
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 26, 2022

Modelling of Tape Casting for Ceramic Applications

Jabbari, Masoud

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jabbari, M. (2014). Modelling of Tape Casting for Ceramic Applications. Department of Energy Conversion and
Storage, Technical University of Denmark.

https://orbit.dtu.dk/en/publications/fd74f5aa-abbd-43ff-9b85-044f4821e00d


Modelling of Tape Casting

for Ceramic Applications

Masoud Jabbari

Department of Mechanical Engineering

Technical University of Denmark

A thesis submitted for the degree of

Doctor of Philosophy

February 2014

mailto:mjab@mek.dtu.dk
http://www.mek.dtu.dk
http://www.dtu.dk


To my father ...



Acknowledgements

This work has been carried out at the Department of Mechanical Engineer-

ing (MEK), Technical University of Denmark (DTU), during the period

2011-2014. The work was supervised by Professor Jesper H. Hattel (MEK),

and co-supervised by Professor Nini Pryds from DTU Energy Conversion

(EC). The work was funded by the Danish Agency for Science Technol-

ogy and Innovation (FTP) (Contract No. 09-072888), which is part of the

Danish Council for Independent Research (DFF). This Ph.D. project was

a part of a larger project called “optimized processing of multi-material ar-

chitectures for functional ceramics” (OPTIMAC). The project consists of

three work packages and DTU-MEK was the leader of WP1 whose focus

was on process modelling. The present project was carried out in close

collaboration between DTU-MEK and DTU-EC.

I would like to express my sincere gratitude to Professor Hattel for his

unfailing guidance and support throughout my studies, critical review of my

work, and most importantly for his great patience and enthusiasm. He has

set an example I hope to match some day. I would like to thank Professor

Pryds for the fruitful discussions and being more than a co-supervisor.

I would like to express my thanks to Dr. Christian Bahl and Ms. Regina

Bulatova as well as Dr. Anderas Kaiser and Mrs. Cristine Grings Schmidt

from DTU Energy Conversion (EC) for the fruitful meetings and discussions

that we have had and for the continuous collaboration that we have made.

Many thanks to Dr. Jon Spangenberg for being highly inspirational and

helpful from first encounter. I would also like to thank Dr. Jesper Thoborg

for always being ready for any kind of support.

I extend my deepest gratitude to all my colleagues at the Process Modelling

Group for creating such a nice and warm workplace filled with humor. Fur-

thermore, my fellow Ph.D. students; Raphal Cominal, Peter Christiansen,

Mads Rostgaard Sonne, Ismet Baran, Patrick Guerrier, Sankhya Mohanty,

Shizhao Li, as well as my former colleagues Dr. Micheal W. Nielsen, Dr.

Elham Moumeni, Dr. Ali Sarhadi, Dr. Cem C. Tutum and Dr. Petr Kotas

are wished the best of luck with their research projects and careers.



It was a privilege to meet Professor James M. McDonough at the University

of Kentucky, Computational Fluid Dynamic Group and have an opportunity

to discuss on the numerical solution of the Navier-Stokes equations and

modelling of non-Newtonian fluids. My keen appreciation goes to him for

the inspiration he provided. Additionally, I deeply thank my new friends;

Mohammad Souri, Hojjat Sarvari, Mohammad Saghaian, and all the others

for making my stay in Kentucky an incredible experience.

I am deeply and forever indebted to my parents for their love, support and

encouragement throughout my entire life. It was under their watchful eye

that I gained so much drive and an ability to tackle challenges head on.

Finally, and most importantly, I would like to express my deepest appre-

ciations to my beloved wife, my better half, Elham. She already has my

heart so I will just give her a heartfelt “thanks.”. Elham, if I wrote down

everything I ever wanted in a wife and best friend I would not have believed

I could meet anyone better!

Masoud Jabbari

Kgs. Lyngby, January 2014



Abstract

Functional ceramics find use in many different applications of great interest, e.g. ther-

mal barrier coatings, piezoactuators, capacitors, solid oxide fuel cells and electrolysis

cells, membranes, and filters. It is often the case that the performance of a ceramic

component can be increased markedly if it is possible to vary the relevant properties

(e.g. electrical, electrochemical, or magnetic) in a controlled manner along the extent

of the component. Such composites in which ceramic layers of different composition

and/or microstructure are combined provide a new and intriguing dimension to the

field of functional ceramics research. Advances in ceramic forming have enabled low

cost shaping techniques such as tape casting and extrusion to be used in some of the

most challenging technologies. These advances allow the design of complex components

adapted to desired specific properties and applications. However, there is still only very

limited insight into the processes determining the final properties of such components.

Hence, the aim of the present PhD project is to obtain the required knowledge basis

for the optimized processing of multi-material functional ceramics components.

Recent efforts in the domain of ceramic processing are generally focused on the

control of the microstructure while the importance of shaping is often underestimated.

Improved performance requires the design and shaping of both controlled architectures

and microstructures. Novel functionally graded ceramic materials may be formed by

multilayers or adjacent grading of different ceramic materials. Such grading is often

desired for optimal performance. An example is when there is a gradient in tempera-

ture or chemical environment along the component during operation; in this case the

properties of each section of the component should be optimized for the local environ-

ment by grading. The grading may be between entirely different ceramic materials or

merely a minor compositional alteration within one type of material. However, there

are several challenges to be met for the successful fabrication of such complex struc-

tures. Rheological properties play an extremely important role for the co-processing of

more than one material. Only by matching the rheological properties of the different

pastes, a reproducible and well defined gradient composite will be formed.

Tape casting involves the casting of a slurry onto a flat moving carrier surface. The

slurry passes beneath a knife edge (doctor blade) as the carrier surface advances along

a supporting table. The solvents evaporate to leave a relatively dense flexible sheet

that may be stored on rolls or stripped from the carrier in a continuous process. Today,

multilayers are achieved by laminating layers of different materials on top of each other.

The challenge is to be able to tape cast layers of different materials simultaneously both

stratified in the horizontal and in the lateral direction. Understanding how to achieve

that and perfection of such a technique will open up a large variety of applications.

