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Abstract: Surface roughness of the finished part and profile of the tool electrode are significant
factors to assess the functionality of electrical discharge machining process. In this study, EDM was
utilized for the machining of hardened EN31 steel. A sintered cermet tool tip with 75% copper–25%
titanium carbide was fabricated and used as tool electrode. A data set of 262 such samples was
developed with machining variables including discharge current (Ip), gap voltage (Vg), pulse on
time (Ton), pulse off time (Toff) and flushing pressure (P). By correlating the machining variables, a
machine learning-based regression model was developed for the prediction of surface roughness of
the machined surface and change in out-of-roundness of tool during the EDM process. With the help
of heat maps and a probability table, it was found that Ip, Ton, Toff and P had significant effect on SR,
and Ip, Ton and Toff affected OOR. The machine learning-based regression equation predicted SR with
average error of 1.6% and OOR with average error of 0.48%. It was found that machine learning-based
regression equation had better accuracy as compared to a DOE-based regression equation.

Keywords: electrical discharge machining; surface roughness; change in out-of-roundness;
discharge current; gap voltage; pulse on time; pulse off time; flushing pressure

1. Introduction

Electrical discharge machining (EDM) is an unconventional machining process pri-
marily utilized in the manufacturing of dies that uses thermal erosion as the mechanism of
material removal. In EDM, stock removal from specimen is performed using continuous
discharges between tool and workpiece. It leads to creation of a plasma channel, and the
temperature reaches up to 8000–20,000 ◦C, thereby removing the material from the elec-
trodes by melting and evaporation [1–4]. In EDM, removal of material from a conducting
workpiece takes place by a string of repeated electrical discharges within the workpiece
and tool electrode in the existence of a dielectric liquid. A servo-controlled feed mechanism
is used to move the electrode towards the workpiece until the gap is small enough to ionize
the dielectric by the applied voltage. A discharge of very short duration is produced in a
liquid dielectric gap, thus removing the material from the electrodes by heating, melting
and evaporation. The next spark will be developed at the closest location between the
tool tip and workpiece. This sparking process keeps changing its location all across the
surface of the electrode tool tip, thereby creating an exact replica of the electrode profile
on the workpiece [1]. Performance of the EDM process generally depends upon certain
machine-dependent factors and user-specified factors. These factors include discharge
current, breakdown voltage, gap voltage, pulse on/off duration, machining time, duty
cycle, polarity, dielectric pressure, etc. Material removal rate (MRR), surface roughness (SR),
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tool wear rate (TWR), surface integrity and dimensional accuracy of the finished product
are certain parameters for evaluating the efficiency of the EDM process. These responses
have been optimized using different mathematical models and statistical techniques such
as dimensional analysis, artificial neural network (ANN), genetic algorithm (GA), response
surface methodology (RSM), Taguchi method, fuzzy theory, finite element method (FEM)
and regression analysis (RA), which ensures better results of the outcomes and efficiency.

Fenggou and Dayong [5] optimized ANN with GA and the node deletion algorithm to
calculate process variables automatically. The use of genetic algorithms and back propaga-
tion (BP) algorithms enhanced the training speed of the model. Structure of the ANN was
determined and optimized by node deletion algorithm. Rangajanardhaa and Rao [6] opti-
mized the response of current and voltage on SR during EDM of Ti6Al4V, HE15, 15CDV6
and M-250. With the use of a package, a neural network model was generated. The use
of GA to optimize the model further reduced the error to less than 2% from 5%. Chat-
topadhyay et al. [7] used the empirical model and predicted the SR of the surface machined
with the EDM process. The range of maximum deviation for the prediction of response
varied from 16.4% to −14.1%. The average prediction error for SR was found to be 0.05%.
Torres et al. [8] performed the EDM of hard to machine alloy (Inconel 718) using copper
electrode and proposed models for MRR, EWR and SR. The R2 values obtained for MRR,
SR and electrode wear rate (EWR) models were found to be 99.03%, 85.97% and 93.32%,
respectively. The R2 value indicates the adequacy of the developed model to link the rela-
tionship between EDM variables and responses. Raja et al. [9] applied firefly algorithm for
the optimization of EDM process variables and to achieve the required surface roughness
on hardened die steel workpiece in the least possible time. It was found that the influence
of current on surface roughness and machining time was 45.53% and 37.53%, respectively,
as compared to the influence of pulse duration on surface roughness and machining time
being 1.37% and 1.04%, respectively. It was found that current influenced surface roughness
and machining time more in comparison to pulse duration. Choudhuri et al. [10] optimized
the process parameters for SR during the wire EDM of stainless steel. Grey relational
technique was used to determine the grey coefficient of every experiment. Fuzzy evaluated
the performance characteristics index in accordance with the grey relational coefficient.
RSM and analysis of variance were utilized for modelling and analysis of SR to predict and
determine the effect of machining variables.

Payal et al. [11] predicted MRR and SR during EDM of Inconel 825 with copper,
copper–tungsten tools and graphite tools using ANN. ANN predicted the SR and MRR
with an average percentage difference of 0.37 and 0.25, respectively. Nain et al. [12]
evaluated the performance of wire EDM of aeronautics super alloy using fuzzy logic and
backpropagation neural network. To analyse the scattering around the agreement line, two
more lines in the range of ±5% error were plotted. For the evaluation of SR and waviness
of the machined surface BP-ANN proved to be a better method. Thankachan et al. [13] used
Taguchi and ANN to analyse and model MRR and SR during the wire EDM of aluminium-
based metal matrix composite. Taguchi analysis revealed that the MRR increased with
the percentage of tin and decreased with the rise in percentage of silicon carbide. Increase
in SiC resulted in an increase in surface roughness, whereas the increase in tin resulted
in a decrease in surface roughness. Sahu et al. [14] investigated the influence of process
variables on overcut and SR during the EDM of Al–SiC composite. Copper was used as a
tool electrode. RSM and MOPSO were used for the mathematical modelling of responses
and multiresponse optimization, respectively. Decrease in SR was recorded with the rising
flushing pressure and pulse off time. To decrease the overcut, lower pulse durations and
higher voltage settings were suggested. Rajneesh et al. [15] reported the EDM of AISI 202
stainless steel with copper alloy tool. RSM was utilized to optimize MRR, EWR and SR.
Current and pulse on/off were selected as process variables. Regression equations were
formed, and interactive effects of process variables were analysed. R2 was used to check
the goodness of fit. The R2 was calculated and found to be 95.09%, 95.05% and 96.68%
for EWR, MRR and SR, respectively. Singh and Singh [16] developed a semiempirical



Processes 2022, 10, 252 3 of 27

model for the prediction of SR during the EDM process. The model was successful in
predicting the response with lesser than 5% error. Ulas et al. [17] predicted SR using
extreme learning machine and support vector regression-based models. Weighted extreme
learning machine model was found as the best model with R2 value of 0.9720. Bharti [18]
applied two-step optimization processes to find out the optimal parameters for EDM.
Neural network-based multi-objective optimization technique was employed to generate
the total possible combinations of input parameters. By applying the concept of dominance,
24 nondominated combinations of input parameters were obtained. TOPSIS was used to
award rank to each nondominated solution.

