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PREFACE 
This PhD thesis presents the work conducted in the project ‘Modelling of pesti-

cide emissions for Life Cycle Inventory analysis: model development, applica-

tions and implications’ at the Division for Quantitative Sustainability Assessment 

of the Department of Management Engineering, at the Technical University of 

Denmark. Supervision was provided by associate professor Morten Birkved and 

professor Michael Zwicky Hauschild. 

 

The PhD project was conducted from September 2010 to October 2013 and in-

cluded a stay at the New Zealand Plant and Food Research ltd. in Hamilton (New 

Zealand), under supervision of dr. Karin Müller. 

 

The main part of this thesis is based on four scientific articles, one of which has 

been published. The three others are manuscripts that will be submitted in the 

next months. These papers are included as appendices to this thesis. Throughout 

the thesis these papers are referred to by the numbers given below. 

 

1. Dijkman, T.J., Birkved, M., Hauschild, M.Z. (2012) PestLCI 2.0: A second 

generation model for estimating emissions of pesticides from arable land in 

LCA, International Journal of Life Cycle Assessment 17(8): 973-986. 

2. Birkved, M., Dijkman, T.J., Hauschild, M.Z. (2013) Modelling of pesticide 

emissions from fields in LCA: An inventory or an impact assessment task? 

Manuscript. 

3. Dijkman, T.J., Müller, K., Green, S.R., Birkved, M. (2013) Spatial variations 

in pesticide emissions from kiwifruit orchards in New Zealand, Manuscript. 

4. Dijkman, T.J., Birkved, M., Saxe, H., Wenzel, H., Hauschild, M.Z. (2013) 

Comparative attributional LCA of barley cultivation in Denmark under current 

and future climatic conditions, Manuscript. 

 

This PhD project is part of the research program ‘Development of genetically 

modified cereals adapted to the increased CO2 levels of the future’, funded by 
FødevareErvherv. 
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SUMMARY 
The work presented in this thesis deals with quantification of pesticide emissions 

in the Life Cycle Inventory (LCI) analysis phase of Life Cycle Assessment 

(LCA). The motivation to model pesticide emissions is that reliable LCA results 

not only depend on accurate impact assessment models, but also good emission 

inventories. Recent LCA studies of agricultural products that take toxicity im-

pacts into account show that pesticide emissions considerably contribute to tox-

icity impacts. At the same time, such conclusions are derived using a simplified 

approach to quantify pesticide emissions. 

 

The research presented in this thesis centers around PestLCI 2.0, a model to cal-

culate pesticide emissions to air, surface water and groundwater for use in LCI. 

PestLCI2.0 is an updated and expanded version of the PestLCI model, released in 

2006. The boundaries between ecosphere and technosphere in the model are de-

fined by a ‘technosphere box’, which includes the arable land where the pesticide 
is applied, the field soil up to 1 meter of depth and the air column above the field 

up to 100 meter. When a pesticide leaves this box, it is considered an emission. 

The model works with a primary distribution, where the pesticide is deposited on 

the crop, on soil or emitted due to wind drift, followed by secondary processes 

that determine the pesticides’ fate. 
 

In PestLCI 2.0, most fate process modelling has been updated, most notably the 

modelling of pesticide volatilization from leaves and pesticide runoff. The model 

was expanded by the inclusion of macropore flow, which leads to pesticide emis-

sions to groundwater. Moreover, PestLCI 2.0s databases with active ingredients, 

climates and soils were updated, broadening the applicability of the model to Eu-

ropean circumstances. A case study showed that emissions vary with variations 

in the climates and soils present in Europe. 

 

Emissions of pesticides to surface water and groundwater calculated by PestLCI 

2.0 were compared with models used for risk assessment. Compared to the 

MACRO module in SWASH 3.1 model, which calculates surface water emis-

sions by runoff and drainage, pesticide emissions to surface water calculated by 

PestLCI 2.0 were generally higher, which was attributed to differences in the 

modelling approach between the two models. The model comparison for emis-

sions to groundwater showed that PestLCI 2.0 calculated higher emissions than 
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FOCUSPEARL 4.4.4 (modelling chromatographic flow of water through the 

soil), which was attributed to the omission of emissions via macropore flow in 

the latter model. The comparison was complicated by the fact that the scenarios 

used were not fully identical. 

 

In order to quantify the implications of using PestLCI 2.0, human toxicity and 

freshwater ecotoxicity impacts obtained with two inventory approaches were 

compared. The first approach was PestLCI 2.0, the second is the currently preva-

lent approach (the Ecoinvent approach), which assumes that 100% of the applied 

mass is emitted to agricultural soil. 

For both impact categories it was found that the PestLCI approach results in im-

pacts that on average are three orders of magnitude lower. This conclusion was 

found to be valid for characterization of the impacts with both USEtox and US-

ES-LCA 2.0 characterization factors.  

 

The difference observed between these approaches will have implications for the 

comparison of toxicity impacts between conventional and organic agriculture. 

However, the difference in pesticide use and the corresponding environmental 

impacts is only one of the many aspects that are relevant to assess when discuss-

ing sustainability of both types of agriculture. A second implication from these 

findings is that the contribution of pesticide emissions to the overall toxicity im-

pacts of agricultural products may be lower than what is currently found in LCA 

studies. 

 

Since the PestLCI and Ecoinvent approaches differ in both their ecosphere-

technosphere boundary setting and in the modelling of fate processes within the 

technosphere, a hybrid approach was also used to calculate toxicological impacts. 

This approach combined the fate modelling of the PestLCI approach with the 

technosphere boundaries of the Ecoinvent approach. The toxicological impacts of 

this approach showed that it is the technosphere boundaries, rather than the in- or 

exclusion of fate processes, that determines the differences observed between the 

PestLCI and Ecoinvent approaches. This technosphere-ecosphere boundary is 

impossible to define objectively in the case of LCAs of agricultural products: it 

depends on the practitioners’ values what is environment and what is man-made 

production system. Therefore it is advisable to discuss what LCA should aim to 

protect, instead of where the boundary should be located. 
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The first of the two applications of PestLCI 2.0 presented in this thesis is the case 

of pesticide emissions in conventional kiwifruit cultivation in the Western Bay of 

Plenty district in New Zealand. For nine scenarios, based on different combina-

tions of local soils and climates, pesticide emissions were calculated with Pes-

tLCI 2.0 and subsequently characterized with characterization factors obtained 

using USEtox. The emissions to air showed little variation between the nine as-

sessed scenarios. Emissions to surface water and groundwater showed larger var-

iations. Despite this, the differences in the freshwater ecotoxicity and human tox-

icity for the nine scenarios were small. In an LCA context, when considering un-

certainties in emission modelling and impact assessment, these differences prob-

ably are not relevant. For all nine scenarios, it was found that emissions of cyan-

amide dominated the toxicological impacts. 

 

A second application of PestLCI 2.0 was in the comparison of the environmental 

impacts of barley cultivation in Denmark under current (2010) and future (2050) 

climatic circumstances. The functional unit of this study was 1 kg of barley at the 

farm gate. Using an attributional approach, impacts of co-products were handled 

by economic allocation. Impact assessment was done with ReCiPe (hierarchist 

perspective), except for toxicity impacts, which were characterized using USE-

tox. The differences between four scenarios, based on combinations of wet and 

dry climates, and sandy and sandy loam soils, for barley cultivation under current 

climatic conditions were found to be small. Differences in impacts between cul-

tivation in current and future climatic conditions were concluded to be mainly 

driven by differences in grain yield. The use of economic allocation was found to 

be a key issue, since the price levels of 2050 can’t be predicted with any reason-

able certainty. 

 

Although PestLCI has been updated and expanded, further improvements are still 

possible. A number of improvements and suggestions to increase the model’s 
applicability are discussed. These suggestions focus on both the fate modelling 

(for example wind drift, degradation and volatilization from leaves) and the 

boundary setting of the model. 
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RESUMÉ 
Arbejdet præsenteret i denne afhandling omhandler kvantificering af pesticid-

emissioner i Life Cycle Inventory (LCI) analysefasen af en livscyklusvurdering 

(LCA).  

Motivationen for at modellere pesticidemissioner er at pålidelige LCA resultater 

ikke kun afhænger af præcise modeller for miljøeffekter fra emissioner men også 

gode emissionsopgørelser (inventories).  

Nylige LCA studier af landbrugsprodukter der medregner betydningen af toksici-

tet viser at pesticidemissioner bidrager betydeligt til den samlede toksiske miljø-

effekt. Disse konklusioner er dog fremkommet ved brug af en simplificeret til-

gang til kvantificering af pesticidemissioner.    

 

Forskningen præsenteret i denne afhandling er centreret om PestLCI 2.0. PestLCI 

2.0 er en model til at beregne pesticidemissioner til luft, overfladevand og grund-

vand til brug i LCI.  

PestLCI 2.0 er en opdateret og udvidet version af PestLCI modellen, der blev 

lanceret i 2006. Grænserne mellem økosfære og teknosfære i modellen er define-

ret ved en ”teknosfæreboks”, som inkluderer landbrugsarealet hvortil der tilføres 
pesticider, landbrugsjorden ned til en meters dybde og kolonnen af luft over 

jordoverfladen op til 100 meter. Når et pesticid forlader denne boks betragtes det 

som en emission. Modellen arbejder med en primær distribution, hvor pesticidet 

deponeres på afgrøden eller jorden eller emitteres via luftstrømme. Den primære 

distribution efterfølges af sekundære processer, som bestemmer pesticidets ende-

lige skæbne. 

    

I den nye udgave af PestLCI 2.0 er modelleringen af de fleste skæbneprocesser 

opdateret, særligt modelleringen af pesticidfordampning fra blade og pesticidud-

vaskning.  Modellen er blevet udvidet ved inkludering af makroporestrømning 

som fører til pesticidudvaskning til grundvand. Desuden er databasen med aktiv-

stoffer, klimatyper og jordprofiler opdateret i PestLCI 2.0, hvilket øger anvende-

ligheden af modellen til europæiske forhold. Et case studie på PestLCI 2.0 viste 

at emissionerne fra et aktivstof varierer med de klima og jordtyper der findes i 

Europa. 

 

Emissioner af pesticider til overflade- og grundvand beregnet med PestLCI 2.0 

blev sammenlignet med modeller, der anvendes til risikovurdering. Sammenlig-
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net med MACRO modulen i SWASH 3.1 modellen, var emissionerne til overfla-

devand beregnet med PestLCI 2.0 generelt lavere, hvilket kan forklares ved for-

skelle i modelleringsmetoden. Sammenligningen mellem modeller for emissioner 

til grundvand viste at beregninger med PestLCI 2.0 giver højere emissioner end 

FOCUSPEARL 4.4.4, hvilket blev forklaret ved udeladelsen af emissioner via 

makropore strømninger i sidstnævnte model. For begge sammenligninger gælder 

dog at de ikke er optimale da scenarierne der blev anvendt ikke var identiske.  

     

For at kvantificere konsekvensen af at bruge PestLCI 2.0 til at beregne pesticid-

emissioner fremfor den nuværende gængse tilgang (Ecoinvent tilgangen), som 

antager at 100 % af den påførte masse afgives til landbrugsjorden, blev resulta-

terne for human toksicitet og ferskvands økotoksicitet sammenlignet. For begge 

påvirkningskategorier blev det fundet at PestLCI tilgangens resultater i gennem-

snit er tre størrelsesordener lavere end Ecoinvent tilgangens resultater. Denne 

konklusion var gældende for karakteriseringen af mikljøeffekter for såvel 

USEtox som USES-LCA 2.0 karakteriseringsfaktorer. 

   

Den observerede forskel mellem disse tilgange har betydning for sammenlignin-

gen af toksiske miljøeffekter fra konventionelt og økologisk landbrug. Dog er 

forskellen i pesticidforbrug og den tilsvarende miljøpåvirkning kun en af flere 

aspekter der er relevante at undersøge i diskussionen af bæredygtigheden af beg-

ge typer landbrug. En anden betydning af resultaterne er bidraget af pesticid-

emissioner til de overordnede toksiske miljøeffekter af landbrugsprodukter kan 

være lavere end hvad der på nuværende tidspunkt er fundet i LCA studier. 

  

Da PestLCI og Ecoinvent tilgangene adskiller sig i både grænserne mellem øko-

sfære og teknosfære og i modelleringen af skæbneprocesser indenfor teknosfæ-

ren, blev en hybridmetode også udviklet til at beregne de toksikologiske effekter. 

Denne hybridmetode kombinerede skæbnemodellering fra PestLCI tilgangen 

med teknosfæregrænserne fra Ecoinvent tilgangen. De toksikologiske effekter af 

denne tilgang viste at det er teknosfæregrænserne snarere end in- eller eksklusio-

nen af skæbneprocesser der er afgørende for de observerede forskelle mellem 

PestLCI og Ecoinvent. Der er ikke muligt at definere teknosfæregrænserne i 

LCA af landbrugsprodukter da det kommer an på hvad LCA brugere definerer 

som miljø og produktionssystem. Derfor anbefales det at diskutere hvad en LCA 

skal designes til at beskytte fremfor hvor grænsen skal sættes. 
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Den første af de to anvendelser af PestLCI 2.0, der er præsenteret i denne afhand-

ling, omhandler pesticidemissioner fra konventionel kiwi dyrkning i Western 

Bay of Plenty distriktet i New Zealand. For ni scenarier baseret på forskellige 

kombinationer a lokale jordprofiler og klimatyper, blev pesticidemissioner be-

regnet med PestLCI 2.0 og efterfølgende karakteriseret med karakteriseringsfak-

torer udledt ved brug af USEtox. Emissionerne til luft viste lav variation mellem 

de ni undersøgte scenarier. Emissionerne til overfladevand og grundvand viste 

større variationer. På trods af dette, var forskellene på ferskvands-økotoksicitet 

og human toksicitet små for de ni scenarier. Når usikkerheder i emissionsmodel-

lering og effektmodellering betragtes i LCA kontekst er disse forskelle sikkert 

ikke af betydning. For alle ni scenarier blev det fundet at emissionen af cyanamid 

dominerede de toksiske effekter.   

  

En anden anvendelse af PestLCI 2.0 var  en sammenligning af miljøpåvirkningen 

af bygdyrkning i Danmark under nuværende (2010) og fremtidige (2050) klima-

betingelser. Den funktionelle enhed i dette studie var 1 kg byg ved gårdporten 

(farm gate). Ved anvendelse af en attributional tilgang, blev biprodukter håndte-

ret ved økonomisk allokering. Vurderingen af miljøeffekter blev udført med Re-

CiPe (hierakist perspektiv) med undtagelse af toksiske effekter som blev karakte-

riseret ved brug af USEtox. Forskellene mellem fire scenarier baseret på kombi-

nationer af våde og tørre klimaer samt sand og sandet lerjord for byg dyrkning 

under nuværende klimabetingelser var små. Forskellene i effekter mellem dyrk-

ning under nuværende og fremtidige klimabetingelser blev konkluderet at være 

drevet primært af forskelle i kornudbytte. Anvendelsen af økonomisk allokering 

blev fundet problematisk da prisniveauerne for 2050 ikke kan forudsiges med 

rimelig sikkerhed.  

 

Selvom PestLCI er blevet opdateret og udvidet er det stadig muligt at lave yder-

ligere forbedringer. Et antal forbedringer og forslag til at øge modellens anvende-

lighed er diskuteret. Disse forslag fokuserer både på skæbnemodellering (fx. 

emissioner via luftstrømme, nedbrydning og fordampning fra blade) og definitio-

nen af modellens grænser. 
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1 INTRODUCTION 
1.1 CONTEXT AND OBJECTIVES OF THE PHD PROJECT 
Life Cycle Assessment (LCA) is a holistic, comprehensive tool to analyze the 

environmental impacts of products and systems. One of its intended applications 

is decision support (International Standard Organization, 2006a). It was exactly 

for this application that the work presented in this thesis was funded, as a part of 

the larger project ‘Development of genetically modified cereals adapted to the 

increased CO2 levels of the future’. This research project aimed at developing a 
barley crop specially well adapted for the higher atmospheric CO2 concentrations 

of the future with higher zinc and protein content through investigating zinc up-

take into the grain, studying nitrogen use efficiency and mapping the availability 

of barley varieties with elevated protein content. As a part of the project, LCA as 

well as other environmental assessment methodologies was intended to be ap-

plied to explore the sustainability aspects of the introduction of a genetically 

modified crop (hereafter referred to as GMO) by comparing the environmental 

impacts of the GMO with the impacts of a conventional barley crop. 

