - S O U R C E  

Figure 19. Interstation phase velocities measured on the vertical component of synthetic Rayleigh waves. The stations are situated in the 
middle of the swells at 1000 and 3000 km epicentral distance (dotted lines labelled 1) or at 3000 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5000 km epicentral distance (dotted lines 
labelled 2). The phase velocities of the lateral modes (long dashed lines) and of the extreme models of the structure (solid lines) are shown for 
reference. Plots (a) and (b) are for an explosive source situated in the middle of the swell, plots (c) and (d) for a source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 km offset from the 
swell axis, and plots (e) and (f) for a line-source. Plots (a), (c) and (e) are for a 1200 km wide swell, and plots (h). (d) and ( f )  for a 300 km wide 
swell. 

Earth, as shown in Fig. 20(a). The middle of the channel on 
the spherical Earth is then assumed to be a great circle, 
chosen as reference for the cylindrical projection, and the 
sides of the channel are parallel small circles. The effect of 
the projection is t o  dilate the small circles to the same length 
as the great circle. We expect therefore that the flat 
structure approximation introduces a negative bias on the 
computed phase velocities by penalizing the waves which 
travel in the fastest parts of the model, away from the axis. 

Jobert & Jobert (1983) have shown that it is possible to 

trace rays on a spherical heterogeneous Earth using 
algorithms developed for flat structures. Only a Mercator 
projection of the Earth and a simple transformation of the 
local velocities are needed. Their formulae applied to  our 
problem mainly result in multiplying the local phase 
velocities by l/cos (a), where cr is the angular distance from 
the channel axis. This factor is actually the inverse of the 
dilatation introduced by the projection. Multiplying the 
local phase velocities in the 1200 km wide swell by this 
factor, we can calculate interstation phase velocities which 
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(a' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
spher ica l  model cy l indr ica l  pro ject ion 
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Figure 20. Plot (a)-Diagram showing a channel as a hatched zone 
on the spherical Earth, its cylindrical projection, and the 
corresponding dimensions for the Hawaiian swell. Plot (b)- 
Corrections brought to interstation phase velocities when correcting 
the local phase velocities for the Earth's sphericity using the 
formula of Jobert & Jobert (1983). The configuration of source and 
receivers is the same as on Fig. 19(e), that is a line-source and 
stations situated in the middle of the swell at loo0 and 3000 km 
(curves labelled 1) or at 3000 and 5000 km epicentral distance 
(curves labelled 2). The solid lines are for a 1200km wide swell 
model. The dashed lines are for an homogeneous model identical to 
the model in middle of the swell. 

account better for the Earth's sphericity. The difference 
between these velocities and those calculated with the 
ordinary flat structure are shown as solid lines in Fig. 20(b) 
for a line-source and the same two different configurations 
of receivers as in Fig. 19(e). 

The velocity transformation gives an exact solution to the 
wave propagation problem on a spherical Earth only within 
the framework of ray theory. The wavelengths we are 
modelling are not short compared to the dimensions of the 
swell, and the transformation does not give an exact solution 
in our case. In order to test its limitations, we also apply it 
to a laterally homogeneous model. The deviations of the 
interstation phase velocities computed in that model with 
respect to the velocities in the fully homogeneous model can 
be considered as the bias introduced by the inadequacy of 
the transformation at long wavelengths. They are plotted as 
dashed lines in Fig. 20(b). The actual correction to be 
applied to the phase velocities in Fig. 19(e) in order to 
account for the sphericity of the Earth is the difference 
between the solid and dashed curves in Fig. 20(b), i.e. the 
velocity perturbation introduced by transforming the model 
minus the bias introduced by the transformation itself. It is 
very small at long periods. The maximum correction is 
0.005 kms-' at 20s of period. It is 0.003 kms-' for the 
period range and epicentral distances most suitable to 
interpret the data of LCvSque (1991), i.e. 3 per cent of the 
total velocity variation in the swell. It is small but not 
negligible compared to the effect of the swell itself in the flat 

approximation, which we recall to be between 16 and 26 per 
cent. For a point-source along the swell axis, the maximum 
correction is 0.0025 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-' at 60 s of period for stations at 
3000 km and 5000 km epicentral distance. 

Using the same procedure, we analyse the effect of 
sphericity on the signal amplification due to the swell. We 
find no significant difference relative to the amplification 
calculated in flat structures for epicentral distances up to 
3000 km. The amplification decreases by 15 per cent for a 
line source, and increases by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 per cent for a point source at 
SO00 km epicentral distance. These differences can be 
considered as negligible compared to the precision with 
which surface wave amplitudes can usually be modelled. 

Finally, we can note that in our period range the 
correction introduced by the velocity transformation is 
comparable in magnitude to the bias due to its inadequacy 
at long wavelengths. Using the transformed model rather 
than the ordinary flat one is therefore appropriate only 
when these two effects can be subtracted from each other, 
and would not provide for example more accurate 
waveforms. 

CONCLUSION 

We have synthetized seismograms in a realistic model of the 
Hawaiian swell, in order to refine the interpretation of 
Rayleigh wave phase velocities measured by LCvCque (1991) 
in between Midway and Hawaii broad-band stations. The 
influence on the interstation phase velocities of the outer 
parts of this elongated 2-D structure, along which the waves 
propagate, has been quantified. We find that for a realistic 
swell width of 1200km, the influence of the faster 
lithosphere outside the swell on the phase velocities 
measured in the centre of the structure is of the order of 20 
to 30 per cent. This influence is not negligible, but is still 
small enough for the seismological data to be able to bring 
new information about the lithospheric structure under the 
Hawaiian chain, and to indicate if they corroborate the 
reheating model for the swell, based on geoid and heat-flow 
data. 