Srivastava and Pandey [19] studied the process performance of sintered copper (Cu)–
titanium carbide (TiC) electrode tip in ultrasonic-assisted cryogenically cooled electrical
discharge machining (UACEDM). The performance parameters evaluated were electrode
wear ratio (EWR), material removal rate (MRR), surface roughness (SR), out-of-roundness
and surface integrity. The process parameters considered in this study are discharge
current, pulse on time, duty cycle and gap voltage. Cermet was fabricated, having a copper
content of 75% and titanium carbide content of 25%, by mixing, pressing and sintering.
It was observed that EWR and out-of-roundness decreased when the cermet electrode
tip was used as compared to a conventional tool tip. It was also observed that MRR and
SR increased when the cermet tool tip was used. The surface cracks’ density and crack
width on a workpiece machined by a cermet tool tip have been found to be lesser as
compared to the specimen machined by a conventional tool tip. Srivastava and Pandey [20]
studied the shape of the electrode and established the application of liquid nitrogen in
reducing distortion of the electrode during electrical discharge machining of M2-grade
high-speed steel using copper electrodes. A study of roundness was performed on the
electrode to observe the shape of the electrode for both conventional EDM and EDM with a
cryogenically cooled electrode. A scanning electron microscope (SEM) was used to study
the shape of the electrode tip. The effect of various parameters such as discharge current
and pulse on time were studied to understand the behaviour of distortion of the electrode.
It was concluded that the shape retention was better in the case of a liquid nitrogen-cooled
electrode. Srivastava and Pandey [21] studied the cooling effect on copper electrodes while
electrical discharge machining (EDM) an M2-grade high-speed steel workpiece. To evaluate
the machinability, electrode wear ratio (EWR) and surface roughness (SR) were the two
responses observed. Discharge current, pulse on time, duty cycle and gap voltage were the
controllable process parameters. It was found that EWR reduced up to 20% by cryogenic
cooling the electrode. With electrode cooling, SR was also found to have been reduced
after machining. The effect of process parameters on EWR and SR were also analysed. The
shape of the electrode was also measured, and it was found that the shape retention was
better in cryogenic-assisted EDM as compared to conventional EDM.

It was found from the investigation of literature that a lot of research work is being
done for the prediction of responses, whereas there is still a lack of literature available that
highlights the use of change in out-of-roundness of the cermet tool tip and for predicting
surface roughness of the machined workpiece, especially during the EDM of the hard
workpiece. Surface roughness is an important criterion while evaluating the outcome of
EDM, as it has a significant influence on the mating parts. The change in the shape of
the tool during machining is very significant, as the final shape of the machined cavity is
dependent on the shape of the tool during EDM. There are very few studies that analysed
the change in the shape of the tool [20–22]. Therefore, the present study is focused on
investigating the surface roughness of the machined cavity and the change in the tool’s
shape by observing the changes in out-of-roundness of the tool with changing process
parameters. A novel approach to use machine learning techniques for the prediction of the
mentioned responses has been attempted through this work.
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2. Materials and Methods

To analyse the surface roughness and out-of-roundness of the tool, experiments were
performed on a die sinking EDM machine. The cermet tool tip was utilized for machining
of a hardened EN31 workpiece. The entire process is detailed below.

2.1. Workpiece and Tool Material

In this work, hardened EN31 steel was selected as the workpiece material due to its
high hardness and abrasion resistance, which makes it difficult to machine. For experimen-
tation, the samples of EN31 steel with a size of 15 mm × 15 mm × 6 mm were used. The
hardness of EN31 steel was found to be 20 HRC, which was further enhanced to 56 HRC
after heat treatment. The objective of heat treatment was to make the workpiece more
difficult to machine under normal machining conditions. The parameters used for the heat
treatment of workpiece are presented in Table 1. The chemical composition of EN31 steel
after heat treatment was determined by evaluating the average of 20 workpiece samples
assessed using energy dispersive X-ray spectroscopy (EDAX) and was found to be C-2.09%,
Si-0.32%, Mn-0.62%, Cr-1.14%, S-0.035%, P-0.026%, Fe-95.76%.

Table 1. Heat treatment parameters [22].

Parameter Hardening Tempering

Hardening temperature 850 ◦C -

Tempering temperature - 260 ◦C

Soaking time 20 min 1 h

Heating rate 600 ◦C/h 600 ◦C/h

Copper (Cu) is widely accepted tool electrode material in the EDM process. However,
in machining hard materials, higher tool wear of copper tools raises the need of another
material that can be used more efficiently. High melting temperature, high hardness,
excellent thermal shock and wear resistance make titanium carbide (TiC) an ideal option
for reinforcement material for the cermet tool tip [23]. From the literature survey [24–26]
and pilot experiments conducted, the composition of copper and titanium carbide was
fixed at 75 and 25%, respectively. The purity of copper powder was 99.9%, and that of TiC
was 99.8%. The average grain size for both the powders was 44 µm. The procedure for
the fabrication of cermet tool tip electrode is given in Figure 1. The electrical resistivity
of the developed tool tip was 5.056 µΩcm, thermal conductivity was 141.96 W/m·K,
microhardness was 126.78 HV and relative density was 0.89. The sintered polished pellets
of 10 mm diameter were brazed to the copper rods (as shown in Figure 2) and were used as
the cermet tool tip electrode.
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Figure 1. Procedure of fabrication of the cermet tool tip electrode.

Figure 2. (a) Cermet tool tip electrode developed (b) Dimensional details of the electrode [21].

2.2. Selection of Process Parameters and Data Generation

EN31 tool steel workpieces were machined using die sinking EDM (Reliable, 55,300).
The commercially available EDM oil (flashpoint: 90 ◦C; SG: 0.77) was used as the dielectric
medium for experimentations. Based on the capability of machine and pilot experiments,
five variables, viz., discharge current, gap voltage, pulse on time, pulse off time and
flushing pressure, were selected. The discharge current below 3 A results in much less
MRR, and the discharge current above 11 A results in higher surface roughness. Pulse on
time (Ton) and pulse off time (Toff) were kept in the range based on the available literature
and are generally used in the EDM process for steel. The range of gap voltage and flushing
pressure was chosen in accordance with the range available on the machine selected for
the experimentation. The experimental machining parameters used in the present work
are shown in Table 2. By varying the variables in the selected range, experiments were
performed. The duration of machining was fixed at 30 min for each experiment.
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Table 2. Machining variable.