General challenges with this process is, as mentioned, controlling the rheological

iv



properties of the slurries/pastes as they strongly affect the process and the quality of

the final product, maintaining uniform composition during the process and control-

ling/understanding the shrinkage in drying and sintering. Furthermore, understanding

the tape delamination and film cracking of multilayers as well as of interface fracture

modes in multilayers is also an important topic that needs to be considered and under-

stood.

In the present PhD thesis the focus is on the numerical modelling of the tape

casting process of functionally graded ceramic materials for fuel cell applications as

well as magnetic refrigeration. Models to simulate the shaping of monolayer/multilayer

and graded materials by tape casting are developed. The emphasis is on analyzing the

entry flow of multiple slurries from the reservoir into the doctor-blade region as well

as the exit region where a free surface (meniscus) forms. This encompasses a detailed

fluid model capable of tracking the material flow/deformation taking the formation

of the free surface into account. In the work it was chosen to focus on developing

analytical/numerical flow solvers in both Ansys Fluent and Matlab.

Analytical approaches for fluid flow analysis in the tape casting process showed that

a relative good agreement could be achieved between the results of the modelling and

the experimental data. The study, furthermore, demonstrated that the aforementioned

agreement was increased by improving the steady state model with a quasi-steady

state analytical model. In order to control the most important process parameter, tape

thickness, the two-doctor blade configuration was also modeled analytically. The model

was developed to control the tape thickness based on the machine configuration and

the material constants. Many of the affecting parameters in the process were embedded

and they can easily be varied to evaluate their influence.

This study showed that using computational fluid dynamics (CFD) the process can

be modeled with more details in order to better control the produced tapes. Very

importantly, the free surface of the ceramic as leaving the doctor blade region was

modeled. The rheological behavior of the ceramic slurry was also taken into account.

The influence of the main process parameters, i.e. the substrate velocity, the initial

slurry load, and the doctor blade height, were investigated. Based on the developed

model, one phenomenon inherit to the process called side flow was also modeled. The

results showed that to reach a desired uniform tape the side flow factor should be kept as

close as to the value of one. The impact of the process parameters were also discussed in

details in order to control the side flow, and consequently the tape thickness. Moreover,

a CFD model was developed to simulate multiple flow of the ceramic slurry in tape

casting. The simulation was aimed to analyze the production of functionally graded

ceramics (FGCs) which are used for magnetic refrigeration applications.

Numerical models were developed to track the migration of the particles inside the

ceramic slurry. The results showed the presence of some areas inside the ceramic in
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which the concentration of the particles is higher compared to other parts, creating the

resulting packing structure. And finally a numerical code was developed to simulate

the drying process. The results showed that the mass loss due to the evaporation is

increasing close to linearly with the drying time corresponding to an almost constant

drying rate. However, the rate starts to decrease after some time in the simulation.

This is in good agreement with the real life process where the drying categorized into

two stages: (1) constant rate period (CRP), in which the rate of evaporation per unit

area of the drying surface is independent of time, (2) falling rate period (FRP), in

which the evaporation rate is reduced, as a consequence of low migration of the water

from the bottom layers to the top ones due to diffusion (which is highly dependent to

the temperature).
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Resumé

Funktionelle keramiske materialer finder anvendelse i mange forskellige applikationer

af industriel interesse, fx termiske barrierebelægninger, piezoactuatorer, kondensatorer,

solid oxide brændselsceller og elektrolyseceller, membraner og filtre. Ydelsen af den

keramiske komponent kan ofte øges markant, hvis det er muligt at variere de relevante

egenskaber (fx elektriske, elektrokemiske eller magnetiske) p̊a en kontrolleret måde

“langs med” eller “igennem” komponenten. S̊adanne keramiske kompositmaterialer

med keramiske lag af forskellig sammensætning og/eller mikrostruktur åbner helt nye

muligheder inden de tekniske anvendelser af funktionel keramik.

Udviklingen indenfor fremstillingsteknologier med relativt lave omkostninger s̊asom

tape casting og ekstrudering har gjort det muligt at fremstille komplekse keramiske

komponenter, der er tilpasset til de ønskede egenskaber og anvendelser. Forst̊aelsen

for de fænomener og processer, der bestemmer de endelige egenskaber af de frem-

stillede komponenter er dog i dag stadig relativt sparsom. Det er derfor formålet med

nærværende ph.d.-projekt at adressere denne problemstilling for derved at opn̊a øget vi-

denskabelig indsigt, der kan danne grundlag for optimerede multi-materiale funktionelle

keramikkomponenter.

Det meste videnskabelige arbejde indenfor keramisk processering har været fokuseret

p̊a at kunne forst̊a og kontrollere den resulterende mikrostruktur, hvorimod vigtigheden

af endelig geometri, form og tolerancer ofte er blevet undervurderet. Der er derfor in-

gen tvivl om, at b̊ade mikrostrukturer s̊avel som den overordnede komponentarkitektur

skal adresseres mere ligeligt, hvis ønsket om optimerede keramiske komponenter skal

realiseres.

Funktionaliteten i funktionelle keramiske materialer opn̊as for eksempel ved at have

flere lag af keramiske materialer, der giver den tilsigtede “graduering” igennem kom-

ponenten. Et eksempel p̊a dette kan være, n̊ar der f.eks. optræder en temperaturgra-

dient igennem komponenten under drift, og det derfor er ønskeligt at komponentens

egenskaber gennem tykkelsen er tilpasset denne driftssituation. Gradueringen gennem

materialet kan opn̊as ved at lade lag af helt forskellige keramiske materialer grænse

op til hinanden eller ved at indbygge relativt små ændringer i kompositionen af et

keramisk materiale igennem komponenten. Dette stiller dog store krav til de reolo-

giske egenskaber af de forskellige keramiske “slurries”, idet disse i høj grad kontrollerer

materialeflowet under processen.