The modellings also demonstrate how the channel acts as 
a waveguide which amplifies and modifies the signal. The 
amplification, analysed in the frequency domain, is varying 
with source position and epicentral distance. It is maximum 
for sources situated on the axis of the channel and for 
line-sources across at right angles. It usually reaches values 
of 1.5 to 2.0 in these situations. 

In order to calculate the synthetic seismograms in the 
Hawaiian swell, the local mode coupling method of Maupin 
(1988) has been extended. We now have a very complete 
tool which can be used to calculate surface waves synthetic 
seismograms for any source-station configuration in 
smooth, anelastic 2-D structure. It accounts for mode 
coupling effects, including Rayleigh-Love coupling. It also 
reveals the characteristics of the lateral modes of the 2-D 
structure. 
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APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA: ORTHOGONALITY A N D  
SYMMETRY RELATIONS 

Symmetry relations between primal and dual modes 

In order to express these symmetry relations, we first need 
to detail the structure of the operator A in transverse 
isotropic models. The operator elements are given for 
isotropic models in M88, appendix 3. In transverse isotropic 
models, using the six elastic coefficients defined by Love 
(1927), they are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c,' = (y 1PN "; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1IL 

0 (A-2N) lA 0 

0 0 FIA 0 

0 

0 0  0 

0 

0 0 (AC-  F2) /A  
q3= (1 0 1 0 2NFIA 1 ); % = ( O  L 

We recall the form of the operator A: 

In order to construct the dual operator A#, we change p 
into -p in A. This is equivalent to multiplying the different 
elements in A by some f l  factors: 

0 - 1  + 1  + 1  0 0 

0 0 0 + 1  0 

0 0 0 0 + 1  

0 +1 -1 -1 0 0 
0 -1 +1 +1 0 0 

(i 0 0 0 -1  +1 

The dual mode satisfy the same equation as the primal mode 
changing A into A* and -k, into k,. The eigenfunctions of a 
dual mode can therefore be found by multiplying the 
elements of the primal mode eigenfunction by: 

Symmetry properties and bi-orthogonality 

Instead of writing in details the proof of the primal and dual 
modes bi-orthogonality, we indicate how to derive it from 
the proof given for the former scalar product in appendix 2 

of M88 (A2). 
The new scalar product no longer involves complex 

conjugation of the first mode in the product, but the use of 
its dual mode. Moreover, the i factor has disappeared. 
Therefore, the first two equations in A2 can be rewritten for 
the new scalar product omitting the i factor in front of the 
integral sign, and changing the complex conjugation signs * 
by the dual mode signs #. The third equation can also be 
rewritten with exactly the same modifications. The terms 
with factors ip had changed sign in A2 due to  the complex 
conjugation in the scalar product, whereas they now change 
because we are using the dual operator. The result is of 
course the same and we can write: 

<ut, Au,) - c [w;t3J = - (A#u:, u r )  - [&v~I. 
n n 

(A l l  
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For modes which satisfy flat boundary continuity conditions 
and the equations of motion (3) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5), this can be written: 

i (k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,)(u;, u,) = 0. 

If u,” and u, are not dual modes of each other, their 
wavenumbers are different, except in some peculiar cases of 
mode degeneracy. Therefore, we obtain the bi-orthogonality 
relation: 

(uf, u,) = O  for r Z q .  

Since it does not involve complex conjugation, this 
bi-orthogonality relation is also valid for anelastic models 
with complex elastic coefficients. 

Tbe symmetrized scalar product 

We define the symmetrized scalar product: 

Using the symmetry relation (Al) and the same 
procedure as in M88, equations (19)-(24), we can show that 

(ut, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAur) equals the right-hand side of equation (24) in 

M88, replacing the complex conjugation signs * by the dual 
mode signs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt. 

aA 

APPENDIX B: RAYLEIGH A N D  LOVE 
BASIC MODES 

Definition of forward and backward modes 

The basic modes are defined as combination of forward and 
backward modes (equation 9). For modes with real 
wavenumbers, the concept of forward and backward mode 
is clear: modes with real positive wavenumber ki propagate 
forwards in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  and modes with real negative wavenumbers 
propagate backwards in x. We need to define it more 
precisely for the modes with complex wavenumbers. 

In boundary conditions, the condition of only forward 
propagating modes on one side of the model is associated 
with the condition that only exponentially decreasing waves 
are present on this same side. Therefore, we define as 
forward modes those with .%m (&) < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, or 9m (k) = 0 and 
9% (k) > 0. The backward modes are defined as the modes 
having wavenumbers in the complementary part of the 
complex &-plane. 

Rayleigh and Love basic modes 

The primal basic modes for Rayleigh waves in transverse 
isotropic models are: 

I 0 \ 

W 

0 I 

u-=( 

’ ru/K 
0 
0 

0 

\ 
where w is the vertlcal and u is the longitudinal classic 
displacement of the Rayleigh wave mode. 

The primal basic modes for Love waves are: 

where u is the classic transversal displacement of the 
Love-wave mode. 
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