Experimental Parameter Ranges/Values for Experimentation

Discharge current, Ip 3–11 A, step size: 1 A

Gap voltage, Vg 40–80 V, step size: 5 V

Pulse on time, Ton 100–500 µs, step size: 50 µs

Pulse off time, Toff 10–50 µs, step size: 5 µs

Flushing pressure, P 12–20 kgf/cm2, step size: 1 kgf/cm2

Surface roughness has considerable influence on properties such as fatigue, strength
and resistance to wear. It is one of the most significant measures in finishing operation. It is,
therefore, important to achieve a good surface finish. A surface roughness tester (Surftest
SJ400, Mitutoyo South Asia Pvt. Ltd., New Delhi, Delhi, India) was used to measure the
surface roughness. As per industry standards [27], centre line average value of surface
roughness (Ra) was used in the present study. The traverse length of 4 mm with a cut-off
evaluation length of 0.8 mm was used. Each sample was measured 5 times, and their
average was taken as the response. The surface roughness profile of one the machined
cavity is shown in Figure 3.

Figure 3. Surface roughness profile (Ip, Vg, Ton, Toff, P) = (5, 70, 200, 20, 19); units as per Table 2.

In the EDM process, the edges of the tool sometimes get changed from sharp to round,
and the shape of the edges of the tool also become affected due to wear. The overall
effect is the change in the roundness of the tool, which, in turn, affects the profile of the
machined cavity. Coordinate measuring machine (CMM, Accurate, model Spectra 564) and
Accusoft plus software were used for analysing the data to evaluate the change in OOR.
Out-of-roundness, shown as Equation (1), is measured as the radial difference between the
two concentric circles enclosing all the measured data points [28].

OOR = rmax − rmin (1)

The schematic of tool profile is shown in Figure 4a. The measurement of out-of-
roundness using CMM is presented in Figure 4b.
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Figure 4. (a) Schematic of tool profile [21]. (b) Measurement of OOR using CMM.

To evaluate the change in the shape of the tool, measurement of roundness was twice,
once before and another after machining on both a copper as well as a cermet tool tip.
This measurement was performed at 12 points across the circumference of the tip for each
sample using CMM, and the value of roundness was recorded.

In this work, initially, the cermet tool tip was fabricated and brazed to the copper
shank. Meanwhile, the EDM process parameters were defined. Then, using single variable
experiments, the experimental process settings were finalized. During EDM, commercially
available EDM oil was used as the dielectric, and machining time was fixed at 30 min based
on preliminary experimentations. The measured results for the surface roughness (SR) of
the machined cavity and change in out-of-roundness (OOR) of the tool during the EDM
process are shown in Table A1 in Appendix A. By using the 262 sample measurements gen-
erated from the experiments, Python software was used to develop a quadratic regression
curve. The program was run on 215 sample measurements as the training set. The other 47
samples were used for validation of the regression curve by comparing the predicted values
with the experimentally measured output. The regression curve returned the coefficients of
20 expressions for 5 different dependant parameters along with a constant.

3. Results and Discussion
3.1. Modelling of Surface Roughness

A machine learning-based regression model was trained for the prediction of SR by
correlating the input variables. In order to train the machine learning model, we derived
quadratic features out of the five machining variables, which generated a 20-tuple input
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vector for training. The 20-tuple vector consisted of five machining variables, their square
terms and the interaction of different machining variables with each other. The coefficients
obtained for input variables are presented in Table 3. The value of intercept (constant) was
found to be 4.5245. The developed regression equation for SR is given below in Equation (2).

SR = 4.5245 −
(
0.2506 × Ip

)
+

(
0.0112 × Vg

)
− (0.0057 × Ton)

+(0.0266 × Toff) + (0.1859 × P) +
(

0.0082 × I2
p

)
−
(

0.0002 × V2
g

)
−

(
1.948 × 10−5 × T2

on

)
−

(
0.0002 × T2

off

)
−
(

0.0088 × P2
)
+

(
6.45 × 10−5 × Ip × Vg

)
+
(
0.008 × Ip × Ton

)
+

(
0.0001 × Ip × Toff

)
+
(
0.0062 × Ip × P

)
+

(
5.45 × 10−5 × Vg × Ton

)
−
(
2.109 × 10−5 × Vg × Toff

)
−

(
0.0001 × Vg × P

)
−
(
4.583 × 10−7 × Ton × Toff

)
−

(
1.087 × 10−5 × Ton × P

)
+(0.0001 × Toff × P)

(2)

Table 3. Coefficients of variables for SR model.

Variable Coefficient Variable Coefficient

Ip −0.2506 Vg × Vg −0.0002

Vg 0.0112 Vg × Ton 5.45 × 10−5

Ton −0.0057 Vg × Toff −2.109 × 10−5

Toff 0.0266 Vg × P −0.0001

P 0.1859 Ton × Ton −1.948 × 10−8

Ip × Ip 0.0082 Ton × Toff −4.583 × 10−7

Ip × Vg 6.45 × 10−5 Ton × P −1.087 × 10−5

Ip × Ton 0.0008 Toff × Toff −0.0002

Ip × Toff 0.0001 Toff × P 0.0001

Ip × P 0.0062 P × P −0.0088

In order to determine the significance of various input vectors with respect to SR, a
heat map was developed (Figure 5). The map shows the various interactions of the input
vectors with respect to SR. The table highlighting the coefficients and probability is given
in Table 4. In Table 4, Coef is the coefficient of variable in regression equation, Std_err is
the standard error, T is the value of coefficient divided by Std_err and P is the probability
value describing the T distribution. On evaluating the heat map and the probability table,
it was found that Ip, Vg, Ton, Toff, P, Ip

2, Vg
2, Ton

2, Toff
2, Ip × Vg, Ip × Toff, Vg × Ton, Ton ×

P, Toff × P were significant and influence the SR.
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Figure 5. Heat map for SR.

Table 4. Coefficients and probability for SR model.