 

In order to compare the sustainability aspects of the different barley crops, my 

research was originally planned to consist of two parts. The first part is the ex-

pansion, update and validation of the PestLCI model, a model to calculate emis-

sions of pesticide to air, surface water and groundwater. The model is to be used 

in the Life Cycle Inventory (LCI) phase of an LCA, in which all inputs from, and 

outputs to the environment from a product’s life cycle are compiled. Improve-

ments of the model would allow for accurate calculation of pesticide emissions 

from an agricultural field, for example a field on which barley is cultivated: the 

second part of the project. In this second part an LCA of barley cultivation in 

Denmark under current and future climatic conditions would be carried out for 

two crop variants: conventional barley and GMO barley. This part of the project 

was intended to contribute to a balanced picture of the advantages and disad-

vantages of the introduction of GMO crops in Danish agriculture. Practice did 

not follow planning, so this second part of my project took another shape as was 

foreseen in September 2010. An opportunity arose to test PestLCI under New 

Zealand circumstances. At the same time the development of the GMO barley 

turned out to take more time than foreseen, so my research set-up for the barley 

LCA had to be more or less completely reworked. In addition to these changes, 
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there was some time to reflect on the PestLCI framework and boundary settings 

applied in LCA practice. 

 

Looking back at the past three years of research, the work done in the context of 

this PhD project has focused on a number of objectives, all in various degrees 

related to the assessment of pesticide emissions in agricultural LCA: 

 

 to develop an LCI model, PestLCI 2.0, in order to calculate of pesticide emis-

sions to the environment, to be applicable under European circumstances (pa-

per 1). 

 to validate the pesticide emission model by comparing it to other (risk assess-

ment) models (paper 1, 3). 

 to apply the PestLCI 2.0 model to estimate pesticide emissions in kiwifruit 

cultivation in New Zealand, thereby helping to develop a ‘toxicity footprint’ of 
kiwifruit growing (paper 3). 

 to apply PestLCI 2.0 in the case of barley cultivation in Denmark, under both 

current and future climatic circumstances (paper 4). 

 to discuss the technosphere-ecosphere boundary setting used in LCA, with a 

focus on the case of pesticide emission modelling in agricultural LCA (paper 

2). 

 

As can be seen from this list of objectives, the results of the research are commu-

nicated to the scientific community through four scientific, peer-reviewed papers. 
 

1.2 CONTENT AND STRUCTURE OF THE PHD THESIS 
The contents of this thesis are mainly based on the papers that have been written 

during the course of the PhD project, though without necessarily repeating all 

contents from these papers. In addition some of the contents draw upon presenta-

tions given at conferences and workshops. In some chapters, new results are pre-

sented. 

 

This thesis tries to summarize the work done in the course of the PhD project, 

applying the PestLCI 2.0 model as a red thread. The thesis is built up as follows. 

Chapter 2 starts with a description of PestLCI 2.0. The motivation and context 

for the development of the model is discussed, as well as the boundary setting 

and framework of the model. The improvements done to the model and its vali-

dation are subsequently discussed. The second chapter closes with suggestions 



3 

for further improvements of the model. This second chapter covers the model 

development, which can be seen as the foundation upon which the following 

parts of the project were built. Before building on this foundation, I will in chap-

ter 3 take a step back and subject the foundation to a closer inspection: does the 

choice of boundary between product system and environment, upon which the 

model is based, actually make sense? And what happens if we choose the bound-

aries differently? The next two chapters are based on results obtained using Pes-

tLCI 2.0. Chapter 4 describes the application of the model in the calculation of 

pesticide emissions in kiwifruit cultivation in New Zealand. In a similar fashion, 

chapter 5 describes a second application of PestLCI 2.0: in an attributional LCA 

of barley cultivation under current and future climatic circumstances. This thesis 

then finishes with an overall conclusion and outlook. The journal papers upon 

which the chapters in this thesis are based, are found in the appendices. 
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2 MODEL DEVELOPMENT: CURRENT  
APPROACHES IN PESTICIDE LCI AND THE 
PESTLCI APPROACH 

 

2.1 CONTEXT: PESTICIDE EMISSIONS MODELLING IN LCA 

2.1.1 WHY MODEL PESTICIDE EMISSIONS? 
A considerable number of the agricultural LCA case study articles published in 

the International Journal of Life Cycle Assessment in the period from 2010 to 

late August 2013, did not consider toxicity impacts arising from pesticides (e.g. 

Bessou et al., 2013; Dressler, Loewen & Nelles, 2012; Muñoz, Milà i Canals & 

Fernández-Alba, 2010; Torellas et al., 2012). Bessou et al. (2013) state that the 

toxicity of pesticides is not assessed because there is a lack of knowledge about 

how pesticides are distributed over environmental compartments: one good rea-

son to model the fate of pesticides. 

 

Other publications that consider toxicity impacts, do unfortunately not always 

discuss the origins of these impacts (Amores et al., 2013), whilst Schmidt (2010) 

mentions pesticides as one of the main contributors to toxicity impacts. The same 

conclusion is drawn by Nemecek et al. (2011), based on the assumption that all 

of the applied pesticide is emitted to soil: a second reason to model pesticide 

emissions. After all, only an accurate overview of how much pesticides end up in 

which environmental compartment will allow drawing such a conclusion. 

 

A final argument for modelling pesticide emissions is that reliable LCA results 

depend on both accurate Life Cycle Inventories (LCI) and accurate Life Cycle 

Impact Assessment (LCIA). Recent LCIA methods such as USES-LCA 2.0 (Van 

Zelm, Huijbregts & Van de Meent, 2009) and USEtox (Rosenbaum et al., 2008) 

already provide characterization factors for a selection of pesticides. It is there-

fore important that reliable LCI data, describing the processes that occur before 

emission of the pesticide, are available as well. 

 

2.1.2 CURRENT MODELLING OF PESTICIDE INVENTORIES 
Since most LCA practitioners use databases to provide LCI data, it is worth con-

sidering how three commonly used databases deal with pesticide inventories. 
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Starting with the Ecoinvent database (Ecoinvent centre, 2007), it is assumed that 

the complete mass of pesticides applied is emitted to agricultural soil (Nemecek 

& Kägi, 2007). No reason is given for this assumption. This approach leaves the 

modelling of the pesticide fate inside and outside the field after emission to agri-

cultural soil to fate modelling in impact assessment, and thus limits the develop-

ment of spatially differentiated pesticide emission inventories. In the US LCI 

database (NREL, 2003) emissions are normally split between air and surface wa-

ter. Emissions to air typically account for 96% of the emissions, though for some 

pesticides in some processes this percentage may be a few percent points more or 

less. As was the case in the Ecoinvent approach, the summed mass of emissions 

in the US LCI database equals the mass of pesticide applied. Ecoinvent and the 

US LCI database differ in the emission compartments: in the first approach, the 

fate of a pesticide once emitted to the field depends on the characterization mod-

el, whilst in the US LCI database 100% of the mass of applied pesticide is as-

sumed to leave the field. Finally, in the Danish LCI Food database (Nielsen et 

al., 2003) pesticides are not considered. 

 

Obviously, these approaches are simplifications to which a number of objections 

can be raised. One of such objections is that processes that occur between pesti-

cide release from the spray equipment and deposition on soil (Ecoinvent) or re-

lease to water and air (US LCI database) are not considered. In the time between 

release and emission a pesticide may undergo fate processes such as degradation 

or volatilization. In the space between spray nozzle and emission compartment 

air and plants are present, where other fate processes may occur. Moreover, these 

fate processes depend on local circumstances (Kroner et al., 2004), as well as on 

pesticide characteristics (Jensen, Spliid & Svensmark, 2007). By assuming a 

fixed emission factor to a certain environmental compartment, spatial and chemi-

cal differences are ignored. In order to avoid this, it is necessary to model pesti-

cide fate before emission to the environment. 

 

2.1.3 THE PESTLCI APPROACH 
The first version of PestLCI, hereafter called PestLCI 1, was published in 2006 

(Birkved & Hauschild, 2006). This model calculated emissions to air, surface 

water and groundwater and was based on a boundary between technosphere and 

ecosphere defined by a so-called technosphere box, or field box. This box con-

tained the field where the pesticide was applied, the soil down to 1 meter below 

this field, and the air column above the field up to 100 meter height. These di-

mensions were chosen because degradation of pesticides in soil was assumed not 
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to occur at depths below 1 meter, so that a pesticide reaching that depth would (at 

some point in time) reach the groundwater. An air column of 100 meter was in-

cluded to make sure that aerial application of pesticides would be a process oc-

curing in the technosphere. 

 

From this technosphere description it follows that the crop which was to be pro-

tected, as well as other plants growing in the field and the field soil were consid-

ered part of the technosphere. In other words, the agricultural field is considered 

a biological production system, with a man-made nature. This boundary setting 

can be discussed, which will be done in chapter 3. 

 

The technosphere setting also dictates the emission compartments that are in-

cluded in the model: the only pathways available for a pesticide to move out of 

the technosphere box are though air, or via surface water or groundwater. Emis-

sions to soil are not possible, for there is no pathway directly leading from air, 

soil, or water within the technosphere to soil outside the technosphere. This does 

not mean that pesticides will not end up in soil in the ecosphere, but these path-

ways have to be considered in LCIA modelling. 

 

PestLCI 1 had a number of limitations, which led to the development of PestLCI 

2. First of all, the model was limited to Danish circumstances. PestLCI 1 used a 

Danish climate profile, had included a Danish soil profile and the pesticide data-

base consisted of pesticides that were approved for use in Denmark. Since in 

LCA most product systems are international, often global, this Danish scope was 

too narrow and limiting the use of the model outside Denmark. In addition it also 

did not allow for comparison of pesticide emissions on different locations, which 

may be relevant when moving towards more site-specificity in LCA. Second, the 

model did not cover macropore flow, which can quickly transport pesticides to 

deeper soil layers (Kördel, Egli & Klein, 2008) and these pores may therefore 

result in larger emission of pesticide to surface water or groundwater. Third, due 

to programming in Microsoft Excel, the model was not very transparent for the 

user. To overcome these limitations, PestLCI 2.0 was developed. The details of 

this model version are given in paper 1. Here the main updates will be described. 

 

2.2 METHOD 
This section describes the updates of PestLCI, the methods used for model vali-

dation as well as a case study about spatial variability of pesticide emissions. 
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2.2.1 PESTLCI 2.0: FRAMEWORK AND UPDATES 
PestLCI 2.0 is based on the technosphere-ecosphere boundary setting described 

above, which is unchanged from PestLCI 1. 

 

The model works with primary and secondary fate processes. Primary processes 

are the processes that occur directly after pesticide application. These processes 

determine how much pesticide is deposited on the crop and on topsoil, as well as 

how large a fraction is emitted to air due to wind drift. Secondary processes are 

the fate processes that occur on the crop surface and on the topsoil, here defined 

as the first 1 cm of soil. These processes determine the fate of the pesticide. An 

overview of these secondary processes is given in Figure 2.1. 

 

On leaves, three fate processes are considered: degradation, uptake into leaves, 

and volatilization which results in an emission to air. In the topsoil, degradation 

and volatilization are considered as well. At the moment of the first rainfall after 

pesticide application, the pesticide residues on the crop are assumed to wash off 

to the topsoil. Together with the pesticide remaining on topsoil this mass is sub-

ject to runoff and macropore flow. The mass of pesticide then remaining is as-

sumed to start leaching downward through the subsoil. In the subsoil, degrada-

tion takes places. In case a drainage system is applied, a fraction of the pesticide 

 Figure 2.1: Overview of the PestLCI model framework. Emissions to air are indicated with an 

upward arrow, emissions to surface water with a tilde and emission to groundwater with a tri-

angle. Other processes remove the pesticide from the system. 
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is intercepted by the drainage, leading to an additional emission to surface water. 

Once a pesticide reaches a depth of 1 meter in the soil, it is assumed to be emit-

ted to groundwater. 

 

In the development of PestLCI 2, several of the fate processes were updated. 

Starting with wind drift, additional wind drift curves were introduced, based on 

the IMAG drift calculator (Holterman & Van de Zande, 2003). These curves did 

not replace, but supplement the curves included in PestLCI 1. The reason for in-

troducing these additional curves was that they covered a broader range of crops 

than the ones included in the first version of the model. 

 

Regarding the secondary processes taking place on the leaves, mainly small mod-

ifications were done: new regressions were made for the degradation and uptake 

data used in PestLCI 1. A new approach for volatilization from the leaves was 

introduced. In the PestLCI 1 approach a pesticide was assigned a volatilization 

rate constant based on its air-water distribution coefficient Kaw. In total three 

rates of volatilizations were present, each covering a given range of Kaws. The 

new approach was based on a regression of volatilization rates against vapour 

pressures by Van Wesenbeeck, Driver and Ross (2008). The advantage of this 

approach is that it provides a continuous relation between vapour pressure and 

volatilization. The new approach better reflects the differences between chemi-

cals. Application of the model showed however, that this approach overestimated 

volatilization of volatile (vapour pressure >10-3 Pa) chemicals. Therefore, in pa-

per 3 another approach to calculate the volatilization from leaves was introduced, 

based on a regression of volatilization data reported by Guth et al. (2004). Here a 

fixed volatilization rate was assumed for pesticides with a vapour pressure below 

10-6 Pa. The volatilization rate then increases with increasing vapour pressure up 

to a maximum so that no more than 80% of an applied dose is volatilized within 

24 hours. 

 

The modelling of fate processes occurring in soil has been changed to various 

degrees. The calculation of biodegradation was modified only slightly: a new 

equation was introduced for calculation of the biodegradation rate’s dependence 
on the temperature, and the topsoil temperature was no longer assumed to be the 

same as the air temperature. The calculation of volatilization from soil was 

adapted to a higher degree. It was simplified compared to the PestLCI 1 approach 

by means of using a fugacity level 3 model, based on the Surface soil model by 

Mackay (2001). This simplification can be justified by the fact that volatilization 
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from soil typically makes up only a very small part of the total emissions to air. 

Another update was that the partitioning of ionic pesticides in soils was made 

pH-dependent in PestLCI 2.0, reflecting that the degree of dissociation of these 

pesticides depends on the acidity of the topsoil. 

 

For runoff, a new equation was introduced so that runoff can now be calculated 

for all rainfall intensities. In PestLCI 1, this was only possible when the precipi-

tation was more than 17 mm per precipitation event. 

 

Finally, the concept of pesticide leaching via macropores was introduced to the 

model. Macropores are structures that are mainly formed in structured soils such 

as silt and clay soils. When such a structured soil dries or when organisms, for 

example rain worms, are active, pores with a relatively large diameter are 

formed. These pores form a ‘bypass’ for dissolved pesticides, making them reach 
the groundwater considerably faster than what would be expected when flow 

through the soil matrix was the only path available (Kördel, Egli & Klein, 2008). 

Because macropore flow may be an important contributor to groundwater emis-

sions, it is relevant to include it in PestLCI. Macropore flow was modelled using 

a ‘tipping bucket’-approach in which the soil is split in four domains. The first 

three domains are formed by the pores in the soil matrix. In the first of these soil 

matrix domains the water does not flow, and these parts therefore have little rele-

vance for pesticide emissions. In the other two domains the water moves through 

the pores, but at different rates. The final domains are made up by the 

macropores. In the applied approach, it is assumed that the rain water will first 

fill up the pores in the domain where the water can not flow. Afterwards the 

pores where water slowly flows are filled. Only when the water holding capacity 

of these domains is exceeded, will rain water enter the macropores. Based on the 

amount of rainfall and the intensity of rainfall, an average fraction of rainfall is 

assumed to enter macropores. In this water, an amount of pesticide is dissolved, 

potentially leading to a direct emission to groundwater. In the first version of 

PestLCI 2.0, presented in paper 1, it was assumed that all pesticides that engaged 

in macropore flow would be emitted to groundwater. In later versions of the 

model (from version 2.0.6), used in the other papers on which this thesis is based, 

it was assumed that only a fraction of the macropores directly results in emis-

sions to groundwater. This fraction was fitted to 0.1. Moreover these versions of 

the model assumed a fixed macroporosity for soils (3% of the soil volume).  