Tape casting er en proces, hvor den keramiske “slurry” bæres frem af et fladt b̊and,

der bevæger sig og derved “trækker” den keramiske pasta ud, efter den har forladt

“doctor blade” omr̊adet. Efter tørring og sintring opn̊as et relativt fleksibelt, tyndt

plademateriale, som kan rulles op og opbevares p̊a store ruller. Ønskes en flerlaksstruk-

tur opn̊as den i dag ved at tape caste individuelle plader og derefter fremstille et laminat

vii



af dem. Udfordringen ligger i at tape caste lagdelte materialer (b̊ade vertikalt og ho-

risontalt) i en enkelt proces i stedet for flere. Hvis det kan kontrolleres og styres p̊a den

rette måde, vil det åbne for en række nye applikationer for tape casting.

De generelle udfordringer indenfor tape casting er som nævnt at styre de reologiske

egenskaber af de keramiske “slurries” og forst̊a deres opførsel under processen og derved

sikre en ensartet sammensætning under processen for derved at have det bedst mulige

udgangspunkt for den efterfølgende tørring og sintring. Dertil kommer forst̊aelsen af

revnedannelse under delaminering i plader med flere lag fremstillet ved tape casting.

I nærværende ph.d. afhandling er der blevet arbejdet med modellering af tape cast-

ing af funktionelle keramiske materialer til brændselscelle applikationer samt magnetisk

køling. Der er udviklet modeller for b̊ade enkeltlag og flere lag. Fokus har været p̊a at

beskrive materialeflowet fra slurrybeholderen til omr̊adet, hvor slurrien forlader doctor

blade regionen, og der dannes en fri væskeoverflade. Dette er blevet adresseret v.h.a.

b̊ade analytiske og numeriske modeller implementeret Ansys-Fluent og Matlab.

Flere analytiske metoder til beskrivelse af materialeflowet i tape casting processen

viste sig at give resultater, der var i god overensstemmelse med de eksperimentelle

data. Studiet demonstrerede yderligere, at overensstemmelsen blev forbedret, da den

analytiske stationære løsning blev modificeret til at være quasi-stationær. For at kunne

kontrollere tykkelsen af tape-laget, der er den vigtigste enkeltst̊aende procesparameter,

blev tilfældet med two-doctor blade ogs̊a inkluderet i den analytiske løsning. Modellen

kan s̊aledes bruges p̊a simpel vil til at kontrollere tykkelsen af tape-laget baseret p̊a

maskinkonfigurationen og materialeparametrene.

Dette studie understregede ydermere det forhold, at hvis processen skal modelleres i

mere detalje er det nødvendigt at bruge computational fluid dynamics (CFD). Vigtigt i

denne sammenhæng er det at kunne modellereden frie overflade, n̊ar den forlader “doc-

tor blade” omr̊adet. Den reologiske opførsel af den keramiske “slurry” blev ogs̊a taget

i betragtning. De vigtige procesparametre, s̊a som underlagets hastighed, den initiale

“slurry” højde og “doctor blade” højden, blev derefter undersøgt. Modellen var ogs̊a

i stand til at modellere to forskellige materialer, der flød ved siden af hinanden (side

flow). Resultaterne for denne undersøgelse viste at “side flow” faktoren skulle være tæt

p̊a en for at f̊a et uniformt materiale. Det blev ogs̊a diskuteret hvilken indflydelse de

forskellige procesparametre havde p̊a “side flow” og tykkelsen af materialet. Derudover

blev der udviklet en CFD model, der kunne simulere tape casting med flere forskel-

lige materialer. Målet for disse simuleringer var at analysere funktionelle keramiske

materialer, der anvendes i magnetisk køling.

Endelig blev flere numeriske modeller udviklet til at følge partiklerne inde i den

keramiske “slurry”. Resultaterne viste, at der opstod omr̊ader med høje partikelkon-

centrationer i det keramiske materiale, hvilket resulterede i en mere tæt struktur. Af-

slutningsvis blev tørringsprocessen simuleret med en numerisk kode, der var udviklet
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til formålet. Disse resultater viste, at fordampningsvægttabet forøges nærmest lineært

med tørringstiden og dette svarer til en næsten konstant tørringshastighed. Denne

hastighed formindskes dog efter noget tid i simuleringen. Dette er i god overensstem-

melse med den virkelige proces, hvor tørringen typisk kategoriseres i to stadier: (1) Den

konstante hastigheds periode, hvori hastigheden af fordampningen per enhed af tørret

overflade er uafhængig af tiden og (2) Den faldende hastighedsperiode, hvor vandet

pga. diffusion (som er yderst afhængig af temperaturen) bevæger sig fra de nederste

lag til de øverste lag og derved formindsker fordampningshastigheden.
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Chapter 1

Introduction

This chapter includes an introduction to the present thesis. A brief introduction of

the tape casting process together with its different applications will be given in section

1.1. A short review of the existent models in the tape casting process will be given in

section 1.2, and based on this the objectives of this thesis will be presented in section

1.3. The methodologies applied to achieve the objectives will be discussed in section

1.4. Finally, the structure of the thesis is presented in section 1.5.

1.1 Tape casting process

Tape Casting was first introduced in the 1940s during the second world war when

there was a serious lack of the quartermaster materials to produce mica capacitors. In

tape casting, sometimes referred to as the doctor-blade process, the slurry is spread

over a surface using a carefully controlled blade referred to as a doctor blade. For the

production of long tapes, the blade is stationary and the surface moves, whereas for the

production of short tapes in the laboratory, the blade is pulled over a stationary surface.

The schematic of the tape casting process from beginning (powder preparation) to the

end, is illustrated in Figure 1.1. The tape casting process was firstly reported publicly

by Howatt et al. [Howatt et al., 1947] to produce thin ceramic sheets for usage of

capacitor dielectrics, and was shortly after applied to industrial production of ceramic

capacitors [Howatt, 1952].