Coef Std_err T P > |t|

Ip −0.2506 0.013 −19.740 0.000

Vg 0.0112 0.003 3.592 0.000

Ton −0.0057 0.000 −23.296 0.000

Toff 0.0266 0.002 10.263 0.000

P 0.1859 0.018 10.106 0.000

Ip × Ip 0.0082 0.001 16.150 0.007

Ip × Vg −6.45 × 10−5 −9.09 × 10−5 0.710 0.479

Ip × Ton 0.0008 9.09 × 10−6 84.332 0.000

Ip × Toff 0.0001 9.09 × 10−5 1.213 0.226

Ip × P 0.0062 0.000 13.603 0.000

Vg × Vg −0.0002 2.04 × 10−5 −11.587 0.000

Vg × Ton 5.405 × 10−5 1.82 × 10−6 29.723 0.000

Vg × Toff −2.109 × 10−6 1.82 × 10−5 −0.116 0.908

Vg × P −0.0001 9.09 × 10−5 −1.578 0.116

Ton × Ton −1.948 × 10−8 2.03 × 10−7 −0.096 0.924

Ton × Toff 4.583 × 10−7 1.82 × 10−6 −0.252 0.801

Ton × P −1.087 × 10−5 9.09 × 10−6 −1.196 0.233

Toff × Toff −0.0002 2.03 × 10−5 −12.157 0.000

Toff × P 0.0001 9.09 × 10−5 1.337 0.182

P × P −0.0088 0.001 −17.344 −0.010

The individual and interaction effects of all the parameters of the predictive model are
shown in Figure 6. The Ip is the individual with the maximum contribution of 13.06%. The
Ton, Toff and P have a share of 7.47%, 3.97% and 3.91%, respectively. Significant interaction
effects of Ip, Ton, Toff and P can be observed in Figure 6. The Vg had a contribution of
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1.39%. The interaction effect of Vg had maximum significance of 1.83% only. Thus, it can be
concluded that the Ip, Ton, Toff and P are the main parameters influencing the SR.

Figure 6. Percentage influence of process variables and interactions on SR.

3.2. Main Effect Plots for Machine Learning Model for Surface Roughness

It is very difficult to differentiate whether the whole surface is recast or if there is
a portion of a recast layer. The best way is utilize energy dispersive X-ray spectroscopy
(EDAX). In the EDM process, there is a distinct formation of a layer at the top of the
machined surface. This layer is formed from the accumulation of carbon, which is generated
from the cracking of dielectric and the resolidification of the molten material left in the
machined cavity after flushing. Thus, evaluating the developed surface formed in Figures
8, 10, 12 and 14 using EDAX, it is observed that there is a very significant increase in carbon
content in addition to all the elements of the workpiece. The EDAX of the machined surface,
especially the zone marked as the recast layer, gave the following composition: C-16-20%,
Cr-0.65-0.95%, Si-0.18-0.62%, Mn-0.2-0.62%, S-0.12-0.28%, P-0.09-0.22%, Cu-1.66-2.94%,
O-2.6-5.15%, Ti-<1%, Fe-69.53-75.85%. On the machined surface, presence of Cu and Ti is
due to some tool electrode deformation because of high temperatures in the machining
zone. The presence of O is due to some oxidation and decomposition in the removal of
the material from the workpiece surface. The carbon enrichment can be explained by the
deposition of carbon estranged from the dielectric consumed as a result of cracking of
dielectric [29]. However, the presence of other elements can be there only if they were
extracted out of the workpiece. Therefore, those areas were marked as recast layers in
the figures.

The variation in SR during EDM with change in Ip is shown in Figure 7. It can be
perceived that the plots obtained by using the DOE model [30] and machine learning model
reveal similar developments. The SR of the machined cavity increased with a higher Ip.
This can be due to the fact that increases in Ip result in an increase of the discharge energy
density and impulsive forces [31]. This, in fact, causes the formation of large craters, which
upsurges SR. Lesser surface irregularities are produced at low Ip during EDM. Furthermore,
insignificant molten material is obtained between the work electrode and the tool electrode.
All these contribute to attain a lower SR at a low Ip. Figure 8a shows an increase in SR due
to the accumulation of more globules around the machining zone. Small-sized craters are
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formed while performing EDM at low Ip, and less amount of eroded material is present
in the gap between electrodes. A cavity with lesser surface irregularities is obtained at a
lower Ip due to these reasons. Apart from this, sometimes the higher quantity of material
removed during EDM at higher Ip is not efficiently removed by the dielectric fluid during
flushing and produces a cavity with higher SR. The same can be observed from Figure 8b.

Figure 7. Main effect plots for SR with Ip using (a) DOE model; (b) machine learning model.

Figure 8. Variation of surface morphology with Ip (Ip, Vg, Ton, Toff, P) (a) (6, 60, 300, 30, 16); (b) (10,
60, 300, 30, 16) units per Table 2.

The effect of Ton over SR is shown in Figure 9. As the Ton increased, the SR increased.
The plasma channel increased at a larger pulse duration, which, in turn, decreased the
energy density and impulsive force. The melted debris cannot be removed completely due
to a reduction in impulsive force and forms a recast layer to degrade the surface roughness.
At a shorter Ton, the material removed during a pulse is less. This small amount of material
can efficiently be handled by flushing, resulting in the lower SR.

Figure 9. Main effect plots for SR with Ton using (a) DOE model; (b) machine learning model.
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The SEM of the cavity machined at a small value of Toff can be seen in Figure 10a.
At smaller pulse durations, significantly lesser material is removed from the site more
conveniently, resulting in lesser SR. Conversely, due to a reduction in forces at larger Ton,
molten material is not evacuated completely from the cavity and piles up there, as shown
in Figure 10b. This creates an observable globule-like recast layer and increases the SR.
Moreover, micropores are formed due to the increase in Ton, which further add up to the
SR. Lager pulse durations also cause the appearance of large-sized craters.

Figure 10. Variation of surface morphology with Ton (Ip, Vg, Ton, Toff, P) (a) (7, 60, 250, 30, 16); (b) (7,
60, 450, 30, 16); units as per Table 2.

The relation of Toff with SR is shown in Figure 11. SR tends to increase with the
increase in Toff. There is a considerable temperature drop on the tool and workpiece surface
when the Toff is large. Consequently, to re-establish the plasma channel, more energy is
needed, resulting in some portion of the energy consumed for this recreation. Thus, the net
energy in the system decreased, causing inefficient disposal of debris and increasing the SR.

Figure 11. Main effect plots for SR with Toff using (a) DOE model; (b) machine learning model.