 

Since the tillage method has an effect on macropore formation, the model users 

are given different options regarding tillage. 



11 

 

The PestLCI 1 modules used for the other processes occurring in the soil (i.e. 

degradation, fresh water emissions by drainage, and pesticide leaching towards 

groundwater), were not changed for inclusion in PestLCI 2.0. 

 

Finally, some of the databases of PestLCI were expanded in order to broaden the 

model scope from Denmark to Europe. The coverage of chemicals was increased 

with 20 active ingredients to approximately 90. The added active ingredients 

were selected on basis of their appearance in a ranking of most widely sold pesti-

cides in Europe in the period 1999-2003 (Eurostat, 2007), which were the most 

recent data available at the time the database was updated. The Danish climate 

profile included in PestLCI 1 was replaced with 25 profiles covering the 16 Eu-

ropean climate zones distinguished in the FOOTPRINT project (Centofanti et al., 

2008) with up to three sets of climate data per climate zone. The soil database 

was expanded with seven European soil profiles with different compositions. 

These were selected from the Spade Database (European Communities, 2010) on 

basis of varying clay, silt and sand contents, in order to cover a wide range of 

likely soil compositions. 

 

2.2.2 VALIDATION OF PESTLCI 2.0 
MCPA emissions calculated by PestLCI 2.0 were compared with 2 models used 

in Environmental Risk Assessment (ERA). Surface water emissions were com-

pared with the MACRO module contained in SWASH 3.1 (Alterra, 2009). 

Groundwater emissions calculated by PestLCI 2.0 were compared with FO-

CUSPEARL 4.4.4 (RIVM, PBL and Alterra, 2011). MCPA is a phenoxy herbi-

cide that was selected for this case study because it is among the most sold pesti-

cides (measured in kg active ingredient) in Danish agriculture (Miljøstyrelsen, 

2012). 

 

The properties of MCPA inserted to all models were the same, though some 

models needed data not required for other models. However, soil and climate 

data present in the risk assessment models were, apart from a single exception, 

not included in PestLCI and vice versa. Therefore the most similar soil and cli-

mate profiles were chosen. 

2.2.3 CASY STUDY: SPATIAL AND TEMPORAL VARIABILITY OF PESTICIDE 

EMISSIONS 
In order to illustrate the spatial variability in pesticide emissions, a total of nine 

MCPA emission scenarios were run, combining three climate sets and three soil 
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profiles. The exact description of these scenarios can be found in paper 1. In 

short, the compared climate data correspond to Temperate Maritime, Continental 

2 and Mediterranean 1 climates in the FOOTPRINT terminology. These climates 

will be referred to as DK, HU and GR, respectively, since the data used in Pes-

tLCI 2.0 are taken from weather stations in Denmark, Hungary and Greece. The 

three soils used in the case study are the ones with a relatively high sand content, 

a high clay content and an ‘average’ soil, the composition of which is close to the 
average sand, silt and clay contents found in the SPADE database. In order to 

obtain a fair comparison, all other parameters were kept the same. 

 

2.3 RESULTS AND DISCUSSION 
Here, the results of the validation of PestLCI 2.0 and the case study will be de-

scribed. Moreover, suggestions for further improvements of the model are dis-

cussed. 

2.3.1  COMPARISON WITH RISK ASSESSMENT MODELS 
Table 2.1 presents a summary of the results from the comparisons of MCPA 

emissions between PestLCI 2.0 and the respective risk assessment models. The 

results have been taken from paper 1. More details on the results can be found in 

this paper. 

 

These results show that the results found by PestLCI for surface water emissions 

are generally lower than those found by SWASH. The reason for this is twofold. 

Firstly, SWASH is a model developed for ERA. In contrast to LCA, which aims 

at modelling ‘average’ situations, ERA aims at modelling realistic worst-case 

scenarios. Secondly, not all input parameters to the models, especially the soil 

data, were identical for both soil types. As a consequence, the outcomes should 

not be expected to be identical. So whilst the first reason suggests why the sur-

face water emissions calculated by PestLCI are generally lower, the second indi-

cates that the results should not be expected to match each other exactly. On the 

other hand, comparing the results may give an indication of how accurate Pest-

LCI is. 
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Table 2.1: Comparison of pesticide emissions to surface water and groundwater, calculated by 

PestLCI 2.0 and the indicated ERA models 

 
Surface water 

Scenario SWASH 3.1 PestLCI 2.0 Ratio SWASH:PestLCI 2.0 
1 3.06∙10-2 2.20∙10-4 139 
2 2.74∙10-3 1.60∙10-4 17 
3 1.03∙10-3 9.30∙10-5 11 
4 1.00∙10-4 2.00∙10-4 0.50 

 
Groundwater 

Scenario PEARL 4.4 PestLCI 2.0 Ratio PEARL:PestLCI 2.0 
1 2.08·10-3 2.10·10-3 0.99 
2 2.72·10-3 3.80·10-3 0.72 
3 1.53·10-3 6.10·10-3 0.25 
4 5.80·10-4 6.10·10-3 0.095 
5 2.47·10-4 4.40·10-3 0.056 
6 4.35·10-5 3.90·10-3 0.011 

 

Since the inputs to PEARL and PestLCI also were not completely identical, no 

identical results should be expected here, but still the results can be taken as an 

indication of the validity of the model. From Table 2.1 it can be seen that the sur-

face water results calculated by PestLCI are typically higher than those found by 

PEARL. This is explained by the fact that the scenarios used in the PEARL simu-

lations did not consider macropore flow. In addition, the macropore flow ob-

served in PestLCI seems to be in the higher end of measured emission to 

groundwater due to macropores (Kördel, Egli & Klein, 2008). Therefore, emis-

sions via macropores may therefore be overestimated in the model version used 

in paper 1. 

 

A limitation of this comparison of models is that it is done for a single com-

pound, MCPA. Running the models for a number of pesticides might have re-

sulted in a better ground for concluding on the validity of PestLCI 2.0. A second 

limitation was that there are no models available to cover emissions to surface 

water and groundwater at the same time, let alone a model that includes all the 

three emission pathways included in PestLCI. 

 

Despite the differences observed between PestLCI 2.0 on the one hand, and the 

ERA models on the other hand, it was concluded that the match between the 

models was acceptable. The differences between the ERA models and PestLCI 

typically were up to one order of magnitude. If this is considered as the uncer-

tainty of the results, then these are similar or lower than those observed in char-

acterization factors such as those calculated by USEtox (Rosenbaum et al., 

2008). 
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2.3.2 CASE STUDY: SPATIAL AND TEMPORAL VARIABILITY OF PESTICIDE 

EMISSIONS 
The results for the comparison of emissions to air, surface water and groundwater 

for different European climates and soils are presented in Table 2.2. 

 

Table 2.2 shows that the difference between the lowest and highest emissions to 

air is a factor 1.1. For surface water emissions, the difference is larger: the high-

est emission is 67 times the lowest emission. For emissions to groundwater, the 

difference lies in between the values found for air and surface water. The highest 

emission to surface water is 7.8 times the lowest emission. Hence the variation in 

emissions to air and groundwater for MCPA is less than 1 order of magnitude. 

The same conclusion can be drawn for the majority of surface water emissions. 

 
Table 2.2: Overview of MCPA emissions to air (fair), surface water (fsw) and groundwater (fgw) 

climate DK 
Soil sand average clay 
fair 1.89·10-2 1.89·10-2 1.89·10-2 
fsw 1.39·10-5 3.43·10-4 4.04·10-4 
fgw 1.22·10-3 1.64·10-3 4.10·10-3 
climate HU 
Soil sand average clay 
fair 1.97·10-2 1.97·10-2 1.98·10-2 
fsw 2.22·10-4 7.88·10-4 9.45·10-4 
fgw 2.86·10-3 3.79·10-3 9.48·10-3 
climate GR 
Soil sand average clay 
fair 2.06·10-2 2.06·10-2 2.07·10-2 
fsw 1.97·10-4 7.15·10-4 8.58·10-4 
fgw 2.59·10-3 3.44·10-3 8.60·10-3 

 

It was concluded that emissions to air are mainly related to the air temperature, 

which affects the rate of volatilization. This explains why the air emissions are 

lowest in the DK scenario and highest in the GR scenario. Wind drift losses are 

not dependent on temperature. During application the active ingredient is formu-

lated, so that droplets are spread. The main factor determining the emissions is in 

this case not the pesticide properties, but rather the characteristics of the spray 

equipment (Carlsen, Spliid & Svensmark, 2008). Surface water emissions in turn 

were found to depend on both climatic and soil factors, with the soil parameters 

explaining most of the variation. Relevant climatic parameters are precipitation 

amount and precipitation frequency.  The important soil parameters are the soil 

type and the pH. The parameters that were found to be relevant for surface water 

emissions were also determining the emission to ground water. These conclu-

sions were supported by a sensitivity analysis of the model. 
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The results here show that the spatial variation of pesticide emissions typically is 

less than one order of magnitude. For paper 1, the results were calculated for on-

ly one pesticide (MCPA). The sensitivity analysis of paper 2 however showed 

that also for other pesticides the emissions typically are within one order of mag-

nitude. However, emissions of active ingredients with different properties to the 

environmental compartments can differ with a few orders of magnitude. 

2.3.3 SUGGESTIONS FOR FURTHER IMPROVEMENTS 
The fact that PestLCI 2.0 has been published, does not mean that there are no 

more improvement possibilities for the model. In this section some suggestions 

for further improvement will be discussed, starting with a number of suggestions 

for improvement of the modelling of the pesticide fate processes, followed by 

three suggestions to make the model wider applicable. 

 

Focusing more on the fate process modelling done in PestLCI 2, there are a few 

options for further development of the model. Starting with wind drift, the wind 

drift curves currently used in the model are equations designed to calculate which 

fraction of applied active ingredient, usually in drops of the formulated pesticide, 

is deposited on off-field soil. In PestLCI, these curves are used to calculate emis-

sions to air. Looking at the technosphere box defined in PestLCI, this is correct: 

when drifting away from the field, the active ingredient crosses the field border 

while being airborne. However, considering that most of this pesticide will be 

deposited shortly afterwards, and that this process is specific to pesticides and 

therefore (currently) not covered by LCIA methods, it might be recommendable 

to consider the fraction of pesticide that is subject to wind drift as an emission to 

soil. This means that the technosphere borders of PestLCI have to be modified, or 

that a temporal aspect has to be introduced. When modelling volatilization from 

leaves, the regression used has proved to result in very high volatilization results 

for compounds with a high (>10-2 Pa) vapour pressure. It may be that the regres-

sion is not adequate for these high vapour pressure cases. Although the new ap-

proach introduced in paper 3 resulted in lower volatilization of chemicals with 

these high volatilization rates, the modelling of this fate process is something that 

has to be looked into. Perhaps an approach that is based on the physics of the 

volatilization process instead of on a regression of experimental data is a way 

forward. Another conclusion from paper 3 was that PestLCI 2.0 overestimates 

the degradation rate on leaves. Since degradation is a reaction that takes place at 

the same time as volatilization to air and uptake into leaves, these reactions are 

competing. If one reaction rate is overestimated, then the others will as a conse-
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quence be underestimated. Therefore, the overestimation of degradation will re-

sult in underestimation of emissions to air due to volatilization. This observation 

was also made in paper 3, when comparing emissions to air calculated by Pes-

tLCI 2.0 to emissions calculated by The Soil-Plant-AtmoSphere MOdel (SPAS-

MO) developed for modelling water, nutrient and agrochemical flows under New 

Zealand circumstances. Therefore, the modelling of degradation on leaves may 

be reconsidered. One option here would be to start the modelling from foliar half 

lives instead of the photodegradation-based approach currently used. Finally, the 

current pesticide database covers less than 100 compounds even though many 

more compounds are approved for use in Europe. Therefore, substance coverage 

can be improved. 

 

One improvement to increase the appeal of the model may be to develop a ver-

sion which allows for running more than one scenario at a time. At the moment, 

each scenario needs to be run individually, which makes calculating a large num-

ber of scenarios a time-consuming task. A second improvement would be to cou-

ple the model to a geographic information system (GIS). For example, if climate 

and soil input data could be taken from GIS instead of using the predefined data 

in the PestLCI databases, more spatially differentiated emission patterns could be 

generated. Thirdly, the current and previous versions have the boundaries be-

tween technosphere and ecosphere set as discussed in section 2.3. In contrast to 

these boundary settings, some impact assessment methods, such as for example 

ReCiPe (Wegener Sleeswijk et al., 2008), consider agricultural soil as an envi-

ronmental compartment, and pesticides emitted to agricultural soils contribute to 

terrestrial ecotoxicity. In order to increase the compatibility of PestLCI with dif-

ferent LCIA methods, it may therefore be desirable to develop a model version 

which allows for a user-defined technosphere boundary setting. This allows the 

user to choose the boundary setting required for the LCIA method he is working 

with, or to set the boundaries in a way that reflect what he thinks is part of the 

environment, instead of being limited by the technosphere - ecosphere boundary 

set by the model. Choosing system boundaries and the consequences of such 

choices in terms of the implications on the magnitude of environmental impacts 

will be discussed further in chapter 3. 

 

In conclusion: even though PestLCI 2.0 is an improvement compared to the first 

version, there is still plenty of room for improvement and expansion. 
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2.4 CONCLUSION 
The development of PestLCI 2.0 resulted in a model which calculates emissions 

to air, surface water and groundwater. The updates of the model compared to the 

first version of PestLCI comprised of reworked modelling of a number of fate 

processes, the addition of pesticide leaching to groundwater via macropores, ex-

pansion of the model’s pesticide, climate, and soil databases as well as a shift to 

another modelling platform. The model was compared to models used in risk 

assessment. In addition, it was shown that pesticide emissions to air, surface wa-

ter and groundwater depend on the location where the pesticide is used. A num-

ber of improvements and expansions of PestLCI 2.0 are suggested. 
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3 IMPLICATIONS: COMPARISON OF THE PES-
TLCI FRAMEWORK WITH OTHER  
PESTICIDE EMISSION INVENTORY 
APPROACHES 

 

3.1 INTRODUCTION 
In the previous chapter a number of Life Cycle Inventory (LCI) approaches were 

mentioned. In comparison to the PestLCI approach, the Ecoinvent and the US 

LCI database approaches are relatively simple in the sense that they assume that 

pesticide properties or local circumstances do not influence the fate of a pesticide 

in the field, as well as ignoring processes occurring before the pesticide is emit-

ted to the environment. This latter assumption leads to pesticide emissions that 

amount to 100% of the mass of applied pesticides. 

 

After presenting PestLCI 2.0 in chapter 2, an obvious question is whether the 

additional modelling of pesticide fate as done for PestLCI is actually relevant for 

Life Cycle Assessment (LCA) practice. In other words: how much do toxicologi-

cal impacts actually change when calculating these impacts using PestLCI 2.0, 

instead of using, for example, Ecoinvent? 

 

The most straightforward way to answer this question was to simply calculate 

toxicological impacts. The results of the calculations were presented in paper 2, 

with additional work presented at the SETAC Europe 23rd Annual Meeting 

(Glasgow, May 2012). Whilst in paper 2 results for both human toxicity and 

freshwater ecotoxicity were presented, this chapter focuses on the freshwater 

ecotoxicity solely. The reason for this is twofold: the results for both toxicity cat-

egories were similar and this thesis does not aim at repeating the papers it was 

based upon. 

 

3.2 METHOD 
In order to determine the importance of the choice of LCI approach on environ-

mental toxicity impacts, three LCI approaches were compared. 
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The first approach is the one used in the widely used LCI database Ecoinvent 

(Ecoinvent centre, 2007). It is here used as the approach to which the other two 

approaches presented here are compared. This approach is based on an eco-

sphere-technosphere boundary which seems to be located at a location between 

the nozzles of the spray equipment and the agricultural field soil. No fate pro-

cesses are considered prior to emission to environment. In this approach it is as-

sumed that 100% of the applied mass of pesticide is emitted to the environment. 