Years after, Stetson and Gyurk [Stetson and Gyurk, 1967] prepared alumina (Al2O3)

substrates by tape casting, which were used as substrates for thin film circuits, devices,

and integrated circuits. Meanwhile, Schwartz and Kirkpatrick [Schwartz and Kirk-
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1. INTRODUCTION

patrick, 1967] together with the IBM corporation developed a layer packaging material

for use in computers by means of the tape casting process. In the 1970s many new prod-

ucts were successfully developed and a number of tape casting applications emerged

[Bellosi and Vincenzini, 1979; Fiori et al., 1979; Newnham et al., 1978]. Many works

on materials development and process improvement were published in the 1980s-1990s

[Bowen, 1980; Chartier and Bruneau, 1993; Claaen and Claussen, 1992; Hotza and

Greil, 1995; Lindqvist and Lidn, 1997; Mikeska and Cannon, 1988; Schwartz, 1984;

Vasconcelos et al., 1998; Yamamoto, 1989]. Basically this era was a period in which the

technology matured and new applications were being explored, such as the production

of thin membranes for fuel cells [Appleby, 1996; Riley, 1990]. Most of the work later

on is dedicated to the different material investigations and development of different

products by means of tape casting.

Figure 1.1: The tape casting process [th1].

1.1.1 Applications of tape casting

As mentioned earlier, the initial motivation for the tape casting process was to produce

thin ceramic sheets for usage in capacitors. However, after almost 60 years, the usage of

the tape casting process has become more broad in the ceramic industry. A summary

of the different applications of tape casting will be given shortly henceforth.

1.1.1.1 Substrates

For many years almost all of the (single-layered) substrate materials produced for the

electronics industry were manufactured by tape casting. Substrates can be defined as

the carrier or “backbone” of the electronic circuit. They are the ceramic insulator upon

which the circuitry is deposited and patterned. These substrates range in size from as

small as 6 × 6mm (0.25 × 0.25in) to as large as 30 × 30cm (12 × 12in), and in some

cases larger sizes have been produced. What all of these substrates have in common is

their very small thickness, usually 1.5mm (0.060in) or less.
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1.1.1.2 Multilayered ceramics

Multilayered ceramic packages (MLC) would not exist if tape casting had not been

invented. The basis for the multilayer industry is the ability to individualize layers

with respect to metallization and via interconnections and then to laminate a set of

these individual layers together into a package that can be sintered into a monolithic

structure. Multilayered ceramic packages with as few as two layers up to structures

with as many as a hundred or more layers are common in the electronic ceramics

industry today [Yuping et al., 2000]. Moreover, multilayered ceramics produced by

tape casting, has also been developed and used for flue gas purification [He et al.,

2013], thus underlying the growing diversity of today’s applications of the tape casting

process.

1.1.1.3 Solid oxide fuel cell (SOFC)

Solid oxide fuel cells (SOFCs) are generally based on the same principle as the oxygen

sensor, where the electrical energy is produced from a reaction of gases such as hydrogen

and oxygen or natural gas and oxygen with water as a by-product [Stver et al., 2004].

The electrolyte in these fuel cells is the stabilized zirconia, which becomes a conductor

of oxygen ions at elevated temperatures. In many cases the zirconia membrane, which

is relatively large in the x and y directions and has a very thin cross section (see Figure

1.2) is manufactured by tape casting.

Figure 1.2: (a) Schematic illustration of a SOFC, (b) cross-sectional fracture surface
of anode support, anode and electrolyte produced by tape casting after application of
cathode and current collector and second firing step [Shanti et al., 2012].

1.1.1.4 Functionally graded materials (FGMs)

A considerable amount of research has been conducted recently to produce functionally

gradient materials (FGMs) for a wide variety of applications, e.g. [Bever and Duwez,

1972; Shen and Bever, 1972]. The ability to tape-cast and laminate several layers of
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materials with differing chemical compositions makes these FGMs possible [Acikbas

et al., 2006; Yeo et al., 1998]. Although FGMs produced by tape casting are used for

different applications, i.e. metal/ceramic composites and electronically graded compos-

ites, the newly developed FGMs for magnetic refrigeration applications [Dinesen et al.,

2012] (see Figure 1.3) are of particular interest.

Figure 1.3: Schematic illustration of the newly developed method of tape casting to
produce FGMs for magnetic refrigeration applications [Dinesen et al., 2012].

1.2 Existent models

In general, the flow behavior of a fluid system can be analyzed using the principles of

fluid dynamics. There have been extensive studies on fluid dynamics and transport

phenomena in processing organic engineering materials, e.g., petroleum and polymers

[Cheneviere et al., 1991; Molaei et al., 2013; Nghiem et al., 2006; Sjoblom et al., 1997;

Zhao et al., 2013]. The same principles are applicable to the flow of ceramic slurries

during the tape casting process. However, taking a closer look at the tape casting

process, one will find that it is a multidisciplinary field combining different aspects to

investigate. The most important aspects that have been investigated deal with the

fluid behavior (rheology of the fluid) and numerical/analytical models to simulate the

process with the aforementioned rheology behavior taken to account. A presentation

of this will be given shortly henceforth.

1.2.1 Rheological investigations

The rheological behavior of the ceramic slurry used in the tape casting process is one

the defining parameters for the analysis of flow in the parallel doctor blade region. The

simplest option is to assume that there is a linear correlation between the shear rate

(γ̇) and the shear stress (τ), and the correlation parameter is called the Newtonian

viscosity, which in this case is constant. In case the viscosity itself is dependent on

shear rates, the rheological behavior will change to show non-Newtonian behavior. The
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existent models based on this definition between Newtonian and non-Newtonian models

are summarized in Table 1.1.

Table 1.1: List of existent models based on the rheological behavior.
Newtonian behavior Non-Newtonian behavior

[Chou et al., 1987] [Ring, 1989]
[Gaskell et al., 1997] [Loest et al., 1994]
[Kim et al., 2006] [Pitchumani and Karbhari, 1995]

[Huang et al., 1997]
[Terrones et al., 1997]
[Tok et al., 2000]
[Joshi et al., 2002]
[Joshi et al., 2002]
[Zhang et al., 2002]

Based on the reported studies it is evident that a non-Newtonian behavior of the

fluid gives a better assumption for the ceramic flow in tape casting, however the New-

tonian assumption has also shown to be reliable under some conditions. One of the

challenging points in this area is to develop a material model for a specific ceramic

slurry. However, this is not in the scope of the current research as it requires detailed

experimental investigations in order to extract material parameters for the rheology of

a ceramic slurry. The interesting point in this respect is to investigate the influence of

material parameters on the produced tapes.