The SEM images in the Figure 12 show the effect of the Toff on the SR of the machined
cavity. The flushing process is affected during shorter pulse intervals due to the start of
fresh machining even before the debris has been cleared. It results in the re-solidification
of debris and the formation of a recast layer on the surface machined. It plugs up the
microcracks and micropores, thereby assisting in reducing the SR. However, at the larger
pulse off time (Figure 12b), the decrease in the available energy increases the surface
irregularities. Larger sized pores are formed at higher Toff, resulting in increased SR.
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Figure 12. Variation of surface morphology with Toff (Ip, Vg, Ton, Toff, P) (a) (7, 60, 300, 25, 16); (b) (7,
60, 300, 45, 16); units as per Table 2.

The impact of P on SR is shown in Figure 13. A decrease in SR can be seen with an
increase in P. Due to smaller actuation of the dielectric, the wreckage produced during
machining is not effectively evacuated at lower P. However, as the P is increased, debris
is successfully removed, resulting in lower SR. This also results in ejection of removed
material during machining due to big hydraulic force wielded on the machined cavity. From
the Figure 14, it can be seen that the surface irregularities decreased with the increasing P.
When the P is low, the debris produced is not taken away from the site of machining, as it is
shown in Figure 14a. However, as the P increases, the efficient removal of debris from the
cavity (Figure 14b) also reduces the chances of arcing during EDM and decreases the SR.

Figure 13. Main effect plots for SR with P using (a) DOE model; (b) machine learning model.

Figure 14. Variation of surface morphology with P (Ip, Vg, Ton, Toff, P) (a) (7, 60, 300, 30, 13); (b) (7,
60, 300, 30, 19); units as per Table 2.

3.3. Modelling of Change in Out-of-Roundness

A machine learning-based regression model was developed for change in OOR by
correlating the input parameters. In order to train the machine learning model, we derived
quadratic features out of the five machining variables, which will generate a 20-tuple input
vector for training. The 20-tuple vector consists of five machining variables, their square



Processes 2022, 10, 252 14 of 27

terms and the interaction of different machining variables with each other. The coefficients
obtained for input variables are presented in Table 5. The value of intercept (constant) was
found to be −5.92. The developed regression equation for change in ORR is given below as
Equation (3).

Change in OOR = −5.92 +
(
2.94 × Ip −

(
6.09 × 10−2 × Vg

)
+ (0.123 × Ton)

−(0.405 × Toff)− (0.707 × P) +
(

0.187 × I2
p

)
+
(

1.14 × 10−4 × V2
g

)
−

(
6.8 × 10−7 × T2

on

)
+
(

0.00287 × T2
off

)
+

(
2.36 × 10−3 × P2

)
−

(
0.0205 × Ip × Vg

)
−
(
0.00402 × Ip × Ton

)
−

(
0.0207 × Ip × Toff

)
+
(
0.00692 × Ip × P

)
−

(
4.99 × 10−4 × Vg × Ton

)
−
(
4.99 × 10−4 × Vg × Toff

)
+

(
0.032 × Vg × P

)
+(0.001 × Ton × Toff)− (0.005 × Ton × P)

+
(
4.8 × 10−4 × Toff × P

)
(3)

Table 5. Coefficients of variables for change in OOR model.

Variable Coefficient Variable Coefficient

Ip 2.94 Vg × Vg 1.14 × 10−4

Vg −6.09 × 10−2 Vg × Ton −4.99 × 10−4

Ton 0.123 Vg × Toff −4.99 × 10−4

Toff −0.405 Vg × P 0.032

P −0.707 Ton × Ton −6.80 × 10−7

Ip × Ip 0.187 Ton × Toff 0.001

Ip × Vg −0.0205 Ton × P −0.0050

Ip × Ton −0.00402 Toff × Toff 0.00287

Ip × Toff −0.0207 Toff × P 4.80 × 10−4

Ip × P 0.00692 P × P 2.36 × 10−3

In order to determine the significance of various input vectors with respect to change
in OOR, a heat map was developed. The heat map is presented in Figure 15. The heat map
shows the various interactions of the input vectors with respect to change in OOR. The
table highlighting the coefficients and probability is given in Table 6. In Table 6, Coef is the
coefficient of variable in regression equation, Std_err is the standard error, T is the value of
coefficient divided by Std_err and P is the probability value describing the T distribution.
On evaluating the heat map and the probability, it was found that Ip, Vg, Ton, Toff, P, Ton

2,
Toff

2, Vg
2, P2, Ip × Vg, Ip × Ton, Ip × Toff, Vg × Ton, Vg × P, Ton × Toff, Ton × P, Toff × P

were significant and influence the OOR.
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Figure 15. Heat map for change in OOR.

Table 6. Coefficients and probability for change in OOR.

Coef Std_err T P > |t|

Ip 2.7950 0.123 22.696 0.000

Vg −0.1129 0.025 −4.485 0.000

Ton 0.1199 0.002 49.330 0.000

Toff −0.4267 0.022 −19.528 0.000

P −1.1015 0.106 −10.384 0.000

Ip × Ip 0.1927 0.006 35.010 0.379

Ip × Vg −0.0246 0.001 −25.531 0.000

Ip × Ton −0.0040 9.75 × 10−5 −41.049 0.000

Ip × Toff −0.0205 0.001 −21.045 0.000

Ip × P 0.0093 0.005 1.95200 0.052

Vg × Vg 0.0004 0.000 2.006 0.046

Vg × Ton −0.0005 9.68 × 10−5 −51.250 0.000

Vg × Ton −0.0005 9.68 × 10−5 −51.250 0.000

Vg × P 0.0327 0.001 36.012 0.000

Ton × Ton 1.1319 × 10−6 2.22 × 10−6 0.595 0.553

Ton × Toff 0.0010 1.95 × 10−5 51.431 0.000

Ton × P −0.0050 9.59 × 10−5 −51.648 0.000

Toff × Toff 0.0031 0.000 13.827 0.000

Toff × P 0.0009 0.001 0.933 0.352

P × P 0.0118 0.004 2.886 0.004

Figure 16 depicts the individual and interaction effects of all the parameters of the
predictive model. The Ip is the individual with the maximum contribution of 13.15%. The
Ton and Toff have a share of 9.30%, and 5.39%, respectively. A significant interaction effect
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of Ip, Ton and Toff can also be observed from the figure. The Vg had a contribution of 0.94%,
and P had a contribution of 1.09%. The interaction effects of Vg and P have a maximum
significance of 3.54% only. After analysis, it can be concluded that Ip, Ton and Toff are the
main parameters influencing the OOR.

Figure 16. Influence of process variables and interactions on OOR (in %).