In the rest of this chapter, this approach will be called ‘Ecoinvent approach’. 
 

The PestLCI approach applies PestLCI 2.0 (paper 1) to calculate emissions to 

various environmental compartments. As described in chapter 2, the ecosphere-

technosphere boundary setting is based on the ‘technosphere box’ containing the 

agricultural field with the crop, the soil up to a depth of 1 meter and the air  

column above it up to 100 meter height. Inside this technosphere box the pesti-

cide fate processes occurring from release from the sprayer to emission or re-

moval via degradation and uptake are modelled, yielding emission fractions to 

air, surface water and groundwater. This approach will be referred to as ‘PestLCI 
approach’ throughout this chapter. 
 

The third approach, hereafter called ‘hybrid approach’, is a hybrid between the 

Ecoinvent and PestLCI approaches. Its technosphere-ecosphere boundary setting 

is based on the PestLCI technosphere box concept, but with removal of the soil 

from the technosphere. Instead the soil is considered part of the ecosphere, as in 

the Ecoinvent approach. Within the technosphere fate processes are considered. 

As a consequence of the technosphere boundary settings, the emission compart-

ments differ from both the Ecoinvent and the PestLCI approach. Compared to the 

PestLCI approach, soil has been moved from the technosphere to the ecosphere, 

and has now become an emission compartment, substituting surface water and 

groundwater: a pesticide molecule can’t be emitted to surface water or ground-

water without first entering the soil inside the technosphere. Air remains an emis-

sion compartments since wind drift and volatilization emissions are taken into 

account. Table 3.1 summarizes the approaches considered. 
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Table 3.1: Overview of LCI approaches for pesticide emissions applied in this chapter 

Approach 
Ecoinvent PestLCI Hybrid 

Consideration of technosphere 

fate processes? No Yes Yes 

Emission compartments Soil 

Air 

Surface water 

Groundwater 

Air 

Soil 

 

In order to go from pesticide emission inventories to toxicological impacts, char-

acterization factors (CF) for the relevant emission compartments were used. In 

paper 2, impacts were calculated using two Life Cycle Impact Assessment 

(LCIA) approaches. In one approach CFs calculated with  USEtox (Rosenbaum 

et al., 2008) were used, in the other CFs were obtained from USES-LCA 2.0 

(Van Zelm, Huijbregts & Van de Meent, 2009). Since neither of these LCIA 

methods provides characterization factors for groundwater, emissions to this en-

vironmental compartment could not be quantified. Given that the results for both 

LCIA models showed the same trend, only the results obtained using USEtox 

CFs are discussed here. 

 

This study was done using 23 active ingredients. These were selected on basis of 

three criteria: the active ingredients must be present in the PestLCI 2.0 database, 

CFs must be available in both USEtox and USES-LCA 2.0, and the pesticide 

must be approved for use in Denmark in 2010 (DEPA, 2011). The pesticides 

used are listed in Table 3.2.  

 
Table 3.2: Overview of pesticides used for the comparison of LCI approaches 

Fungicides Metsulfuron-methyl 

Fosetyl-Al Pendimethalin 

Mancozeb Phenmedipham 

Propamocarb Thifensulfuron-methyl 

Propiconazole Tribenuron-methyl 

Propyzamide Insecticides 

Tebuconazole Alpha-cypermethrin 

Herbicides Cypermethrin 

2,4-D Pirimicarb 

Asulam Growth regulators 

Bentazone Etephon 

Bromoxynyl Maleic hydrazine 

Glyphosate Mepiquat chloride 



22 

MCPA  

 

For each of the 23 active ingredients, three pesticide application scenarios were 

modelled. In these scenarios the treated crop, time of application and therefore 

crop development stage and climatic circumstances, and application technique 

were varied. Scenario 1 was based on pesticide application in April on bare soil 

or cereals, scenario 2 on application in July on bare soil or rapeseed, and scenario 

3 was calculated as the average of one application in each of the year’s twelve 
months, applied on bare soil or rapeseed. 

The summed sold mass of the pesticides included here accounts for 60% of the 

pesticides sold in Denmark in 2010. For all scenarios used here it was assumed 

that 1 kg/ha active ingredient was applied. Though this does not reflect agricul-

tural practice, the intention of this study was not to model actual application 

amounts. 

Using the comparison of the Ecoinvent and PestLCI inventory approaches as a 

starting point, a sensitivity analysis was done in which a number of input pa-

rameters to PestLCI was varied, in order to see how this would affect the results. 

The parameters varied are listed in Table 3.3. In total, this yielded sets of 45 al-

ternative scenarios per active ingredient considered. 

 
Table 3.3: Overview of input parameters subjected to sensitivity analysis for the PestLCI ap-

proach. Parameters used in the base scenario are indicated with *. 

Climate1 Maritime temperate 1*, North Mediterranean, Mediterranean 2, Con-

tinental 1, Continental 2 

Month January, February, March, April*, May, June, July, August, Septem-

ber, October, November, December 

Soil2 Average*, low clay, high clay, low silt, high silt, low sand, high sand 

Plant interception3 0; 0.25; 0.5; 0.8*, 1 

Spray equipment4 IMAG conventional boom - cereals*; IMAG conventional boom - 

potato; PestLCI 1 - field crops; PestLCI 1 - tall crops 

Field width (m) 100*, 250, 500 

Field slope (%) 0.5; 1.5*; 2,5; 5; 10 

Drainage fraction5 0*; 0.5; 1 

Drainage depth (m) 0.4; 0.66; 0.9 

Irrigation (mm/year) 0*, 100, 250, 500 

Tillage Conventional*, reduced, none 

1: Climate types based on FOOTPRINT project (Centofanti et al., 2008), see chapter 2 for 

more details; 2: Soils based on SPADE database (European Communities, 2010), see chapter 2 

for more details; 3: Fraction of applied pesticide intercepted by the plant leaves; 4: Spray 

equipment determines wind drift. IMAG wind drift curves are taken from Holterman & Van de 
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Zande (2003), PestLCI curves are the ones included in the first version of PestLCI (Birkved & 

Hauschild, 2006); 5: Fraction of the agricultural field where drainage tubes are installed 

3.3 RESULTS 
The results presented here are the freshwater ecotoxicity results, i.e. the LCIA 

results. The LCI (emission) results calculated with the various impact assessment 

models will not be presented in this thesis. Instead they can be found in paper 2. 

 

3.3.1 COMPARISON OF ECOINVENT - PESTLCI APPROACHES 
Figure 3.1 presents the freshwater ecotoxicity impacts calculated with the Pes-

tLCI approach plotted against the impacts calculated with the Ecoinvent ap-

proach. It can be seen that the impacts calculated with both approaches span 7 

orders of magnitude. Had all data points been on the diagonal, then the impacts 

calculated with both LCI approaches would be similar. 
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Figure 3.1: Comparison of freshwater ecotoxicity impacts calculated with the Ecoinvent and 

PestLCI approaches. Fungicides are indicated with ●, herbicides with o, insecticides with ×, 
and growth regulators with □. Note that the scale is logarithmic. 
 

However, as can be seen from the Figure 3.1, this is not the case. The impacts 

calculated with the PestLCI approach typically are a few orders of magnitude 

lower than those calculated with Ecoinvent: the average ratio IPEcoinvent:IPPestLCI is 

2043, with a minimum of  2.9 and a maximum of 21491. 
 

3.3.2 COMPARISON OF ECOINVENT - HYBRID APPROACHES 
The comparison between the Ecoinvent (horizontal axis) and the hybrid (vertical 

axis) approaches is presented in Figure 3.2. It can be seen that by including the 

soil into the ecosphere the freshwater ecotoxicity impacts approach the diagonal, 

meaning that both approaches yield a similar impact. 
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Figure 3.2: Comparison of freshwater ecotoxicity impacts calculated with the Ecoinvent and 

hybrid approaches as LCI methodology. In this figure fungicides are indicated with ●, herbi-

cides with o, insecticides with ×, and growth regulators with □. Note that the scale is logarith-

mic. 

 

The average ratio IPEcoinvent:IPPestLCI in this comparison is 1.4, meaning that the 

Ecoinvent approach results on average in impacts that are 1.4 times the impacts 

found with the hybrid inventory approach. The minimum ratio found is 0.88, the 

maximum is 2.0. These numbers are rather contrasting with the PestLCI - Ecoin-

vent comparison. 

 

3.3.3 SENSITIVITY ANALYSIS 
The results of the sensitivity analysis are presented in Figure 3.3. In this figure 

the impacts applying the Ecoinvent and PestLCI inventory approaches are com-

pared. The most important observation from Figure 3.3 is that for virtually all 

pesticides the conclusion holds that the Ecoinvent inventory approach results in 

higher freshwater ecotoxicological impacts than the PestLCI approach. The ex-

ception here is alpha-cypermethin, where the PestLCI inventory approach in 

some cases (6 out of 45 tested) results in higher impacts. 
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Figure 3.3: Sensitivity analysis comparing the freshwater ecotoxicity impacts for 23 pesticides, 

scenario 1. 

 

From Figure 3.3 it can furthermore be concluded that the impact potentials ob-

tained for one pesticide can vary up to 7 orders of magnitude according to the 

PestLCI approach. These differences are attributed to variations in emissions to 

the different environmental compartments, as calculated with PestLCI 2.0. De-

spite this observation, the impacts resulting from most of the 45 scenarios for 

each pesticide are typically close to each other: on average across the 23 pesti-

cides considered, the impacts for 34 out of 45 scenarios were within a factor 2 

from the base scenario value. Factors affecting air emissions from the field, most 

notably pesticide application method and field width, were the input parameters 

that explained most of the variation in the results. 
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3.4 DISCUSSION 
This discussion is split into three parts: one dealing with the results presented in 

the previous sections, one with the implication of the results, and one discussing 

technosphere-ecosphere boundaries on a more general level. 

 

3.4.1 RESULTS 
From the results it can be seen that when comparing the Ecoinvent and PestLCI  

inventory approaches for pesticide emissions, which was the focus of paper 2, 

Ecoinvent almost consistently results in higher toxicological impacts. This was 

confirmed by the sensitivity analysis, were only 1 pesticide in some cases 

showed higher impacts when using PestLCI 2.0 to calculate emissions. 

 

This difference has two reasons. Firstly, the total emissions are higher in the 

Ecoinvent approach. In this approach, it is assumed that 100% of the applied pes-

ticide is emitted whilst in the PestLCI approach a considerable fraction of the 

pesticide is degraded or taken up into the crop (i.e. degraded or absorbed in the 

technosphere). Secondly, the emission compartments are different, and the CFs 

for these compartments are not the same. The CFs for emissions to freshwater are 

typically highest, the CFs for emissions to air typically are the lowest. Conse-

quently the CF for emissions to soil typically is in between these two. The higher 

emissions in the Ecoinvent approach are therefore partially offset by the lower 

CF for soil emissions, compared to the CFs for air emissions. This trend is yet 

again counterbalanced by the higher CF for surface water emissions compared to 

soil emission CFs. 

 

Of the three emission compartments considered in the PestLCI approach, only 

two were taken into account in the impact assessment, because CFs for ground-

water emissions are not yet included into USEtox. This does not mean that it can 

be concluded that the difference between the two LCI approaches is smaller than 

shown in Figure 3.1: for emissions to soil, groundwater is not considered in the 

fate modelling either. 

 

The comparison between Ecoinvent and PestLCI is a double one: not only are 

different approaches to considering fate processes in the field compared, the 

comparison is also between two technosphere definitions. For this reason the hy-

brid scenario was defined. Based on the PestLCI approach, the technosphere bor-

ders were changed in order to resemble those used in Ecoinvent. This gives some 
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insight into which of the two factors compared is more determining for the ob-

served difference in potential environmental impacts. 

 

Figure 3.2 shows that when adapting similar technosphere system boundary set-

tings, but including fate process modelling in the technosphere, the resulting im-

pacts look very similar to those obtained with the Ecoinvent approach. From this 

it can be concluded that the system boundary definition is the more important 

factor influencing the impacts. This could have been expected, considering that 

when including the soil in the technosphere only a fraction of the pesticide is 

emitted (namely via run-off or leaching to the groundwater). If in contrast the 

soil is defined as an emission compartment, then obviously the fraction of emit-

ted pesticides will become larger. 

 

In conclusion, it appears that in- or exclusion of the agricultural soil is an im-

portant driver for pesticide toxicity impacts. The question following from this is 

whether this soil compartment should be considered as part of the technosphere, 

as in PestLCI, or as ecosphere, as in Ecoinvent. This question will be discussed 

in section 3.4.3. 

 

3.4.2 IMPLICATIONS FOR LCA PRACTICE 
If we assume that PestLCI 2.0 is the right inventory path to follow for calculation 

of pesticide emissions, then this may have considerable consequences for out-

comes of LCAs, at least when it comes to toxicological impact categories. Two 

of these consequences will be discussed here. 

 

The first implication is the environmental footprint of organic agriculture. This 

type of agriculture aims at an agricultural practice which “sustains the health of 

soils, ecosystems and people” (IFOAM, 2013). In practical terms, the main dif-

ference from conventional agriculture is in avoidance of synthetic-chemical pes-

ticides and fertilizers, and the use of manure and compost as the main source of 

fertilization (Badgley et al., 2007). Nemecek et al. (2011) did a LCA comparing 

crop production in conventional/integrated agriculture with organic production. 

When comparing both forms of agriculture on basis of an identical mass of prod-

uct, the impacts for some impact categories (global warming impacts, resource 

and energy consumption) were clearly favouring the organic farming practice, 

whilst land use was higher in the case of organic farming. For other categories, 

such as ozone formation, acidification and eutrophication no clear conclusions 
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could be drawn. In all toxicity impact categories, organic farming had a clearly 

lower impact: in aquatic and terrestrial ecotoxicity the impacts of organic farm-

ing were 16% of those in conventional farming, whilst human toxicity was at 40-

45% of conventional farming impact. The authors attribute this large difference 

to the greatly reduced use of pesticides in organic production. The observation 

that both forms of agriculture have advantages and disadvantages also appears 

from other LCA studies. For example, Cederberg & Mattsson, 2000; De Backer 

et al., 2009) show that organic farming is not by definition more sustainable than 

conventional production when the functional unit is mass-based. For some cate-

gories the impacts are somewhat lower, for others they are somewhat higher. De 

Backer et al. (2009) showed that the organic production of a kg of leek results in 

higher resource depletion, stratospheric ozone depletion, photochemical oxidant 

formation, and eutrophication impacts. Conventional leek production resulted in 

higher impacts for climate change, human and terrestrial toxicity, and acidifica-

tion. Cederberg & Mattson (2000) found that for the production of a given mass 

of milk, conventional farming results in higher global warming and acidification 

impacts, whilst organic farming showed higher eutrophication and photochemical 

oxidant formation impacts, and required more land. In this study, pesticide use 

was discussed only quantitatively. 

 

In an overview of available literature, Foster et al. (2006) concluded the same as 

the picture that arises from the limited number of LCA studies mentioned here: 

organic farming is not by definition more sustainable than conventional farming. 

Conventional farming has lower impacts for some impact categories and some 

crops, and the same can be said for organic agriculture. 

 

In the studies mentioned above, the toxicity impacts of the pesticides that were 

accounted for, were considerably lower in the case of organic production (where 

the use of for example copper results in some toxicity impacts). If the pesticide 

emissions in these studies would be recalculated with PestLCI, the resulting tox-

icity impacts would be considerably lower than the ones reported in the studies 

mentioned above. As a consequence, the share of pesticides in toxicity impacts 

would be lowered, so that avoidance of synthetic pesticides in organic farming 

becomes less of a benefit when comparing the environmental impacts of this type 

of farming to conventional farming. Hence the results in one of the impact cate-

gories in which organic farming currently has a distinct environmental benefit 

compared to conventional production would become lower, resulting in (even) 
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less clear results for LCA-based comparisons of conventional and organic agri-

culture. 