1.2.2 Numerical/analytical models

Dealing with the flow in tape casting, the coupled momentum and continuity equa-

tions should in general be solved. These equations can be solved either analytically

or numerically. The existent models, based on the classification whether numerical or

analytical approaches are used, are summarized in Table 1.2.

Table 1.2: List of existent models based on the solution approaches.
Analytical modelling Numerical modelling

[Chou et al., 1987] [Loest et al., 1994]
[Ring, 1989] [Gaskell et al., 1997]
[Pitchumani and Karbhari, 1995] [Joshi et al., 2002]
[Pitchumani and Karbhari, 1995]
[Huang et al., 1997]
[Tok et al., 2000]
[Joshi et al., 2002]
[Tok et al., 2000]
[Kim et al., 2006]

All of the published results based on numerical/analytical approaches are solved
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under steady state conditions assuming constant slurry height in the reservoir. In most

of the work conducted by other authors so far, moreover, the only parameter which has

been investigated is the tape thickness (being a very important one for the result of

the process), and its variation by changing the substrate velocity. In addition, when it

comes to the numerical approaches, the free surface of the ceramic slurry in the doctor

blade exit has not been investigated. These observations are taken as the current state

of the art in the field of analytical/numerical tape casting of ceramics and are hence

used in order to motivate the project. This will be discussed in details in the following

section.

1.3 Objectives of the Thesis

In the present thesis, analytical/numerical models are developed in order to optimize

the architecture of the thin ceramic layers produced by tape casting. The investigation

is categorized into four main groups as follows:

In the first series of investigations analytical models are developed to capture/simulate

the variation of the tape thickness in the doctor blade exit, while the slurry height is

decreasing in the reservoir. The developed generalized models contain the materials

constitutive behavior as well as the process parameters.

For the second series of investigations 2D numerical models are developed in order

to simulate the tape casting process in which the free surface of the ceramic slurry

in the doctor blade exit is taken into account. Moreover, the transient behavior of

the slurry height in the reservoir is implemented. The 2D numerical model is further

developed in order to capture the migration of particles inside the ceramic slurry.

As for the third part of the investigations, 3D numerical models are developed to

simulate the side flow phenomenon in the tape casting of ceramics. The developed 3D

model is modified thus being capable of simulating flow of two adjacent fluids used in

tape casting of functionally graded ceramics (FGCs).

Finally, the evaporation of water from thin layers are modeled with the purpose of

simulating the drying process in tape casting.

1.4 Methodology

The applied methodology can be split into two main parts in order to meet the afore-

mentioned objective.

• All analytical models are developed and written in Matlab scripts.

• For all numerical models the finite volume based commercial code, ANSYS Fluent,

is used. However, in order to make the model more efficient, some subroutines
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are written in C language and linked to the CFD code. Moreover, for the last

part of the thesis which is dealing with the drying process, the numerical model

is developed in Matlab.

1.5 Structure of the thesis

The thesis consists of six chapters and seven papers. The content of the chapters is as

follows

Chapter 1: Introduction

• This chapter gives an introduction to the thesis by first describing the tape cast-

ing process and its applications. Then, the existent fluid flow based models in

analyzing the tape casting are shortly reviewed. Finally, the objectives of the

thesis are described.

Chapter 2: Theory

• This chapter presents all the governing equations for the flow simulation, expres-

sions for rheological behavior of fluids, different schemes of multiphase flow mod-

elling and free surface capturing as well as particle migration in a non-Newtonian

fluid.

Chapter 3: Modelling Approaches

• In this chapter the results of different numerical/analytical models of fluid flow

simulating of tape casting of single material are presented. Numerical results of

the side-by-side tape casting of a two-fluid system as well as particle migration

inside a ceramic slurry are also presented.

Chapter 4: Drying Kinetics

• This chapter includes a brief introduction to the drying process of thin ceramic

sheets as well as the results of a single analysis of water evaporation from a

ceramic-water mixture.

Chapter 5: Summary of Appended Papers

• In this chapter a short summary of the seven appended papers is given.

7
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Chapter 6: Conclusion and Future Work

• The conclusions of the different investigations from this thesis are given in this

chapter and the future perspectives of numerical modelling in the tape casting

process are described.
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Chapter 2

Theory

This chapter presents all the hypotheses, theory and governing equations which are

used in this thesis. Thus, the governing equations for the flow simulation, expressions

for rheological behavior of fluids, different schemes of multiphase flow modelling and free

surface capturing as well as particle migration in a non-Newtonian fluid are presented.

2.1 Governing Equations

The general equations of flow for the ceramic slurry in tape casting described as a

non-Newtonian fluid are the mass conservation equation, which is in the form of the

continuity equation and the momentum conservation equations. Hence, when dealing

with the flow in tape casting, the coupled momentum and continuity equations [Wonisch

et al., 2011] should in general be solved:

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+∇ · T + F (2.1)

∂ρ

∂t
+∇ · (ρu) = 0 (2.2)

where ρ is density, u is velocity, p is pressure, T is stress tensor and F is the contribution

from external forces. Here, the momentum equation (2.1) expresses Newton’s second

law of motion, and the continuity equation (2.2) ensures conservation of mass. The

aforementioned equations can be solved either analytically or numerically, where the

first approach however puts a natural limitation to the complexity of the application.

9



2. THEORY

2.2 Rheological Models

Rheology is the study of the flow of matter, primarily in the liquid state, but also as soft

solids or solids under conditions in which they respond with plastic flow rather than

deforming elastically in response to an applied force. It almost applies to everything,

but it is interesting to study for the materials which have a complex molecular structure,

such as muds, sludges, suspensions, polymers and other glass formers (e.g., silicates),

as well as many foods and additives, bodily fluids (e.g., blood) and other biological

materials.