3.4. Main Effect Plots for Machine Learning Model for Change in Out-of-Roundness

During the EDM process, the tool tip is deformed. The images taken by a DINO
camera at a magnification of 30.6× (Figure 17) show the same. There are two main reasons
for the change in shape of the tool. The first one is the wear of tool tip, and the second is
the rounding of the edge of the tool tip. The deformation in the shape of tool tip depends
upon the process parameters. The effect of Ip on change in tool OOR during the EDM
process is presented in Figure 18. A similar trend is observed between the DOE model
and the machine-learning model. Both models show an increase in Ip for an increase in
OOR. The discharge column also decomposes the tool electrode along with the removal
of material. Due to increase in Ip, more heat is produced, thus increasing the distortion
of tool electrode [32]. The images shown in Figure 19, captured by a DINO camera at a
magnification of 30.6×, show the same trends. At lower Ip, there was less damage to the
surface of tool and its corners. However, as the Ip increased, more edge wear of the tool tip
was observed, which, in turn, made the edges of tool tip round and changed the profile of
tool tip.



Processes 2022, 10, 252 17 of 27

Figure 17. (a) Change in shape of tool tip after EDM. (b) Change in tool tip due to wear.

Figure 18. Main effect plots for change in OOR with Ip using (a) DOE model; (b) machine learn-
ing model.
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Figure 19. Variation in tool profile with Ip (Ip, Vg, Ton, Toff, P) (a) (7,60, 300, 30, 16); (b) (10, 60, 300,
30, 16); units as per Table 2.

The outcome of an increase in Ton on change in OOR for the EDM process is shown
in Figure 20. It can be that change in OOR reduced as the Ton augmented. As the Ton
amplified, diameter of the discharge column also enlarged, thereby reducing the energy
density of the electrical discharge on the discharge spot [33].

Figure 20. Main effect plots for change in OOR with Ton using (a) DOE model; (b) machine learn-
ing model.
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In Figure 21, the images, captured by DINO camera at a magnification of 30.6×, show
the effect of Ton on the surface and profile of the tool tip. The rounding of edges can be
observed in Figure 21a,b, though at lower Ton, there is more damage to the surface of tool
and its corners. The rounding of corners resulted in change in the roundness of tool tip,
hence in the profile of tool.

Figure 21. Variation in tool surface and profile with Ton (a) Ton= 300 µs (b) Ton= 450 µs; other process
parameters Ip= 7 A, Vg= 60 V, Toff= 30 µs, P= 16 kgf/cm2.
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In the Figure 22, the impact of pulse off duration on change in OOR is shown. With an
increase in the Toff, the change in OOR of the tool decreased. Due to smaller Toff, additional
recurrent sparks are caused resulting in the generation of heat energy. This reheat will be
ensnared in the tool due to lack of time for dissipation inducing extra deformation in the
contour of the tool [34,35]. Figure 23 depicts these trends; in Figure 23a,b, captured by a
DINO camera at a magnification of 30.6×, the rounding of edges can be observed, and
not much difference in change in tool profile was recorded, though at lower, Toff there is
slightly more damage to the surface of the tool and its corners.

Figure 22. Main effect plots for change in OOR with Toff using (a) DOE model; (b) machine learn-
ing model.

Figure 23. Variation in tool surface and profile with Toff (a) Toff = 30 µs (b) Toff = 45 µs; other process
parameters Ip = 7 A, Vg = 60 V, Ton = 300 µs, P = 16 kgf/cm2.
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4. Confirmation Experiments

Confirmation experiments were carried out to check the accuracy of developed ma-
chine learning and DOE models for the prediction of SR and change in OOR. The machine
learning-based regression equation succeeded in predicting SR with an error range of
0.40–2.85%, while the DOE-based regression equation predicted SR with an error range of
1.9–3.16% [28]. The average errors for machine learning and the DOE model were found
to be 1.60% and 2.53%, respectively. Similarly, the machine learning-based regression
equation succeeded in predicting change in ORR with an error range of 0.15–2.01%, while
the DOE-based regression equation predicted it with an error range of 0.34–3.35%. The
average errors for machine learning and the DOE model were found to be 0.48% and 1.53%,
respectively. Figures 24 and 25 shows the comparison of the DOE model and the machine
learning model for SR and change in OOR. It can be observed that the machine learning
model for SR and change in OOR is more accurate as compared to the DOE-based model.

Figure 24. Comparison of DOE model and machine learning model with experimental findings
for SR.

Figure 25. Comparison of DOE model and machine learning model with experimental findings for
change in OOR.
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Figure 26 shows the plot between the experimental and predicted value of SR and
change in OOR. From the plot, it is clearly evident that there are no obvious pattern and
unusual structure. The figure indicates the closeness among the observed data and the
predicted results. This means that the developed models are adequate and can be used for
analysis to determine effects of various parameters on SR and change in OOR.

Figure 26. Predicted versus observed for (a) surface roughness and (b) change in out-of-roundness.

5. Conclusions

• A machine learning-based model was trained for the prediction of SR and change in
OOR by correlating the input parameters, namely Ip, Vg, Ton, Toff and P.

• With the help of heat maps and the probability table, it was found that Ip, Ton, Toff
and P had significant effect on SR and that Ip, Ton and Toff affected OOR.

• An increase in SR was observed with an increase in Ip, Ton and Toff, whereas an
inverse relation is observed between SR and P. The SEM micrographs of specimens
machined at different input parameter settings also attested to these facts.

• The change in OOR increased with Ip and decreased with Ton and Toff. The images
taken by the DINO camera at different settings of process parameters also corroborate
the abovementioned findings.

• It was also observed that the trends obtained by using the DOE model and ma-
chine learning model for both the surface roughness and change in OOR exhibited
similar tendencies.

• Machine learning-based regression equation predicted SR with an average error of
1.60% in comparison to 2.53% for DOE-based regression equation.

• During the prediction of change in OOR, the average errors for machine learning and
DOE model were found to be 0.48% and 1.53%, respectively.

• The machine learning-based model is the best model to predict the surface roughness
and change in OOR based on the selected process parameters and their ranges.

Author Contributions: Conceptualization, V.S. and K.V.; methodology, V.S. and K.V.; software, A.S.W.
and K.V.; validation, A.S.W., V.S. and K.V.; formal analysis, V.S.; investigation, V.S. and K.V.; resources,
A.S.W., V.S. and K.V.; writing—original draft preparation, A.S.W.; writing—review and editing, V.S.
and K.V.; supervision, V.S. and K.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Relevant data are available from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2022, 10, 252 23 of 27

Appendix A

Table A1. Data set for machine learning-based regression model.