 

Even if the LCA results presented here can’t be considered to favour either con-

ventional or organic agriculture, they are still limited to a number of the sustain-

ability aspects of both agricultural approaches. Looking only at the differences in 

toxicological impacts, inventory analysis and impact assessment do not cover the 

non-synthetic pesticides used in organic farming, such as the microbial pesticide 

bacillus thuringiensis. Moreover, health impacts of pesticide residues in crops are 

not (yet) considered in LCA studies. Recent models such as DynamiCROP 

(Fantke et al., 2011) may be helpful in doing so. Looking beyond toxicological 

impacts, some impact categories that are relevant to assess sustainability aspects 

of farming practices, are still not well developed or fully integrated into LCA 

practice. Examples of such impacts are (indirect) land use change and biodiversi-

ty. Finally, the discussion above only focuses on the environmental aspects of 

sustainability, whilst the social and economic aspects also need to be taken into 

consideration. So, whilst the application of PestLCI to calculate emissions of pes-

ticides may have an effect on the way toxicological impact of these emissions are 

considered, the comparison of conventional and organic agriculture involves 

many more aspects. 

  

Another, slightly ironic, implication of the fact that the PestLCI approach results 

in lower toxicity impacts than the Ecoinvent approach is the contribution of pes-

ticide emissions to toxicity impacts in LCA. One of the reasons to develop Pes-

tLCI was described in chapter 2: the large contribution of pesticides to toxicity 

impacts in agricultural LCAs. However, when modelling pesticide emissions 

with PestLCI, the resulting impacts are a few orders of magnitude lower, as was 

shown in this chapter. As a consequence the contribution of pesticides to toxic 

impacts may no longer be so large. As an illustration, Herrmann et al. (2013) 

report an LCA done on rapeseed biodiesel production through various pathways. 

In this study pesticide emissions were calculated using PestLCI 1 (Birkved & 

Hauschild, 2006). It was found that though pesticides were the main contributor 

to freshwater ecotoxicity impacts, human toxicity impacts were dominated by the 

production of nitrogen, phosphorous and potassium chloride, as well as fuel con-

sumed in the cultivation of rapeseed. Even though this is only one example and 

may not be representative for agricultural LCAs in general, it may be that the 
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problem that triggered the development of PestLCI turns out to be a relatively 

small problem when analyzing pesticide emissions with PestLCI. 

3.4.3 SETTING THE TECHNOSPHERE - ECOSPHERE BOUNDARY 
As concluded from the results of the hybrid approach, it is mainly the setting of 

the technosphere-ecosphere boundary that determines the difference between the 

toxicity impacts that were observed between the Ecoinvent and PestLCI pesticide 

emission inventory approaches. This raises the question how the boundary be-

tween ecosphere and technosphere should be set, if at least there exists something 

like a correct boundary setting. 

 

Before answering these questions, a clear definition is needed of what exactly the 

‘technosphere’ and ‘ecosphere’ are. Though these terms will have an implicit 
meaning for most LCA practitioners, neither the ISO standard describing the 

LCA framework (ISO 14040) nor the standard describing the requirements and 

guidelines (ISO 14044) explicitly defines them (International Standards Organi-

zation 2006a, 2006b). However, ISO 14040 does define an elementary flow as 

“material or energy entering the system being studied that has been drawn from 

the environment without previous human transformation, or material or energy 

leaving the system being studied that is released into the environment without 

subsequent human transformation” (International Standards Organization, 
2006a). From this definition the technosphere can be interpreted as the sphere in 

which humans manipulate materials or energy for one reason or another. This 

technosphere is sometimes defined as the socio-economic system (Werner & 

Scholz, 2002). At the same time, the ecosphere is defined as ‘the environment’, 
which in itself does not clarify matters much. From the previous it follows that 

the boundary between ecosphere and technosphere is set correctly when it lies 

there where the human-made systems end and the environment starts. 

 

The next question is if such a setting can be found in the case of agricultural 

LCAs. Agriculture seems to be on the edge of technosphere and ecosphere: agri-

cultural production is a human activity created in order to produce crops for food, 

feed or other purposes such as production of fuels, and to generate an income for 

the people involved. At the same time, these systems depend on processes that 

are (usually) not controlled by human action, such as rainfall or photosynthesis. 

In my opinion it is therefore not possible to objectively determine where the bor-

der between ecosphere and technosphere, i.e. between environment and produc-

tion system, is located since there are different opinions about what the environ-
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ment is. As an example, I will consider the boundaries chosen in PestLCI, for 

which valid arguments both in favour and reasoning against the chosen bounda-

ries can be defined. 

 

In the PestLCI approach the soil on which the crop is grown as well as some of 

the air above it are basically considered a production facility manipulated by 

man, producing biological products. The field is considered part of the techno-

sphere for three reasons. To start with, agricultural land is converted by humans 

from an original, one can say ‘natural’ state, to a managed state in which it func-

tions to provide an economic function or service. As a consequence of obtaining 

an economic function, the field becomes part of the socio-economic system. 

Therefore, it is in accordance with the ISO definition presented above part of the 

technosphere. 

 

Secondly, when in use as agricultural land, a crop and the field in which it is cul-

tivated is continuously manipulated by human actions: the soil is disturbed by for 

example ploughing, agricultural chemicals are distributed and sometimes drain-

age tubes are dug down into the soil. Thirdly, agricultural soils are protected by 

different legislations than natural areas. For example, all Danish nature areas are 

protected by the Nature Protection Law (Naturbeskyttelsesloven, Danish Minis-

try of the Environment, 2013) while arable land is protected the Law on Man-

agement of Arable Land (Lov om drift af landbrugsjorder). Similarly, in e.g. the 

Netherlands arable land is also distinguished from natural areas (Dutch Ministry 

of Economic Affairs, 2013). From the ongoing nature of human intervention of 

soil on arable land and from the different legal status arable land has compared to 

natural land, it is reasoned that agricultural fields is not part of the environment. 

 

However, reasons to consider agricultural land as part of the environment can 

also be put forward. Firstly, despite the human manipulation of the soil and the 

human efforts to keep unwanted species away from the field, the system still is a 

system that can’t be fully controlled by human activity. Though the biodiversity 

is lower than in natural areas (Reidsma et al., 2006), the field still is part of a bio-

logical system that is not fully controlled by humans, at least not in current agri-

cultural practice, so that the field can be considered part of the environment. Fol-

lowing a more formal reasoning based on how an LCA should be carried out, the 

ISO definition of a elementary flow can be used to argue that after a pesticide is 

released from the sprayer, ‘human transformation afterwards’ will not occur. 
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Once out in the field the chemical is subject to a number of processes (most no-

tably degradation) that transform the active ingredient into another chemical. 

Such processes are not driven by human activities. Some processes, such as the 

interception of water-dissolved pesticide by drainage systems or applying irriga-

tion may have effects on pesticide emissions to surface water or groundwater, are 

human-driven. Although these processes were not designed for the purpose, they 

do affect the fate of the pesticide but do in itself not transform the chemical. 

Considering the field and its soil as a (human affected) part of a broader ecosys-

tem, and considering that human exert little, if any, influence on the further trans-

formations of the pesticide after application, it can be argued that agricultural 

land is best considered as part of the environment. 

 

An argument which does not necessarily imply that the soil should be considered 

part of either the technosphere or the ecosphere is that an application of a pesti-

cide leads not only to the suppression of a pest, but often also to damage to off-

target organisms present in the field. One can argue that these unwanted effects 

also need to be accounted for, in one way or another. 

 

Even though the arguments listed here are probably only a selection of the rea-

sons that can be given to include or exclude the agricultural field from the tech-

nosphere, they illustrate that in the case of agricultural LCA (at least when deal-

ing with pesticide application) the boundary between the technosphere and the 

ecosphere can not be defined in a way which all LCA practitioners can agree up-

on. LCA practitioners have different ideas about what the ecosphere and techno-

sphere are. This conclusion that practitioners can have different opinions about 

what the environment is, is also presented by Hofstetter, Baumgartner and Scholz 

(2002). These authors therefore go on to propose the creation of an additional 

sphere in LCA practice, which they defined as valuesphere. This valuesphere 

contains both ecosphere and technosphere. Inclusion of this sphere into LCA 

should allow for the incorporation of the decision makers’ views on what consti-
tutes the ecosphere, and on what an adverse effect of the environment means. 

This concept has been operationalized using Cultural Theory in the impact as-

sessment method Eco-Indicator ’99 (Goedkoop et al., 1998) and its successor 

ReCiPe (Goedkoop et al., 2009). 

 

An option to avoid making a hard cut between ecosphere and technosphere not 

yet considered in the discussion here is, to make the inclusion of the field into the 
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technosphere time-dependent, as for example proposed by Van Zelm, Larrey-

Lassalle and Roux (2012). In the case of pesticide application, this time-

dependency would mean that for a short time after the application, the field is 

considered part of the technosphere after which it is considered part of the eco-

sphere again. On the one hand, it can be said that this approach accurately re-

flects the placement of the field on the border of the technosphere and ecosphere, 

and considers that off-target impacts may occur in the field. On the other hand, it 

introduces another point of discussion: for how long should the field be consid-

ered part of the technosphere? Moreover, no matter what time frame is set, this 

approach would always result in including too much impacts, or cutting off a part 

of the impacts, depending on the practitioners’ opinion on whether impacts on 
organisms in the field should be included or not. On a more practical side, com-

pared to PestLCI, this solution does not immediately appear to be a major im-

provement in terms of data requirement. These three reasons seem to make a 

time-dependent technosphere boundary not a solution for the problem what to 

consider as an emission and hence what impacts should be accounted for. It ra-

ther shifts the problem from spatial borders to temporal borders. 

 

Perhaps it would be better to accept that it is impossible in some cases to define a 

clear border between ecosphere and technosphere. One might ask whether it is 

always necessary to draw such a line in the first place. 

This discussion showed that in systems where the boundary definition between 

ecosphere and technosphere is open for discussion, the in- or exclusion of the soil 

in the ecosphere can importantly change the freshwater toxicological impact re-

sults of an LCA. Also in other areas a strict definition of ecosphere and techno-

sphere can lead to odd consequences. For example, when carrying out an LCA 

according to the ICLD handbook, the human health impacts caused by indoor 

exposure to chemicals, consumption of food and drinks, use of personal care 

products, and (workplace) accidents should be reported separately from the LCI, 

and the impacts assessed separately, since the flows causing such impacts all oc-

cur within the technosphere (European Commission, 2010). In principle this ap-

proach could also be followed to account for on-field, off-target impacts of pesti-

cide application, though this may not be the most practical approach. 

 

In both examples the need to draw boundaries between ecosphere and techno-

sphere seems to be an obstacle for what LCA should, in my opinion, intend to do: 

assessing impacts on natural environment, human health and resources, inde-
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pendent of where the effects that we consider adverse take place, and independ-

ent of the pathway between emission and impacts. Therefore, the question where 

to put the boundary between ecosphere and technosphere should not be the main 

discussion point. Instead, a better question would be: what do we actually want to 

protect, and how do we best model the impacts of human actions on what we 

want to protect? After that, a more pragmatic approach can be taken to where and 

when in the different phases of LCA pesticide fate should be considered. 

 

In Life Cycle Sustainability Analysis (LCSA), the boundaries between LCI and 

LCIA modelling are fading, exactly because the technosphere and ecosphere 

have been found to be difficult to distinguish from each other. Instead both phas-

es are increasingly merged into one modelling procedure (Guinee et al., 2011). 

Perhaps this may also turn out to be the way forward for agricultural LCA. There 

are several options to operationalize such an idea. One suggestion is the devel-

opment of a single model that models the full fate of pesticides after application, 

potentially combined with exposure and effect modelling. In such a case, the LCI 

mainly serves as an administrative tool to account for the amount of pesticides 

applied. A second suggestion is the development of matching inventory and im-

pact assessment models tailored for pesticide emissions, sharing the same tech-

nosphere-ecosphere boundary settings. 
 

3.5 CONCLUSION 
It was shown that when comparing Ecoinvent (100% of applied pesticide emitted 

to agricultural soil, no consideration of fate processes) and PestLCI (a temporally 

variable fraction of applied pesticide emitted to air, surface water and groundwa-

ter, fate processes are considered) as Life Cycle Inventory approach for pesticide 

emissions, the resulting freshwater toxicity emissions are consistently lower in 

the PestLCI approach. The difference between both approaches is typically a few 

orders of magnitude. 

 

Since the comparison between both approaches was a comparison between dif-

ferent considerations of fate processes and technosphere-ecosphere boundaries, 

ecotoxicity impacts were also calculated for an approach which considers fate 

processes but with a technosphere definition resembling Ecoinvent. Results of 

this hybrid approach showed that the definition of technosphere boundaries most 

likely is the main cause for the differences observed in the comparison between 

the Ecoinvent and PestLCI inventory approaches. Choosing the PestLCI ap-
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proach over the Ecoinvent approach may have implications for the way organic 

farming performs in LCA relative to other farming practices such as conventional 

farming, as well as for the overall contribution of pesticides to toxicity impacts of 

agricultural products. 

 

The discussion about the relevance of ecosphere-technosphere boundaries con-

cluded that it is not possible to define a correct boundary setting, since the defini-

tion of what part of the world that belongs to the environment is a subjective de-

cision heavily influenced by LCA practitioners’ political, moral and ethical value 

set. Consequently, the way forward may be to define what should be protected in 

LCA, and calculate the impacts through one model, putting less weight on the 

current distinction between LCI and LCIA. 

  



37 

4 APPLICATIONS: PESTICIDE EMISSIONS IN  
KIWIFRUIT GROWING 

 

4.1 CONTEXT 
In 2010 the production of kiwifruit in New Zealand accounted for more than a 

quarter of the global kiwifruit production (FAOstat, 2013). Some sustainability 

aspects of kiwifruit growing have been addressed by previous research, such as a 

carbon footprint calculated by Mithraratne et al. (2010). Water footprints were 

calculated following a number of footprinting approaches (Deurer et al., 2011). 

Work on toxicological impacts of kiwifruit growing was carried out by Müller et 

al. (2011), who calculated the emissions of four pesticides to soil, surface water 

and groundwater. 

 

In the research presented in this chapter, which is based on paper 3, additional 

work is done for the development of a pesticide toxicity footprint. PestLCI 2.0 is 

used to model emissions of the synthetic agricultural chemicals used in conven-

tional kiwifruit growing in the Western Bay of Plenty (WBOP) region. This re-

gion, with an area of approximately 2000 km2 is located on the east coast of the 

North Island. Most of the kiwifruit produced in New Zealand, namely 85%, is 

grown in this region. Characterizing the calculated emissions resulted in toxicity 

impacts for both human toxicity and freshwater ecotoxicity. Moreover, since re-

gional differences in terms of climates and soils within the WBOP were identi-

fied, the research also allowed a study of the regional differences in pesticide 

emissions and the resulting toxicity impacts occurring in kiwifruit growing. 

This chapter will thus focus on the calculation of kiwifruit toxicity footprints, and 

the regional variation in toxicity impacts. The chapter will not go into great detail 

to describe the methods applied, nor will the results be discussed extensively 

here, since this is already done in paper 3. 

 

4.2 METHODS 
This section presents the scenarios used to model kiwifruit growing, the pesticide 

emission modelling and the impact assessment approach. 
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4.2.1 SCENARIOS 
From the pesticide spray diaries of 20 kiwifruit growers in the WBOP the pesti-

cides used in the production of conventional kiwifruit were identified. These 20 

spray diaries were considered representative for kiwifruit production in the 

WBOP (Müller, 2013). The selected pesticides covered the majority of pesticide 

applications that were recorded in the diaries, as can be seen from Table 4.1. This 

table presents an overview of the selected pesticides, their month of application 

and the application rate. The application rates mentioned in the table were based 

on the product label instructions/recommended application rate. 

 

Pesticides that are applied in conventional kiwifruit production that have been 

excluded here are copper hydroxide which is used as fungicide, as well as the 

insecticides bacillus thuringiensis, and mineral and petroleum oils (both are dis-

tillates). The first two were excluded due to their non-synthetic chemical natures, 

whilst the mineral and petroleum oils were not included because these are mix-

tures of chemicals. 
 

Table 4.1: Overview of active ingredients used in kiwifruit growing that were included in the 

study, their share in total applications per class, time of application and dosage. Percentages 

are rounded, therefore individual contributions may not sum up to the percentage per functional 

class. 