Some liquids exhibit Newtonian flow characteristics, i.e., at constant temperature

and pressure, in simple shear, the shear stress (τ) is proportional to the rate of shear

(γ̇) and the constant of proportionality is the well-known dynamic viscosity (µ). Such

fluids are classically known as Newtonian fluids. The first models that were developed

for the flow analysis in tape casting were based on a simple Newtonian assumption,

i.e.:

τ = µ

(

∂u

∂y

)

= µγ̇ (2.3)

In particular, the first model for predicting the tape thickness was developed by

Chou et al. [Chou et al., 1987]. In their work Newtonian behavior was used and they

assumed that the flow in the parallel doctor blade region was a linear combination of

pressure and drag flow. The Newtonian fluid assumption was also used by Gaskell

et al. [Gaskell et al., 1997] to investigate the impact of the reservoir geometry on

the flow behavior inside the tape caster. Kim et al. [Kim et al., 2006] developed an

analytical model to investigate the impact of the relative magnitudes of the driving

forces (wall shear and pressure gradient) on the resulting tape thickness. They also

compared the beveled and parallel blades in terms of productivity, minimum thickness,

and potential influence on particle alignment. The author also used the Newtonian

fluid assumption in the numerical modelling of fluid flow in the doctor blade region by

further developing existing models from literature and introducing a non-dimensional

tape thickness [Jabbari and Hattel, 2011]. However, in the tape casting process of

ceramics the slurry seldom behaves like a Newtonian fluid, and consequently more

general non-Newtonian fluid description should be applied if higher accuracy models

are the goal. This will be addressed in more detail in the following.

The simplest possible deviation from the Newtonian fluid behavior occurs when

the simple shear data τ − γ̇ does not pass through the origin (equation (2.3)) and/

or does not result in a linear relationship between τ and γ̇. Conversely, the apparent

viscosity, defined as τ/γ̇, is not constant and is hence a function of τ or γ̇. Indeed,

under appropriate circumstances, the apparent viscosity of certain materials is not only

a function of flow conditions (geometry, rate of shear, etc.), but it also depends on the
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Figure 2.1: Rheological classification of different flows [Jabbari and Hattel, 2011].

kinematic history of the fluid element under consideration. Thus, the steady shear

behavior may be described by a relation of the form,

γ̇yx = f(τyx) (2.4)

Depending upon the form of equation (2.4), three possibilities exist:

1. Shear-thinning or pseudoplastic behavior (power law)

2. Visco-plastic behavior with or without shear-thinning behavior (Bingham-plastic

and Herschel-Bulkley plastic)

3. Shear-thickening or dilatant behavior

Figure 2.1 shows qualitatively the flow curves (also called rheograms) for the above-

noted three categories of fluid behavior [Jabbari and Hattel, 2011]. The third type of

the non-Newtonian fluids (dilatant) will not be discussed in the present review, since

it is not relevant for tape casting.

2.2.1 Shear-thinning

The shear-thinning (power law) materials are probably the most widely encountered

type of time-independent non-Newtonian fluid behavior in engineering practice. Often

the relationship between shear stress (τ)-shear rate (γ̇) plotted on log-log co-ordinates

for a shear-thinning fluid can be approximated by a straight line over an interval of

shear rate, i.e.,

τ = k · γ̇n (2.5)

or, in terms of the apparent viscosity,

11



2. THEORY

µ = k · γ̇n−1 (2.6)

Obviously, 0 < n < 1 will yield dµ/dγ̇ < 0, i.e., shear-thinning behavior fluids are

characterized by a value of n (power-law index) smaller than unity. Many polymer

melts and solutions exhibit a value of n in the range 0.3 − 0.7 depending upon the

concentration and molecular weight of the polymer, etc. Even smaller values of power-

law index (n ∼ 0.1− 0.15) are encountered with fine particle suspensions like kaolin-in-

water, bentonite-in-water, etc [Barnes et al., 1989]. Naturally, the smaller the value of

n, the more shear-thinning the material is. The other constant, k, (consistency index)

is a measure of the consistency of the substance.

The power law model is the most common used constitutive behavior for the rheol-

ogy of the ceramic slurry in tape casting. Pitchumani and Karbhari [Pitchumani and

Karbhari, 1995] evaluated the effects of an imposed pressure gradient due to the height

of the slurry in the casting head, as well as those of the drag due to the moving substrate

on the slurry flow by modelling the slurry discharge as a generalized power law flow.

Tok et al. [Tok et al., 2000] also used the power law constitutive model in analytical

modelling of flow below the doctor blade region and the resultant tape thickness. The

power law constitutive behavior was also implemented when we developed the quasi-

steady state analytical model capable of modelling a non-constant height of the ceramic

slurry in the reservoir and its resultant variation in the tape thickness [Jabbari et al.,

2013b]. We also conducted a 2D simulation of a power law ceramic in combination with

a multiphase model (VOF) to track the free surface of the La0.85Sr0.15MnO3 (LSM)

ceramic slurry [Jabbari and Hattel, 2012]. More specifically, the power law behavior of

LSM is given in equation (2.7) and shown in Figure 2.2.

τ = 3.31

(

∂u

∂y

)0.90

(2.7)

In order to rectify some of the weaknesses of the power-law, Cross [Cross, 1965] pre-

sented the following empirical form which has gained wide acceptance in the literature.

In simple shear, it is written as

µ− µ∞
µ0 − µ∞

=
1

1 + k · γ̇n (2.8)

It is readily seen that for n < 1, this model also predicts shear-thinning behavior.

Furthermore, the Newtonian limit is recovered here when k → 0. Though initially Cross

[Cross, 1965] proposed that n = 2/3 was satisfactory for numerous substances, it is now

thought that treating it as an adjustable parameter offers significant improvement in

terms of the degree of fit [Barnes et al., 1989]. Evidently, equation (2.8) correctly

predicts µ = µ0 and µ = µ∞ in the limits of γ̇ → 0 and γ̇ → ∞ respectively. The
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Figure 2.2: Rheology behavior of LSM ceramic [Jabbari et al., 2013b].