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

1 10 50 400 20 14 6.77 22.82 132 5 50 200 25 14 5.37 8.52

2 6 70 400 20 18 5.42 07.30 133 9 70 200 45 18 5.69 19.60

3 10 50 200 40 18 5.99 21.94 134 7 60 500 35 16 6.37 09.97

4 8 60 300 30 20 5.60 14.38 135 3 60 300 35 16 5.15 06.19

5 6 50 200 20 14 5.36 12.02 136 5 50 400 45 14 5.73 12.01

6 10 70 200 40 18 5.82 23.50 137 7 60 300 35 16 5.82 12.20

7 8 60 500 30 16 6.66 10.98 138 9 70 400 25 14 6.61 14.70

8 4 60 300 30 16 5.23 07.06 139 5 50 400 25 18 5.20 06.04

9 6 50 400 40 14 5.93 12.70 140 9 70 200 45 14 5.89 16.90

10 8 60 300 30 16 5.97 14.98 141 5 70 400 25 14 5.55 07.42

11 10 70 400 20 14 6.82 17.82 142 7 40 300 35 16 5.78 12.40

12 6 50 400 20 18 5.37 07.74 143 9 50 200 45 14 6.05 17.40

13 10 70 200 40 14 6.00 20.82 144 9 70 400 45 18 6.64 13.80

14 6 70 400 20 14 5.70 08.62 145 9 70 400 45 14 6.84 15.10

15 8 40 300 30 16 5.93 15.70 146 7 80 300 35 16 5.67 12.02

16 10 50 200 40 14 6.16 21.82 147 5 50 400 45 18 5.43 08.14

17 10 70 400 40 18 6.93 15.90 148 5 70 400 45 18 5.48 08.20

18 10 70 400 40 14 7.11 17.22 149 5 50 400 25 14 5.49 09.92

19 8 80 300 30 16 5.82 14.26 150 5 50 200 45 14 5.60 06.62

20 6 50 400 40 18 5.66 08.82 151 7 60 300 35 12 5.93 12.80

21 6 70 400 40 18 5.71 08.38 152 9 50 400 25 18 6.36 15.30

22 6 50 400 20 14 5.64 11.62 153 5 70 400 45 14 5.78 09.52

23 6 50 200 40 14 5.65 09.10 154 5 70 200 25 18 4.90 12.73

24 8 60 300 30 12 6.05 15.58 155 9 70 200 25 14 5.65 20.50

25 10 50 400 20 18 6.60 18.94 156 9 70 200 25 18 5.45 23.22

26 8 60 300 50 16 6.15 14.42 157 7 60 300 15 16 5.49 14.10

27 6 70 400 40 14 5.98 09.70 158 9 50 200 25 18 5.62 21.10

28 6 70 200 20 18 4.93 15.70 159 5 70 200 45 18 5.14 10.82

29 10 70 200 20 14 5.71 25.42 160 9 70 400 25 18 6.41 13.41

30 10 70 200 20 18 5.54 28.10 161 9 50 400 45 14 6.79 19.60

31 8 60 300 10 16 5.58 17.94 162 5 50 200 25 18 5.07 08.64

32 10 50 200 20 18 5.70 26.54 163 5 70 200 25 14 5.20 10.02

33 6 70 200 40 18 5.21 12.78 164 7 60 100 35 16 5.28 14.40

34 10 70 400 20 18 6.65 16.50 165 9 50 400 45 18 6.59 15.72

35 10 50 400 40 14 7.06 22.22 166 5 70 200 45 14 5.44 08.12

36 6 50 200 20 18 5.09 12.14 167 9 50 200 25 14 5.81 21.04

37 6 70 200 20 14 5.20 13.02 168 5 50 200 45 18 5.30 06.74

38 8 60 100 30 16 5.27 18.98 169 9 50 400 20 15 6.44 18.50
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Table A1. Cont.