Active ingredient Applications 

covered (%) 

Month of 

application 

Application rate 

(kg/ha) 

Fungicides 95   

  Iprodione 35 November 0.75 

  Trifloxystrobin 59 October 0.15 

Growth regulator 100   

  Cyanamide 100 August 15 

Herbicides 100   

  Glyphosate (early application) 50 October 0.66 

  Glyphosate (late application) 50 January 0.66 

Insecticides 69   

  Chlorpyrifos 6 September 0.50 

  Emamectin benzoate 24 December 0.002 

  Methoxyfenozide 10 December 0.10 

  Spirotetramat 18 November 0.096 

  Thiacloprid 9 October 0.19 

  Thiamethoxam 2 September 0.10 
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Table 4.2: Overview of the nine scenarios for which pesticide emissions were modelled. 

Scenario  Location 

(climate) 

Soil Soil Type, current NZ soil classification 

scheme 

(Hewitt, 1998) 

1 Waihi Katikati sandy loam Typic orthic allophanic soil 

2 Katikati Katikati sandy loam idem 

3 Tauranga Katikati sandy loam idem 

4 Tauranga Ohinepanea loamy sand Typic orthic pumice soil 

5 Tauranga Oropi coarse sandy loam idem 

6 Tauranga Paengaroa sandy loam Buried-allophanic orthic pumice soil 

7 Te Puke Ohinepanea loamy sand Typic orthic pumice soil 

8 Te Puke Oropi coarse sandy loam idem 

9 Te Puke Paengaroa sandy loam Buried-allophanic orthic pumice soil 

 

Within the WBOP region four climate archetypes were identified. Based on soil 

samples taken from kiwifruit orchards, four soil types were identified to repre-

sent kiwifruit cultivation in the WBOP. Combining the localization of these soils 

with the climatic circumstances prevailing within the region, a total of nine sce-

narios with combinations of climate and soil were defined. The scenarios are pre-

sented in Table 4.2. 

4.2.2 CALCULATION OF PESTICIDE EMISSIONS 
The pesticide emissions were calculated with an updated version of PestLCI 2.0. 

The model was adapted to the circumstances in the WBOP, both in terms of soils 

and climates. Soil data were based on New Zealand’s National Soils Database 

(Wilde, 2003), climate data were a 10-year average from New Zealand’s Virtual 
Climate Station Network (National Institute of Water and Atmospheric Research, 

2012). Moreover, a module was added to the model to represent shelterbelts, also 

called wind breaks. These are 5 to 10 meters high belts, usually of coniferous 

trees, surrounding kiwifruit orchards. The purpose of shelterbelts is to break the 

wind, in order to prevent damage to the plant and fruit and to create a microcli-

mate for improved plant growth. Another benefit is that these belts intercept 

drifting pesticide droplets, resulting in reduction of pesticide emissions due to 

wind drift (Hewitt, 2001). The shelterbelt was considered part of the techno-

sphere. Pesticides intercepted by the shelterbelt were modelled to undergo the 

same fate processes as pesticides landing on plants: volatilization, degradation, 

uptake, and wash off during rain events. 

 

Moreover, the modelling of macroporous flows was adapted for this study, as 

well as the regression used for volatilization from leaves. These adaptations are 
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briefly described in chapter 2, and more extensively in paper 3 and will therefore 

not be repeated here. 

 

4.2.3 CHARACTERIZATION OF PESTICIDE EMISSIONS 
The pesticide emissions to air and surface water, calculated applying PestLCI, 

were subsequently characterized in order to determine the freshwater ecotoxicity 

and human toxicity impact potentials. Characterization factors (CF) for emissions 

to rural air and continental freshwater were obtained using USEtox (Rosenbaum 

et al., 2008). CFs for iprodione were taken from the USEtox database, for the 

other pesticides new characterization factors were derived, also applying USE-

tox. 

 

4.3 RESULTS AND DISCUSSION 
The spatial variations observed in the pesticide emissions and the resulting tox-

icity impacts are presented and discussed in this chapter. The results of the pesti-

cide toxicity footprint will be discussed in the second part of this section, as well 

as further steps that need to be taken in order to arrive at a toxicity footprint. 

 

4.3.1 SPATIAL VARIATION IN PESTICIDE EMISSIONS AND TOXICITY IMPACTS 
In Figure 4.1 the variation in emission fractions of pesticides to air, surface water 

and groundwater are shown for the nine scenarios given in Table 4.2. In this fig-

ure, the emissions for each pesticide are plotted relative to the scenario in which 

this pesticide was modelled to have the highest emissions. So, the emission of a 

given pesticide to a given environmental compartment is set to 1 for the scenario 

in which the emission is highest. The emission of that pesticide in other scenarios 

is expressed as a fraction of this highest impact (‘relative emissions’). 
 

The emissions to air do in most cases not vary considerable among the various 

scenarios: the relative emissions in Figure 4.1a are close to 1 for most pesticides 

in most scenarios. This is because for most pesticides, the emissions to air are 

mainly determined by emissions during wind drift. In the modelling of wind 

drift, the type of spraying equipment and the distance to the field or orchard bor-

der are the parameters that determine pesticide emissions. This reflects the fact 

that the active ingredient is formulated during application, and therefore the 

properties of the pesticide are of minor importance for the wind drift emission 

(Carlsen et al., 2006). 
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(a) 

 

(b) 

Figure 4.1: Spatial variation of emissions to (a) air, (b) surface wa-

ter and (c) groundwater for the nine scenarios given in Table 4.2. 

For each pesticide, the scenario with the highest emissions is set to 

1, the other emissions are expressed as a fraction of this emission. 

Since the emissions are expressed in a relative way in this figures, no 

units are given on the vertical axis. 

Abbreviations (alphabetically): CP: chlorpyrifos; CY: cyanamide; 

GE: glyphosate, early application; GL: glyphosate, late application; 

IP: iprodione; MF: methoxyfenozide; TC: thiacloprid; TM: thia-

methoxam; TS: trifloxystrobin. 
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(c) 

Figure 4.1(continued): Spatial variation of emissions to (a) air, (b) 

surface water and (c) groundwater for the nine scenarios given in 

Table 4.2. For each pesticide, the scenario with the highest emissions 

is set to 1, the other emissions are expressed as a fraction of this 

emission. Since the emissions are expressed in a relative way in this 

figures, no units are given on the vertical axis. 

Abbreviations (alphabetically): CP: chlorpyrifos; CY: cyanamide; 

GE: glyphosate, early application; GL: glyphosate, late application; 

IP: iprodione; MF: methoxyfenozide; TC: thiacloprid; TM: thia-

methoxam; TS: trifloxystrobin. 

 

The variations with location that is observed in Figure 4.1(a), is attributed to the 

contribution of volatilization from leaves to emissions to air. Here, the effects of 

temperature on volatilization, as well as the residence time of the pesticide on the 

leaves, are visible. 

 

Emissions to surface water in Figure 4.1(b) show more variation towards the nine 

assessed scenarios. Regarding the effect of soil type on surface water emissions, 

it was found for eight out of 11 pesticides in Tauranga that emissions decreased 

in the order Ohinepanea loamy sand > Katikati sandy loam > Oropi coarse sandy 

loam > Paengaroa sandy loam. This order reflects the increasing amounts of or-

ganic carbon present in these soil: the more organic carbon, the higher a fraction 

of pesticides that is bound. As a consequence, less pesticide is available for run-

off. The exception in this case is the Katikati sandy loam soil, which has the 
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highest organic carbon content of the soils. Since this soil has a low sand content 

(38.6%) another algorithm is used to calculate the fraction of rain that runs off, as 

specified in paper 1. This results in more runoff. Therefore, the observed effect 

can be considered a combination of soil characteristics and the chosen modelling 

approach. There were no clear relations between surface water emissions and 

climate that could be observed. 

 

Groundwater emissions, presented in Figure 4.1(c), varied a few orders of magni-

tude for some pesticides. For the nine scenarios, the pesticides could be split in 

two groups, depending on their half-lives in soil. For pesticides with short half-

lives, such as cyanamide, spirotetramat, thiacloprid, and trifloxystrobin, emis-

sions to groundwater are dominated by macropore flow. Emissions of the other 

compounds are dominated by soil matrix flow. 

 

For macropore flow-dominated chemicals, clear conclusions could not be drawn 

about which climate or soil parameters influenced the emissions. However, it was 

observed that the emissions were highest on Katikati sandy loam soils, while the 

emissions in the Te Puke region were the lowest. The higher emissions on the 

Katikati sandy loam soil were due to the soil’s low sand content, giving this soil 
a lower water holding capacity than the other soils modelled. Following the tip-

ping bucket approach, macropore flow will therefore occur more often than on 

soils with higher sand contents. The lower pesticide emissions in the Te Puke 

case can be explained by lower and less frequent rainfall events in this region. As 

a consequence, macropore flow occurred less often, and less pesticide was left at 

the time of the first rainfall event after pesticide application. For the pesticides 

where matrix flow dominated the emissions, the groundwater emissions de-

creased in the order Waihi > Tauranga > Katikati > Te Puke. This observation 

can be attributed to the annual precipitation volume, which decreases in the same 

sequence as the groundwater emissions. Lower annual rainfall means, in the way 

the flow of pesticides through the soil matrix is modelled in PestLCI, that the 

pesticides move at a lower rate through the soil. As a consequence, less pesticide 

will reach a depth of 1 meter because more degradation will occur. No clear rela-

tionship could be distinguished between soil properties and groundwater emis-

sions by matrix flow. 

 

For the cases described above where no relationship between environmental pa-

rameters and emission could be distinguished, the observed emissions can most  
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Figure 4.2: Human toxicological (in black, left vertical axis) and freshwater ecotoxicological 

(in grey, right vertical axis) impacts found for the nine emissions scenarios. 

 

likely be explained by a number of climate and/or soil parameters, which togeth-

er define the emissions, without one parameter being the determining one. 

 

When going from the emissions in the nine scenarios to toxicity impacts (Figure 

4.2), it was found that the impacts for both freshwater ecotoxicity and human 

toxicity were dominated by cyanamide. Emissions of this chemical to air were in 

turn contributing most to the overall toxicological impacts found for cyanamide: 

Depending on the scenario, human toxicological impacts were determined for 

~99%, and freshwater ecotoxicological impacts for ~94%, by cyanamide emis-

sions to air. 

 

Figure 4.2 suggests that the variation in the toxicological impacts results ob-

served for the nine emission scenarios are generally small. This can be explained 

by the modest size (approximately 2000 km2) of the WBOP region, so that the 

four climates included in the model only show small differences. In addition, all 

the four soils modelled are volcanic soils with similar properties. 

 

At the same time, this small variation in results led to the conclusion that, at least 

for the case of kiwifruit growing in the WBOP, developing spatially dependent 

inventories at the level done in this study may not be needed, since the uncertain-
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ties in the results probably (at least) match the calculated differences in impacts. 

This conclusion was based on the uncertainties in especially the impact assess-

ment. The uncertainty of USEtox characterization factors is a factor 10-100 for 

freshwater ecotoxicity CFs, and in the order of 100-1000 for human toxicity CFs 

(Rosenbaum et al., 2008). Although this uncertainty probably is reduced in the 

case studied here, because all scenarios involve the same chemicals (though in 

different amounts), it may very well be larger than the differences in impacts be-

tween the scenarios. Moreover, there is also a (not quantified) uncertainty associ-

ated with the pesticide emission modelling. 

 

This does not mean that the results are not useful to research into soil- or climate-

related differences in toxicological impacts caused by kiwifruit cultivation. The 

study presented in paper 3 focused on the WBOP only. Kiwifruit are also grown 

in other regions in New Zealand, as well as in other countries, where other chem-

icals may be used. For example, approximately 30% of the global annual ki-

wifruit production is grown in Italy (data for 2010, FAOstat, 2013) where use of 

cyanamide is no longer permitted (University of Hertfordshire, 2013). Therefore, 

the toxicological impacts associated with kiwifruit growing in other regions may 

be different from what was found for kiwifruit production in the WBOP. 

 

4.3.2 TOWARDS THE DEVELOPMENT OF A TOXICITY FOOTPRINT FOR KI-

WIFRUIT PRODUCTION 
The work presented in paper 3 can be considered as the next step in the develop-

ment of a toxicity footprint for kiwifruit cultivation. However, additional work 

needs to be done before such an approach is fully operational. First of all, the 

work presented in paper 3 is limited to conventional kiwifruit farming. The im-

pacts of organic cultivation have not been quantified. Within the conventional 

kiwifruit production, paper 3 included ten active ingredients, all synthetic agri-

cultural chemicals. The emissions and resulting impacts of several compounds 

that were excluded here, such as copper hydroxide and mineral oils, have to be 

included. Secondly, apart from including all pesticides, such a footprint will have 

to take a life cycle approach, not only looking at pesticide emissions, but at all 

potentially toxic emissions that occur during any life cycle stage, from the ki-

wifruit orchard, over pesticide production, consumption patterns, to consumer 

behavior and waste patterns. 
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The impacts assessment (LCIA) presented in paper 3 was done at characteriza-

tion level using USEtox, resulting in separate impacts for freshwater ecotoxicity 

and human toxicity. Since USEtox is a recent model developed in a consensus 

process by the developers of several other toxicity LCIA models, it was selected 

to be used in this study. A disadvantage of this model is that it currently does not 

cover terrestrial ecotoxicity and marine toxicity, which are for example covered 

by USES-LCA 2.0 (Van Zelm et al., 2009). 

 

If the aim of a toxicity footprint is to express the impacts in a single number, par-

allel to the carbon footprint, the freshwater ecotoxicity and human toxicity cate-

gories used here have to be aggregated to one number. Here, normalization and 

weighting may be an option. Currently, USEtox normalization factors are availa-

ble on continental level for Europe and North America (Laurent et al., 2011), as 

well as on a global level (Cucurachi et al., 2013; Laurent et al., 2013). Normali-

zation references will have to be developed for New Zealand. Afterwards, a 

meaningful weighting step will have to be developed. 

 

4.4 CONCLUSION 
The nine emission scenarios that were modelled showed little variation in emis-

sions to air, whilst the emissions to surface water and groundwater varied more. 

For some emission pathways the variations in emissions could be explained in 

terms of climate or soil parameters, or modelling approach. In other cases it was 

not possible to identify one or more parameters to which differences in emissions 

could be attributed. Both freshwater ecotoxicity and human toxicity impacts were 

dominated by cyanamide, which contributed to more than 99% of the impacts in 

both categories. Small differences in impacts were observed between the nine 

modelled scenarios. Considering the large uncertainties of the characterization 

factors, and further considering that the emission inventories also have (unquanti-

fied) uncertainties, it can be concluded that the differences in impacts between 

the nine modelled scenarios probably are too small to allow for a meaningful way 

to regionally differentiate pesticide toxicity impacts in the WBOP. This work 

was only a small step on the way to a toxicity footprint for kiwifruit. On the in-

ventory side, a life cycle approach needs to be taken, including chemicals ex-

cluded in paper 3, but also considering non-pesticide toxic impacts. On the im-

pact assessment side, normalization and weighting may be needed. 
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5 APPLICATIONS: LIFE CYCLE ASSESSMENT 
OF BARLEY UNDER CURRENT AND FUTURE 
CLIMATIC CONDITIONS 

5.1 CONTEXT 
With the release of the IPCCs fifth assessment report (IPCC, 2013), it seems 

more certain than ever that the future climate will be different from the current, 

and that these changes are driven by human actions. 

 

The perceived urgency of climate change and the political focus the issue has 

received can also be seen from the development of life cycle-based methodolo-

gies to assess greenhouse gas emissions of products, such as the Greenhouse Gas 

Protocol (World Business Council for Sustainable Development & World Re-

sources Institute, 2004) or PAS 2050 (BSI, 2011). In the context of Life Cycle 

Assessment (LCA), climate change is considered in virtually all impact assess-

ment methods (Hauschild et al., 2013). Climate change is considered to affect 

two of the three areas of protection distinguishing in LCA: human health and 

natural environment (European Commission, 2010). 

 

Therefore it can be concluded that when conducting LCAs or similar environ-

mental assessments the impacts of products and services on climate change are 

well-considered. What is typically done in current LCA practice is that we model 

the time-integrated impacts that products currently being designed, produced, 

used or disposed of, exert on the environment. However, at the same time gradu-

al changes in the climatic conditions may affect the way products and services 

are designed, produced or used, which in turn alters the environmental impacts of 

the product. In addition one can speculate that the demand for some products 

may change. Such feedback effects are not normally considered in LCA. From 

the literature it appears that little work has been done in this area. 