Cross model was used by Wonisch et al. [Wonisch et al., 2011] in the tape casting

for numerical modelling both the macroscopic flow behavior and the orientation of

individual particles inside the ceramic slurry.

The inherent deficiencies in the power-law model are remedied by the Carreau model

[Bird, 1976]:

µ− µ∞
µ0 − µ∞

=
1

[

1 + (λ · γ̇)2
](1−n)/2

(2.9)

where λ is the time constant in seconds. The Carreau model was used by Terrones

et al. [Terrones et al., 1997] to predict the tape thickness of the aqueous suspensions

numerically.

2.2.2 Visco-plastic fluids

This type of non-Newtonian fluid behavior is characterized by the existence of a thresh-

old stress (called yield stress or apparent yield stress, τ0) which must be exceeded for

the fluid to deform (shear) or flow. Conversely, such a substance will behave like an

elastic solid when the externally applied stress is less than the yield stress, τ0. Of

course, once the magnitude of the external yield stress exceeds the value of τ0, the fluid

may exhibit Newtonian behavior (constant value of µ) or shear-thinning characteristics,

i.e., µ(γ̇). It therefore stands to reason that, in the absence of surface tension effects,

such a material will not level out under gravity to form an absolutely flat free surface.

Quantitatively this type of behavior can be hypothesized as follows: such a substance

at rest consists of three-dimensional structures of sufficient rigidity to resist any exter-

nal stress less than |τ0| and therefore offers an enormous resistance to flow, albeit it

still might deform elastically. For stress levels above |τ0|, however, the structure breaks
down and the substance behaves like a viscous material. In some cases, the build-up
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2. THEORY

and breakdown of structure has been found to be reversible, i.e., the substance may

regain its (initial or somewhat lower) value of the yield stress.

A fluid with a linear flow curve for |τ | > |τ0| is called a Bingham plastic fluid, and

is characterized by a constant value of viscosity µB. Thus, in one-dimensional shear,

the Bingham model is written as:

τyx = τB0 + µB γ̇yx |τyx| >
∣

∣τB0
∣

∣

γ̇yx = 0 |τyx| <
∣

∣τB0
∣

∣

(2.10)

Application of the Bingham constitutive model for the tape casting process was

attempted by Ring [Ring, 1989]. However, he used shear rate, rather than shear stress

as a yield criterion. The Bingham model was used by Zhang et al. [Zhang et al.,

2002] to model the flow behavior below the doctor blade region and the resultant tape

thickness. They proposed a critical velocity (vc) and derived an analytical equation

based on sufficient (vc ≤ v0) or insufficient (vc > v0) belt velocity (v0) to overcome the

yielding point. Joshi et al. [Joshi et al., 2002] also used the Bingham model in their

analytical models to predict the tape thickness and compared with the corresponding

data from Huang et al. [Huang et al., 1997]. The Bingham constitutive model was also

used for analytical modelling of the fluid flow in a two doctor blade configuration by

the author of this thesis [Jabbari and Hattel, 2014], however this will be discussed later

in section (3.1.3).

2.3 Multiphase Flow Models

Flow processes often involve the presence of free surfaces, the tracking of which has

significant impact on the manufacturing and the final quality of the product. Exam-

ples abound, e.g., casting processes, mold filling, thin film processes, extrusion, coat-

ings, spray deposition, fluid jetting devices in which material interfaces are inherently

present. This phenomenon is also considered in multi-material flows with sharp immis-

cible interfaces [Tang et al., 2004]. Several CFD methods have been developed in the

last decades with the aim of simulating such complex flows with free surfaces. Two

very well-known examples of this is the volume of fluid (VOF) and level set methods.

In general, there are a lot of different research papers which are dedicated to free sur-

face modeling, different interpolation schemes, liquid/gas phase flow, multi fluid flow,

multiphase flow and different numerical methods to simulate the flow field with the

presence of an interface [Aulisa et al., 2004; Gueyffier et al., 1999; Huerta and Liu,

1988; Hyman, 1984; Jr and Puckett, 2004; Shin et al., 2011; Tang et al., 2004; Tavakoli

et al., 2006; Wang et al., 2004].

A proper discretization of the convective term in the equation for transport of the

VOF is crucial for simulation of a multiphase flow. It is well-known that numerical

14



schemes, commonly used for discretization of the convection term, introduce numerical

diffusion or numerical dispersion phenomena [Ubbink and Issa, 1999]. For this reason,

some additional techniques are needed, i.e., high-resolution schemes. Examples of these

can be found in [Dendy et al., 2002; Muzaferija and Peric, 1997; Panahi et al., 2006;

Queutey and Visonneau, 2007] with special focus on capturing sharp interfaces.

2.3.1 Volume of Fluid (VOF)

The volume of fluid (VOF)1 model is a surface-tracking technique applied to a fixed

Eulerian mesh. It is designed for two or more immiscible fluids where the position of the

interface between the fluids is of interest. In the VOF model, a single set of momentum

equations is shared by the fluids, and the volume fraction of each of the fluids in each

computational cell is tracked throughout the domain [Hirt and Nichols, 1981].