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

39 10 50 400 40 18 6.88 18.34 170 11 60 300 30 17 6.65 24.80

40 6 70 200 40 14 5.48 10.10 171 5 70 400 20 19 5.04 05.62

41 10 50 200 20 14 5.88 26.42 172 9 50 200 40 19 5.72 18.20

42 6 50 200 40 18 5.38 09.22 173 5 50 200 20 15 5.23 09.40

43 9 55 400 20 14 6.50 18.33 174 9 70 200 40 19 5.55 20.90

44 11 65 300 30 16 6.67 24.36 175 7 60 500 30 17 6.23 08.08

45 5 75 400 20 18 5.14 05.96 176 3 60 300 30 17 4.99 05.88

46 9 55 200 40 18 5.79 18.71 177 5 50 400 40 15 5.64 10.30

47 7 65 300 30 20 5.35 12.42 178 7 60 300 30 17 5.69 12.30

48 5 55 200 20 14 5.25 09.74 179 9 70 400 20 15 6.49 14.61

49 9 75 200 40 18 5.57 20.77 180 5 50 400 20 19 4.99 04.92

50 7 65 500 30 16 6.34 08.17 181 9 70 200 40 15 5.82 18.20

51 3 65 300 30 16 5.07 6.47 182 5 70 400 20 15 5.41 06.94

52 5 55 400 40 14 5.72 10.65 183 7 40 300 30 17 5.65 11.90

53 7 65 300 30 16 5.74 12.38 184 9 50 200 40 15 5.99 18.10

54 9 75 400 20 14 6.50 13.83 185 9 70 400 40 19 6.51 13.10

55 5 55 400 20 18 5.14 05.91 186 9 70 400 40 15 6.78 14.43

56 9 75 200 40 14 5.77 17.45 187 7 80 300 30 17 5.54 12.70

57 5 75 400 20 14 5.44 06.65 188 5 50 400 40 19 5.27 06.42

58 7 45 300 30 16 5.75 12.60 189 5 70 400 40 19 5.32 07.12

59 9 55 200 40 14 5.99 17.95 190 5 50 400 20 15 5.36 08.84

60 9 75 400 40 18 6.59 12.97 191 5 50 200 40 15 5.51 06.94

61 9 75 400 40 14 6.78 13.65 192 7 60 300 30 13 5.87 12.90

62 5 55 400 40 18 5.42 07.41 193 9 50 400 20 19 6.17 14.60

63 5 75 400 40 18 5.43 07.47 194 7 60 300 50 17 5.87 12.11

64 5 55 400 20 14 5.43 09.15 195 5 70 400 40 15 5.69 08.44

65 5 55 200 40 14 5.54 07.25 196 5 70 200 20 19 4.70 14.22

66 7 65 300 30 12 5.85 12.34 197 9 70 200 20 15 5.54 22.40

67 9 55 400 20 18 6.30 15.09 198 9 70 200 20 19 5.27 25.15

68 7 65 300 50 16 5.93 12.24 199 7 60 300 10 17 5.30 14.82

69 5 75 400 40 14 5.72 08.15 200 9 50 200 20 19 5.43 22.40

70 5 75 200 20 18 4.74 14.57 201 5 70 200 40 19 4.98 11.72

71 9 75 200 20 14 5.49 21.63 202 9 70 400 20 19 6.22 13.34

72 9 75 200 20 18 5.29 24.95 203 9 50 400 40 15 6.73 18.30

73 7 65 300 10 16 5.36 14.92 204 5 50 200 20 19 4.86 09.52

74 9 55 200 20 18 5.50 22.89 205 5 70 200 20 15 5.06 11.50

75 5 75 200 40 18 5.03 12.07 206 7 60 100 30 17 5.15 16.52

76 9 75 400 20 18 6.30 13.15 207 9 50 400 40 19 6.46 14.40

77 9 55 400 40 14 6.78 18.15 208 5 70 200 40 15 5.35 09.04

78 5 55 200 20 18 4.96 10.51 209 9 50 200 20 15 5.70 22.30
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Table A1. Cont.

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

79 5 75 200 20 14 5.04 11.25 210 5 50 200 40 19 5.14 07.02

80 7 65 100 30 16 5.14 16.58 211 9 50 400 20 14 6.48 20.70

81 9 55 400 40 18 6.58 14.91 212 11 60 300 30 16 6.75 25.50

82 5 75 200 40 14 5.33 08.75 213 5 70 400 20 18 5.07 06.95

83 9 55 200 20 14 5.70 22.13 214 9 50 200 40 18 5.86 18.53

84 5 55 200 40 18 5.24 08.01 215 7 60 300 30 20 5.32 12.60

85 9 50 450 20 14 6.65 18.75 216 5 50 200 20 14 5.24 10.92

86 11 60 350 30 16 6.98 23.31 217 9 70 200 40 18 5.63 20.41

87 5 70 450 20 18 5.24 04.05 218 7 60 500 30 16 6.34 09.45

88 9 50 250 40 18 6.00 17.49 219 3 60 300 30 16 5.02 05.60

89 7 60 350 30 20 5.50 10.03 220 5 50 400 40 14 5.58 10.83

90 5 50 250 20 14 5.31 09.47 221 7 60 300 30 16 5.78 11.80

91 9 70 250 40 18 5.89 18.55 222 9 70 400 20 14 6.60 15.22

92 3 60 350 30 16 5.07 06.03 223 7 60 300 30 16 5.72 13.25

93 5 50 450 40 14 5.72 12.37 224 5 50 400 20 18 5.17 06.40

94 7 60 350 30 16 5.89 11.63 225 9 70 200 40 14 5.83 18.42

95 9 70 450 20 14 6.76 13.25 226 5 70 400 20 14 5.48 08.35

96 5 50 450 20 18 5.14 04.99 227 7 60 300 30 16 5.91 12.24

97 9 70 250 40 14 6.08 16.87 228 7 60 300 30 16 5.74 11.80

98 5 70 450 20 14 5.54 06.37 229 7 40 300 30 16 5.66 13.12

99 7 40 350 30 16 5.80 12.85 230 9 50 200 40 14 6.00 16.90

100 9 50 250 40 14 6.19 18.37 231 9 70 400 40 18 6.63 13.87

101 9 70 450 40 18 6.84 11.75 232 9 70 400 40 14 6.74 15.00

102 9 70 450 40 14 7.04 14.07 233 7 80 300 30 16 5.66 13.26

103 7 80 350 30 16 5.80 10.41 234 5 50 400 40 18 5.43 08.41

104 5 50 450 40 18 5.42 07.49 235 5 70 400 40 18 5.44 07.85

105 5 70 450 40 18 5.53 06.55 236 7 60 300 30 16 5.77 12.42

106 5 50 450 20 14 5.44 09.87 237 5 50 400 20 14 5.50 10.40

107 5 50 250 40 14 5.59 07.97 238 5 50 200 40 14 5.61 07.84

108 7 60 350 30 12 6.00 13.23 239 7 60 300 30 12 5.91 13.56

109 9 50 450 20 18 6.45 13.87 240 7 60 300 30 16 5.73 11.90

110 7 60 350 50 16 6.08 12.49 241 9 50 400 20 18 6.15 16.17

111 5 70 450 40 14 5.83 08.87 242 7 60 300 30 16 5.75 13.12

112 5 70 250 20 18 4.90 11.65 243 7 60 300 50 16 5.98 12.35

113 9 70 250 20 14 5.80 20.05 244 5 70 400 40 14 5.71 09.92

114 9 70 250 20 18 5.60 21.73 245 5 70 200 20 18 4.82 14.61

115 7 60 350 10 16 5.51 13.17 246 9 70 200 20 14 5.57 21.30

116 9 50 250 20 18 5.71 20.67 247 7 60 300 30 16 5.77 12.84

117 5 70 250 40 18 5.18 10.15 248 9 70 200 20 18 5.35 25.12

118 9 70 450 20 18 6.56 10.93 249 7 60 300 10 16 5.33 14.95

119 9 50 450 40 14 6.94 19.57 250 9 50 200 20 18 5.61 23.30
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Table A1. Cont.

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

Sr.
No. Ip Vg Ton Toff P SR

(µm)
OOR
(µm)

120 5 50 250 20 18 5.01 08.59 251 5 70 200 40 18 5.11 11.12

121 5 70 250 20 14 5.20 09.97 252 9 70 400 20 18 6.24 14.12

122 7 60 150 30 16 5.35 14.83 253 9 50 400 40 14 6.71 18.56

123 9 50 450 40 18 6.74 14.69 254 5 50 200 20 18 5.08 09.00

124 5 70 250 40 14 5.48 08.47 255 5 70 200 20 14 5.15 11.35

125 9 50 250 20 14 5.91 21.55 256 7 60 100 30 16 5.15 16.02

126 5 50 250 40 18 5.30 07.09 257 7 60 300 30 16 5.70 12.83

127 9 50 400 25 14 6.55 19.18 258 7 60 300 30 16 5.72 13.26

128 11 60 300 35 16 6.76 24.23 259 9 50 400 40 18 6.59 15.62

129 5 70 400 25 18 5.25 06.10 260 5 70 200 40 14 5.36 08.01

130 9 50 200 45 18 5.85 17.52 261 9 50 200 20 14 5.61 22.05

131 7 60 300 35 20 5.43 11.57 262 5 50 200 40 18 5.25 06.50
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