 

The assessment of barley cultivation under current and future climatic aspects 

presented in paper 4 covered some of the above considerations. It was not at-

tempted to cover all these aspects, since this is too ambitious a task to fit within 

the framework of this PhD study. 
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5.2 METHOD 
The main aim of this work was to assess the environmental impacts that occur 

when barley is cultivated in Denmark, both under current and future climatic 

conditions. The focus was strictly on barley cultivation itself.  

 

5.2.1 GOAL AND SCOPE 
Imagine an agricultural field somewhere on a gently sloping hill in Denmark, 

where barley is ready for harvest when you pass by. Over the course of a few 

months, the farmer has prepared the soil, planted the seeds, applied fertilizers and 

sprayed a number of chemicals to keep various pests outside his field. All these 

actions have had an impact on the environment. Forty years from now, the cli-

matic conditions will be different, but the farmer still grows barley on the same 

field. What are the environmental impacts in this case? This was the main ques-

tion of this work. The idea of the study was not to assess what impacts occur 

when an additional kg of barley is produced in the future, but what the impacts of 

one kg of barley are when it is produced under the climatic conditions of 2050, 

instead of in the current climate. Whilst the preferred assessment method for pro-

duction of an additional amount of barley in the future would be consequential 

LCA, attributional LCA (aLCA) is better suited for the purpose of this study. 

Furthermore, in order to allow for a focus on barley cultivation, a cradle-to-farm 

gate perspective was adopted in the study. Thirdly, possible developments in pol-

icy were excluded from the study since we were interested in the feedback of 

climate change onto barley cultivation, not in how policy changes might (or 

might not) modify environmental impacts. 

 

The functional unit and reference flow chosen for the comparison of barley culti-

vation in Denmark under current and future climatic conditions is 1 kg of spring 

barley, at farm gate. 

 

For both the 2010 and 2050 main scenario four sub scenarios were defined, based 

on the four possible combinations of two Danish soil types (sandy and sandy 

loam) and two Danish climates (wet and dry). The 4 sub-scenarios are specified 

in Table 5.1. 
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Table 5.1: The 4 sub-scenarios used for modelling barley cultivation 

Main 

scenario 

Subscenario 

1 2 3 4 

soil climate soil climate soil climate soil climate 

2010 
sandy wet sandy dry 

sandy 

loam 
wet 

sandy 

loam 
dry 

2050 

 

The 2050 climate scenarios are different from the 2010 scenarios in various as-

pects. Starting with the atmospheric CO2 concentration, an increase from ~400 

ppm in 2010 to ~530 ppm in 2050 was assumed. This increase is in line with the 

IPCC A1B scenario (IPCC, 2000). This scenario, along with others describes 

different atmospheric CO2 concentration development paths, have been used to 

model greenhouse gas emissions in the third and fourth IPCC climate change 

assessment report. In short, this A1B scenario is based on continuing globaliza-

tion of both economies and cultures and a rapid economic growth. The global 

population is assumed to peak in the middle of the 21st century to decreases 

thereafter. Looking at greenhouse gas emissions, the A1B scenario is in the mid-

dle of the range of IPCC scenarios. Other aspects of the 2050 climate considered 

for Danish circumstances are higher temperatures and more precipitation in win-

ter, and less in summer, compared to the 2010 scenario. 

 

5.2.2 INVENTORY 
The main features of the inventory are described in this section, the details are 

presented in paper 4 and will not be repeated here. 

 

In the 2010 scenarios barley yields are 4250 kg and 4850 kg dry matter (DM)/ha 

on sandy and sandy loam soils, respectively, assuming the crop is grown with a 

catch crop (Hamelin et al., 2012). Compared to 2010, higher atmospheric CO2 

concentrations increase the photosynthesis rate, which may increase yields up to 

20% (Saxe, 2013). At the same time do higher temperatures result in a shorter 

grain filling time, which lowers grain yields compared to 2010 (Børgesen & 

Olesen, 2011). Based on model results from Doltra, Lægdsmand and Olesen 

(2012) a 10% decrease of yields was assumed: 3825 and 4365 kg DM/ha for 

sandy and sandy loam soils, respectively. 

 

In terms of fertilization, nitrogen, phosphorous and potassium (N, P, K) were 

considered. The inputs of these elements were based on norm values from the 

Danish Ministry of Food, Agriculture and Fisheries (2009). It was assumed that 
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half the required N demand was provided with pig slurry. The mineral fertilizers, 

i.e. diammonium phosphate, calcium ammonium nitrate and potassium chloride, 

used in the modelling of the product system were based on the sales volumes of 

mineral fertilizers in Denmark (Nielsen et al., 2011) as well as the availability of 

the fertilizers in the Ecoinvent database (Ecoinvent centre, 2007). 

 

Emissions of nitrates to surface water were taken from Hamelin (2013b), whilst 

the emissions of nitrogen-containing gaseous conversion products of manure and 

mineral fertilizers were calculated using emission factors given in Hamelin 

(2013a). In accordance with the emission factors presented by this author, it was 

assumed that a 5 % of P surplus was emitted to surface water. In this case, a sur-

plus is defined as the difference between P inputs and the P contained in grains 

and straw that is removed from the field upon harvest. Emissions of K to surface 

water were not taken into account, since these are not considered in the character-

ization models applied in this study. 

 

For the 2050 scenarios, the emissions were calculated following the same meth-

odology as for the 2010 scenarios, except for nitrate leaching. Nitrate leaching 

was determined by interpolation of modelled leaching results from Doltra, 

Lægdsmand and Olesen (2012). These results showed an increase in emissions of 

2% and 60% in 2050 for sandy and sandy loam soils, respectively. 

 

Pesticide use was based on Henriksen et al. (2013). Based on pesticides currently 

used in barley cultivation in Denmark, and considering the pests occuring in are-

as currently having a climate that is assumed representative for the climate that is 

forecasted for Denmark in 2050 (southern Germany and northern France), Hen-

riksen et al. (2013) made a scenario for pesticide use in barley cultivation in 

Denmark in 2050. In short, pesticides currently applied will be applied 5 to 10 

days earlier in the future, because the growing season will start earlier. In addi-

tion, an application of λ-cyhalotrin on sandy loam soils can be omitted in 2050, 

since the crop is assumed to be harvested before the target pest (aphids) appear. 

 

Pesticide emissions were calculated using PestLCI 2.1, a modified version of 

PestLCI 2.0 presented in chapter 2. Apart from a modification of the macropore 

flow approach that was described in paper 3, were all modifications adaptations 

or expansions of the model databases: new soil profiles for sandy and sandy loam 

soils were included (Greve & Breuning-Madsen, 1999), as well as modified cli-
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mate data. For the 2010 scenarios, the monthly precipitation amounts of a Danish 

climate profile already present in the model database were increased in order to 

arrive at 650 and 900 mm/year, which is considered representative for the dry 

and wet climate sub-scenarios. A climate data set, representative for the north of 

France (a temperate maritime climate) was modified so that the annual total 

amount of precipitation matches the wet and dry Danish climate scenarios, thus 

resulting in a climate profile that is considered representative for the expected 

climatic conditions in Denmark in 2050. 

 

In addition to pesticide, fertilizer and manure application, agricultural processes 

considered are ploughing, harrowing, seedbed harrowing followed by rolling, as 

well as harvesting. The fuel consumptions in the Ecoinvent processes used to 

model these processes were adjusted to Danish circumstances (Dalgaard, Halberg 

& Porter, 2001). In addition, fuel consumption on sandy soils was assumed to be 

90% of that on sandy loam soils. 

 

In the aLCA approach chosen, co-products were dealt with using economic allo-

cation. In the case of barley, where both grains and straw are produced, an alloca-

tion factor of 0.91 was used for the grains. Furthermore an allocation was done 

for the environmental impacts of manure, which was considered a co-product 

from pig farming. An allocation factor of 0.076 was calculated for manure. 

 

5.2.3 IMPACT ASSESSMENT 
Classification and characterization were done at midpoint level. The ReCiPe 

methodology (Goedkoop et al., 2009) was used, applying the hierarchist perspec-

tive for the following impact categories: climate change, ozone depletion, terres-

trial acidification, freshwater and marine eutrophication, ionizing radiation, par-

ticulate matter formation, photochemical oxidant formation, freshwater ecotoxi-

city, human toxicity, fossil depletion, metal depletion, water depletion, agricul-

tural land occupation, natural land transformation, and urban land occupation. In 

addition, human and freshwater ecotoxicity impacts from pesticide emissions to 

air and freshwater were characterized using USEtox (Rosenbaum et al., 2008). 

 

5.2.4  SENSITIVITY ANALYSIS 
Based on an analysis of the contributions of the different processes to the im-

pacts, a number of model parameters were used in a sensitivity analysis in order 
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to find out how robust the model results are. The yield, the share of manure in the 

total N applied to field as a fertilizer and the on-farm fuel consumption were var-

ied with +10% and -10% after which the environmental impacts were calculated. 

 

Since economic allocation was used to cut off impacts from barley straw, and 

hence to assign impacts to barley grains, moreover considering that predicting 

grain and straw prices in 2050 is almost impossible, the allocation factor for 

grains was also subjected to a sensitivity analysis. In contrast to the approach 

used for the other variables, in this case the ‘break-even point’ at which impacts 
in the 2050 scenarios would have the same impacts as in the 2010 scenarios, was 

calculated. This approach was considered to produce more relevant information 

than varying the allocation factor with +/- 10%, since the impacts would respond 

to such a variation in an almost linear way. 

 

5.3 RESULTS AND DISCUSSION 
The characterized results for the four 2010 scenarios are given in Table 5.2. From 

the table it can be seen that the differences between the scenarios are small. For 

most impact categories the larger environmental impacts are found for the sub-

scenarios 1 and 2. This can be explained by the fact that barley cultivation on the 

sandy soils, where these scenarios are based on, results in lower yields. In addi-

tion the N norms are higher on these soils: 109 kg N/ha/y on sandy soils, and 97 

kg N/ha/y on sandy loam soils. 

 

As a consequence, higher impacts related to fertilization are observed. In con-

trast, in ozone depletion, ionizing radiation, and resource depletion-related im-

pact categories the impacts for the subscenarios 3 and 4 are higher. This is ex-

plained by the higher diesel consumption on the sandy loam soils on which these 

scenarios are based on, and in addition heavier harrowing machinery is used 

here. However, the fertilizer use is lower in these scenarios, which somewhat 

counterbalances the higher impacts from diesel use and machinery construction. 
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Table 5.2: Characterized impacts for barley cultivation in 2010 

Environmental impact category Abbre-

viation 

Unit Scenario 

 
  

1 2 3 4 

Climate change CC kg CO2-eq 3.31∙10-1 3.31∙10-1 2.97∙10-1 2.98∙10-1 

Ozone depletion OD kg CFC11-eq 1.50∙10-8 1.50∙10-8 1.54∙10-8 1.52∙10-8 

Acidification, terrestrial ACt kg SO2-eq 7.14∙10-3 7.14∙10-3 5.84∙10-3 6.02∙10-3 

Eutrophication, freshwater EUf kg P-eq 2.20∙10-4 2.20∙10-4 1.38∙10-4 1.38∙10-4 

Eutrophication, marine EUm kg N-eq 6.78∙10-3 5.65∙10-3 5.14∙10-3 4.32∙10-3 

Ionizing radiation IOR kg U235-eq 6.18∙10-3 6.18∙10-3 6.79∙10-3 6.68∙10-3 

Particulate matter formation PMF kg PM10-eq 1.32∙10-3 1.32∙10-3 1.16∙10-3 1.18∙10-3 

Photochemical oxidant formation POF kg NMVOC 1.73∙10-3 1.73∙10-3 1.68∙10-3 1.68∙10-3 

Toxicity, freshwater TOf PAF m3 day 1.50∙10-4 1.47∙10-4 1.48∙10-4 1.71∙10-4 

Toxicity, human TOh Cases 1.78∙10-12 1.77∙10-12 9.90∙10-13 9.86∙10-13 

Resource depletion 

- fossil  RDf kg oil-eq 5.07∙10-2 5.07∙10-2 5.23∙10-2 5.23∙10-2 

- metal RDm kg Fe-eq 2.50∙10-2 2.50∙10-2 2.88∙10-2 2.84∙10-2 

- water RDw m3 3.73∙10-1 3.73∙10-1 3.57∙10-1 3.52∙10-1 

Land use-related impacts 

- agricultural land occupation LOa m2a 1.91∙100 1.91∙100 1.67∙100 1.67∙100 

- natural land transformation NLT m2 9.25∙10-5 9.25∙10-5 8.49∙10-5 8.43∙10-5 

- urban land occupation LOu m2a 1.18∙10-2 1.18∙10-2 1.16∙10-2 1.16∙10-2 

 

The Figures 5.1a and b present a breakdown of the results for the scenarios 2010-

1 and 2010-3. The first scenario is considered representative for the sandy soil 

scenarios, the second for sandy loam-based scenarios. 

 

From Figures 5.1a and b it can be seen that in both scenarios the flows from the 

field are (by far) the main contributors to impacts in acidification, climate 

change, eutrophication, PM formation photochemical oxidant formation, and ag-

ricultural land occupation. Ozone depletion is dominated by diesel and fertilizer 

production, though the magnitude of both is different, dependent on scenarios 

(i.e. soil type). In the sandy soil scenario, fertilizer production is the largest con-

tributor to ionizing radiation, and resource depletion-related impact categories, as 

well as natural land transformation. The majority of these impacts can be at-

tributed to the production of calcium ammonium nitrate (CAN). In the sandy 

loam soil-based scenarios, less CAN is used but more fuel and heavier agricul-

tural equipment. As a consequence, the share of fertilizer in the total impacts de-

creases so that diesel production becomes the largest contributor to ozone deple-

tion and fossil depletion, whilst machinery production now becomes the main  
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(a) 

 

(b) 

Figure 5.1: Breakdown of the characterized results for two 2010 scenarios: (a) 2010-1 

and (b) 2010-3. The abbreviations of the impact categories are given in Table 5.1. 
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contributor to metal and water depletion. Pig farming is now the largest contribu-

tor to natural land transformation. 

 

Most toxicity impacts can be attributed to the feed used in pig farming, the ma-

nure of which is used as a fertilizer in barley cultivation. These high toxicity im-

pacts can be attributed to a few pesticides: for freshwater ecotoxicity, linuron and 

diflubenzuron are the main contributors. The former pesticide is used in soy bean 

cultivation, the latter in the cultivation of sunflower. Clopyralid used in rapeseed 

cultivation is the main driver for human toxicity impacts. All of these compounds 

have high characterization factors, and in the case of linuron the emissions to air 

are high due to the volatility of this compound. Grain drying is the dominant con-

tributor to urban land occupation impacts. 

 

In paper 4 the impact assessment was limited to characterization. The motivation 

for this was twofold. The main purpose of any possible further step in LCIA after 

characterization is to allow comparison of impacts to a reference (normalization) 

and to perceived severity (weighing). Neither was the focus of paper 4, which 

aimed to compare impacts in 2010 and 2050. For this, characterization is the only 

necessary LCIA step required. A second reason is the nature of the normalization 

factors used in the ReCiPe method. These factors are based on population size 

and total environmental impacts in a certain reference year. For the 2050 scenari-

os, neither population nor environmental impacts are known. Even if they were, 

or could be forecasted, this would provide little information about the severity of 

the characterized impacts calculated for the 2050 scenarios as compared to the 

severity of the impacts in the 2010 scenarios. 

 

However, since environmental impacts in current LCA practice are integrated 

over time and space, it can be argued that the reference values for a given year 

can in principle be used. In this case, the normalization step can be considered as 

a kind of internal standard to compare the impacts in both the 2010 and 2050 

scenarios to. This provides little additional information compared to the charac-

terized results, though. 

 

When assuming that normalization results can be seen as a measure of the severi-

ty of impacts, an advantage of normalization is to determine in which impact cat-

egories the barley cultivation has the largest contributions to overall environmen-

tal impacts (and hence the study could be focused on these impact categories). 
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Normalizing the results of the 2010 scenarios using the ReCiPe 1.08 normaliza-

tion factors gives the results presented in Figure 5.2. In this figure the results for 

water depletion have been omitted since there is no normalization factor availa-

ble.  

 

The toxicity results are shown separately, because these are indicative at best: 

since the human toxicity and freshwater ecotoxicity impacts were calculated us-

ing USEtox, these were expressed in units that are incompatible (PAF∙m3∙day for 

freshwater ecotoxicity, cases for human toxicity) with ReCiPe normalization fac-

tors (kg 1,4-DCB-eq/person). In order to allow for normalization of the toxicity 

results, the characterized impacts were converted to kg 1,4-DCB-equivalents us-

ing the characterization factors for 1,4-dichlorobenzene emitted to freshwater and 

air present in USEtox. Even though such a manipulation gives characterized re-

sults with the units compatible with the normalization factors, such a conversion 

does not account for differences in fate and exposure modelling between the 

model used to calculate toxicity impacts in this study (USEtox) and the model 

used to derive the normalization factors (USES-LCA). 

 
Figure 5.2: Normalized impacts for barley cultivation in the four 2010 scenarios (2010-1 in 

light blue, 2010-2 in dark blue, 2010-3 in dark green, 2010-4 in light green) for all impact cate-

gories except toxicity and water depletion. The abbreviations of the impact categories are given 

in Table 5.2. 
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Given these limitations it can be seen from Figure 5.2 that the impact categories 

with the highest normalized impacts are eutrophication, agricultural land occupa-

tion, and natural land transformation. As can be seen from Table 5.1, the impacts 

in the first two of these categories can largely be attributed to emissions from the 

field, whilst natural land transformation impacts are mainly composed of fertiliz-

er production, pig farming and diesel production. 

 

In Figure 5.3 the results for the 2050 scenarios are compared with those from the 

2010 scenarios. In this figure the scenario with the largest impact in a given im-

pact category are set to 1, and the impacts for the other scenarios are expressed as 

a fraction of the highest impact. 

 

 
Figure 5.3: Comparison of the impacts for the 2010 and 2050 scenarios. The four scenarios are 

shown in red (scenario 1), green (scenario 2), blue (scenario 3), and yellow (scenario 4). For 

each scenario, the results for the 2010 climatic conditions are shown in dark shading, the re-

sults for the 2050 climatic conditions in the lighter colour. The abbreviations of the impact cat-

egories are given in Table 5.1. 
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From Figure 5.3 it can be seen that for sandy soil-based scenarios (scenarios 1 

and 2) all impacts, with the exception of human toxicity, are higher under 2050 

climatic conditions, compared to the 2010 conditions. In fact most impacts are 

approximately 10% higher, reflecting the yield decrease of 10%. This illustrates 

that the change in yield is an important parameter for the outcomes of the com-

parison. Human toxicity impacts decrease in the 2050 scenario, since the clopyra-

lid emissions to air in rapeseed cultivation that largely determine the impacts in 

this category, are lowered under the 2050 climate. In contrast, freshwater eu-

trophication increases more than 10% in the 2050 scenarios. This is explained by 

the fact that this impact category in LCA practice is assumed to be mainly driven 

by P emissions. These emissions increase in the 2050 scenario since the P surplus 

in the field increases: the amount of P added by fertilization is unchanged whilst 

the removals of P from the field in the grain and straw are lower as a conse-

quence of the lowered yield. 

 

The sandy loam soil scenarios also shown in Figure 5.3 shows a picture that is 

largely the same as for the sandy soils, except for marine eutrophication and 

freshwater ecotoxicity. Regarding the first of these exceptions, the impacts are 

higher in these scenarios because the N emissions to water, which mainly drives 

marine eutrophication, were considerably increased on sandy loam soils in the 

2050 scenarios compared to the 2010 scenarios. Moreover, the N emissions on 

sandy loam soils increased more than those from sandy soils. The freshwater eco-

toxicity impacts are lower in the 2050 scenarios, mainly because a λ-cyhalotrin 

application in barley cultivation is removed. 

 

The results of the sensitivity analysis for scenario 2010-1 showed that, of the 

tested parameters, the results were most sensitive to changes in yield. The toxici-

ty impacts and natural land transformation were most sensitive towards changes 

in the allocation factor used for manure production in pig farming. This could be 

expected, given the large contribution to toxicity of the pesticides used in the cul-

tivation of the different components of pig feed. Moreover, the major impacts of 

some of the components of the feed (soy bean meals and palm oils) are typically 

associated with land use change. 

 

Analysis of the allocation factor for barley grains showed that for most impact 

categories the conclusion that the impacts in the 2050 scenario will be higher, 

remains valid until the allocation factor decreases from the 0.91 applied in the 
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scenarios to 0.82. Calculating this number back to grain and straw prices, it was 

found that the straw price in this case doubles compared to the grain price. 

Whether this will be the case in 2050 one can only try to guess. On the one hand 

there is the intention of the Danish government to have a fossil fuel free energy 

system in 2050 (Danish government, 2011). This may result in increasing prices 

for biomass. On the other hand have rising demands for food led to an increase of 

barley prices over the last decade (Statistics Denmark, 2013b). With the increas-

ing global population, which in addition is becoming increaslingly wealthy, the 

barley price increases can with reason be expected to continue. 

 

Another aspect that needs to be considered when discussing the impacts of the 

2050 scenarios compared to the 2010 scenarios, is the option of mitigation of 

impacts. In the modelling of the product system for which the results have been 

described in this chapter, mitigation has not been considered. That does, most 

likely, not mean that no efforts will be undertaken to mitigate environmental im-

pacts if these turn out to increase in the future. Nutrient leaching may be limited 

by use of catch crops (Doltra, Lægdsmand & Olesen, 2012) or buffer zones 

(Jeppesen et al., 2009), whilst pesticide consumption may decrease by the use of 

more targeted pesticide application (Djursing, 2013). 

 

Despite this consideration, the importance of economic data which can by no 

means be predicted 40 years in advance in relation to the outcomes of the study 

seems an important disadvantage of the chosen way to deal with co-products. 

Even though economic allocation appears to be the most used method to deal 

with processes with multifunctional outputs in LCA (De Vries & De Boer, 2010), 

economic allocation has been criticized, for example by Pelletier and Tyedmers 

(2011). These authors argue that market information such as a product’s price not 
only is volatile (i.e. prices change over time), but also incomplete: the market 

fails to include environmental externalities into a product price. In that sense, 

there is no clear relation between a co-products’ prices and environmental im-

pacts. Instead Pelletier and Tyedmers (2011) suggest using biophysical alloca-

tion, where for example energy or exergy content is used as the key to divide en-

vironmental impacts over several co-products. 

 

However, when designing this study, allocation based on energy content (as well 

as mass) was rejected, due to the lack of physical causality between the co-
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products that were to be allocated. After all, such a physical causality is usually 

considered a necessity when deciding on the allocation procedure. 

The work presented in this chapter, as well as in paper 4, has compared the de-

pendence of environmental impacts of barley cultivation under current and future 

climatic conditions. At the same time, no attempt has been made to expand the 

study to a full LCA of barley cultivation in 2050. In other words, only impacts 

caused by climate change have been assessed, while societal, political and tech-

nological changes have been excluded. Further research could focus in these are-

as and thereby try to further expand the applicability of LCA into assessment of 

(long-term) future scenarios. Some work in this field has already been done. For 

example, Weidema (2003) has described various techniques to draw scenarios of 

how the future may look like. When translating such future scenarios into flows 

to and from the ecosphere, Frischknecht, Büsser and Krewitt (2009) have demon-

strated that both foreground and background LCI processes can be manipulated 

to represent future scenarios. 

 

5.4 CONCLUSION 
For the 2010 scenarios, the environmental impacts for the four sub-scenarios 

were very similar. Impact categories driven by flows from the field where barley 

is cultivated or agricultural processes carried out in this field, the impacts were 

typically higher for the scenarios for barley cultivation on sandy soils. In con-

trast, higher impacts are observed on sandy loam soil-based scenarios for impact 

categories, where machinery manufacturing or diesel combustion are important 

contributors. 

 

The changes in the 2050 scenarios, when compared to the equivalent 2010 sce-

narios, were mainly driven by predicted yield reductions. All impact categories, 

with the exception of human toxicity and freshwater toxicity, show higher im-

pacts in 2050. These conclusions were established using the same economic allo-

cation factor in the 2010 and 2050 scenarios. The sensitivity analysis showed that 

this conclusion remains valid up to the point where the barley straw price doubles 

compared to the price of barley grains. Since these prices can not be predicted 

approximately 40 years in advance, the applicability of economic allocation in 

this context may be discussed. 
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6 CONCLUSIONS 
This PhD project has dealt with various aspects of pesticide emission modelling 

for application in Life Cycle Inventory analysis (LCI). 

 

The first aim of the project was to develop an LCI model that is capable of calcu-

lating pesticide emissions to the environment, to be applicable under European 

circumstances. In order to reach this aim, the PestLCI model was updated, ex-

panded and shifted to a more transparent software platform. The model structure 

of PestLCI was maintained in the new model version, PestLCI 2.0. The bounda-

ries between ecosphere and technosphere continue to be defined by a field box, 

consisting of the agricultural field, the soil beneath it up to a depth of 1 m and the 

air column above it, up to a height of 100 m. The model is constructed using 

primary and secondary fate processes, which calculate the emissions to the vari-

ous environmental compartments. The modelling of several of these fate process-

es (wind drift, volatilization from leaves and soil, runoff) has been updated. The 

model was expanded by inclusion of a pesticide leaching pathway via macropore 

flow. Moreover additional climate and soil data sets were included in the model 

databases in order to cover a broad range of European climates and soils. The 

database of pesticide active ingredients was expanded with a number of sub-

stances that are frequently used in Europe. 

The release of PestLCI 2.0 has provided the LCA community with a freely avail-

able tool to model pesticide emissions from an agricultural field to three envi-

ronmental compartments: air, surface water and groundwater, allowing for spatial 

differentiation in terms of both soil and climate. 

 

Validating the pesticide emission model by comparing it to other (risk assess-

ment) models was the second aim of this project. Surface water emissions calcu-

lated by PestLCI 2.0 were compared to emissions calculated by SWASH. It was 

found that the emissions calculated by PestLCI were lower than those calculated 

by SWASH, which was attributed to the worst-case assumptions used in the 

modelling of the risk assessement model SWASH. In contrast, the results of the 

comparison between PestLCI 2.0 and PEARL for groundwater emissions showed 

that PestLCI 2.0 were higher, which was attributed to the exclusion of macropore 

flow in PEARL. The first version of PestLCI 2.0 was moreover concluded to 

probably overestimate the magnitude of pesticide emissions to groundwater via 

macropore flow. Based on this, the macropore flow modelling was improved. 
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The comparisons between PestLCI and the risk assessment models were limited 

by the fact that the input scenarios were not fully identical. 

 

The third aim was to apply the PestLCI 2.0 model to estimate pesticide emissions 

in kiwifruit cultivation in New Zealand, as part of the development of a toxicity 

footprint of kiwifruit growing. In order to accurately model pesticide emissions 

for kiwifruit orchards in the Western Bay of Plenty (WBOP), PestLCI was fur-

ther expanded in terms of the active ingredients, crops, soils, and climates. This 

version of PestLCI also was the first to apply the improved macropore flow mod-

elling. The model was furthermore improved for modelling pesticide emissions 

from orchards. The characterized emission results showed that both human toxi-

cological and freshwater ecotoxicological impacts were dominated by emissions 

of the growth regulator cyanamide. In addition, the need and necessity for (sub-) 

regional LCI data was discussed. For the WBOP, it was concluded that the dif-

ferences in emissions and resulting impacts are probably smaller than the uncer-

tainty associated with these comparisons. 

 

A second application of the model was for assessment of barley cultivation in 

Denmark under current (2010) and future (2050) climatic circumstances. For the 

four scenarios for barley cultivation, small differences in impacts were found. 

Comparing impacts between 2010 scenarios and the corresponding scenarios for 

barley cultivation under future climatic circumstances showed that differences 

were mainly driven by yield decreases. Other critical factors in the comparison 

were the allocation factors used to split impacts between barley grains and straw. 

Considering the impossibility of predicting prices for products on a long term, 

the choice of economic allocation can be considered another critical factor. 

 

Implications of the use of PestLCI 2.0 in LCA practice was discussed in the con-

text of the technosphere-ecosphere boundary setting. Comparing the freshwater 

ecotoxicity impacts obtained using PestLCI 2.0 to model pesticide emissions, 

instead of the currently used Ecoinvent approach, showed that the impacts are on 

average a few orders of magnitude lower when PestLCI is used. Both approaches 

differ not only in their fate modelling approach, but also in the way the bounda-

ries between technosphere and ecosphere are defined. Applying a third inventory 

approach, which was a hybrid of the PestLCI and Ecoinvent approaches, it was 

shown that the differences in ecosphere-technosphere boundary setting is the 

main explanation for the difference in toxicity results between the two approach-
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es. Despite the considerable differences in toxicity impacts, it can’t be concluded 

whether the PestLCI or the Ecoinvent approach applies the correct boundary set-

ting, since different views exist on what exactly should be defined as the envi-

ronment. 
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7 PERSPECTIVES 
The application of PestLCI 2.0, in the work on pesticide emissions in kiwifruit 

growing as well as in the case study of barley cultivation under current and future 

climatic circumstances has led to a number of ideas for improvement of the mod-

el. Some suggestions focus on improving the modelling of pesticide fate, whilst 

others focus on making the model wider and easier applicable. 

 

The comparison of different inventory approaches for pesticide emissions 

showed that toxicity results are strongly dependent on the chosen inventory ap-

proach. This is a barrier for comparing different LCA studies, for the communi-

cation of LCA results, and possibly for wider acceptance of LCAs of agricultural 

products. In the next years a solution will have to be found for the observed dif-

ferences in impacts. One option would be the (further) development of various 

inventory approaches, which are accompanied by matching impact assessment 

methodologies, possibly in integrated models. In this case, LCA practitioners can 

choose a methodology that suits the aim of their study best, and that ideally is 

consistent with the method chosen to quantify other flows from the agricultural 

field to the environment. Though this approach does not improve the comparabil-

ity of LCAs, it does justice to the different views about what a pesticide emission 

actually is. Another option may be a consensus process aimed at identifying 

which impacts have to be accounted for, how to model emissions leading to such 

impacts, and potentially providing a model to do so. Although the result of a con-

sensus process may give LCA practitioners a clear signal about the approach to 

take for modelling pesticide emissions, there are a few important drawbacks. It 

may be difficult to reach a consensus about when a pesticide is emitted, i.e. about 

what LCA should seek to protect, in the first place. Moreover, consensus may 

hide the different opinions or approaches that exist among method developers. 

This may give LCA practitioners the false idea that there is only one correct way 

to model pesticide emissions, or rather, that there is just one correct definition of 

what the environment is. 

 

In the course of this project, some research has focused on variations in emis-

sions of a pesticide caused by differences in local circumstances such as climate 

or soil. Paper 1 illustrated variations in emissions of MCPA on different locations 

across Europe, whilst paper 3 studied how emissions vary within a region of ap-

proximately 2000 km2 in New Zealand. Although the results suggest that the ap-
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plicability of emissions data at a sub-regional level is currently limited, including 

spatial differentiation for pesticide emissions at a larger spatial scale in invento-

ries would be an improvement compared to the current practice. 

 

Very little work, if any at all, seems to have been done in LCA to assess the ef-

fects of climate change on agricultural production systems, and the resulting 

changes in environmental impacts. The study about barley cultivation described 

in this thesis is a small step into this direction, though limited to changes in cli-

matic circumstances. More research may be dedicated to developing methods to 

assess environmental impacts of products and systems that are used under altered 

circumstances in the long-term future. Challenges are then in the development of 

realistic scenarios for the long-term future, in transformation of these scenarios 

into inventory data, as well as in finding strategies to find meaningful ways for 

evaluation of impacts of future emissions. 

 

These last research subjects may mostly be research topics for the long-term fu-

ture. On the short term, focusing on further improving pesticide emission model-

ling may be more realistic and useful. 
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