The properties appearing in the transport equation are determined by the presence

of the component phases in each control volume. In a two-phase system, for example,

if the phases are represented by the subscripts 1 and 2, and if the volume fraction of

the second of these is being tracked, the density in each cell is given by

ρ = f2ρ2 + (1− f2) ρ1 (2.11)

The evolution of the scalar f (volume fraction) is governed by the simple advection

equation:

∂f

∂t
+
∂uif

∂xi
= 0 (2.12)

When coupled with the Navier-Stokes equations, the volume fraction is treated as

an active scalar (it has influence on the velocity field). The main numerical difficulties

connected with discretization of the transport equation for the volume fraction are:

keeping constant width of the interface, i.e. avoiding artificial diffusion of the step

interface profile and assuring a monotonic change of the variables. This last condition

is also known as the boundedness criterion [Hirt and Nichols, 1981]. In order to over-

come the aforementioned problems different methods were proposed. For instance, in

Hirt and Nichols [Hirt and Nichols, 1981] a Donor-Acceptor Scheme (DAS), based on

the availability criterion, was introduced. Problems that arose when using this scheme

provoked other proposals that follow the idea of geometric interface reconstruction; ex-

amples are the SLIC (Simple Line Interface Calculation) method, the PLIC (Piecewise

Linear Interface Construction) method or more recent methods that use the least-square

procedure or splines [Jr and Puckett, 2004]. Methods that employ these ideas give good

approximation of the shape of the interface and they allow for proper calculation of

1More information on the VOF method can be found in the original work by Hirts and Nichols
[Hirt and Nichols, 1981].
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the fluxes through faces of the control volumes. However, their application is often re-

stricted to structured grids with simple shapes of the control volumes. Moreover, since

estimation of a spatial orientation of the interface from the distribution of the volume

fraction needs a substantial number of numerical operations, interface reconstruction

methods increase the computational effort [Waclawczyk and Koronowicz, 2008].

Unlike geometric interface reconstruction methods, the high-resolution schemes, i.e.

Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) [Ubbink and

Issa, 1999] and High Resolution Interface Capturing (HRIC) [Muzaferija and Peric,

1997], do not introduce geometrical representation of the interface but try to satisfy

the aforementioned conditions by properly chosen discretization scheme [Waclawczyk

and Koronowicz, 2008]. The different VOF differencing schemes of the volume fraction

equation, i.e. geometrical reconstruction, donor-acceptor, CICSAM and HRIC, and

their definitions are well summarized by Lopez and Quinta-Ferreira [Lopez and Quinta-

Ferreira, 2009].

The aforementioned methods were tested both for Newtonian and non-Newtonian

fluids regarding interface position as well as computational time [Jabbari et al., 2013a]

([PAPER V]). The results show that the CICSAM method has the best combination of

accuracy of predicting the free surface and low cost of computation, especially for the

non-Newtonian fluid.

2.3.2 Mixture Model

Advances in computational fluid mechanics have provided the basis for further insight

into the dynamics of multiphase flows. Currently there are two approaches for the

numerical calculation of multiphase flows which are available in ANSYS Fluent [th7,

2009]: the Euler-Lagrange approach and Euler-Euler approach. The mixture model,

which is of the latter type, is a simplified multiphase model that can be used in different

ways. It can be used to model multiphase flows where the phases move at different

velocities, but assuming local equilibrium over short spatial length scales. It can be used

to model homogeneous multiphase flow with very strong coupling and phases moving

at the same velocity, and it is recommended to use for flows with high viscosity or non-

Newtonian viscosity. Moreover, a second-order time integration scheme is available

together with the Mixture (and Eulerian) multiphase models, which is not the case for

the conventional VOF Explicit Scheme [th7, 2009].

The mixture model solves the continuity equation, the momentum equation and the

energy equation for the mixture, and the volume fraction equation for the secondary

phases, as well as algebraic expressions for the relative velocities (if the phases are

moving at different velocities). The only difference between the VOF method and

the mixture model is that in the latter one an extra term is added to the momentum

equation as follows
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∇ ·
(

n
∑

k=1

fkρk~vdr,k~vdr,k

)

(2.13)

where n is the number of phases, and ~vdr,k is the drift velocity for the secondary phase

k:

~vdr,k = ~vk − ~vm (2.14)

which in the case of two immiscible fluids will be zero. The drift velocity only becomes

active when one of the phases is in particle form.

2.4 Particle Migration

Particle migration in fluids is found in many industrial applications such as transport

and refining petroleum, paper manufacturing, environmental waste treatment and ce-

ramic processing. The motion of small particles, drops, and bubbles in a viscous fluid

at low Reynolds number is one of the oldest classes of problems in theoretical fluid me-

chanics [Leal, 1980]. A series of investigations conducted in literature have described

the behavior of rigid and deformable particles suspended in very low Reynolds Newto-

nian liquids undergoing Couette and Poiseuille flow [Gauthier et al., 1971a,b]. Although

some of the work made in this area is based on the flow equations for a non-Newtonian

fluid [Frank et al., 2003; Ho and Leal, 1976; Leal, 1980], most of the investigations are

based on experimental findings [Abbott et al., 1991; Gauthier et al., 1971a,b].

The ceramic slurry used in the tape casting process contains different ingredients, i.e.

solvent, dispersant, binder, plasticizer and deflocculant, each of them having a specific

influence on the final properties of the part [Chartier and Bruneau, 1993; Pagnoux et al.,

1998]. The presence of these secondary phases inside the ceramic slurry results in the

packing structure, which can be tracked in the final tapes after the sintering process

[Chantaramee et al., 2008, 2007]. The art of making dense ceramics has been practiced

and developed for decades. The ability to produce porous ceramics with specific pore

size and porosity is less well documented. Recently, efforts have been directed towards

the development of ceramic filter systems in which the microstructure is tailored to

the application [Krasnyi et al., 2005; Vasconcelos et al., 1998]. Moreover, the field of

porous ceramics is growing in different areas with different applications like membranes,

flue gas purification, piezoelectric materials and solid oxide fuel cell (SOFC) anode

substrates [Galassi, 2006; He et al., 2009; Krasnyi et al., 2005; Simwonis et al., 1999].

The main concern in the aforementioned products is to have a relatively homogenous

distribution of position of the pores together with a uniform size distribution. This

issue emphasizes the importance of the particle (i.e. binders or pore-formers) migration
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inside the ceramic slurry during the tape casting process.

In general, the particles in a non-homogeneous shear flow will migrate from regions

of higher shear rate to regions of lower shear rate [Phillips et al., 1992]. The migration

takes place at particle Reynolds numbers small enough (∼ 10−4) to preclude the im-

portance of inertia effects. Phillips et al. [Phillips et al., 1992] developed the modified

version of the model proposed by Leighton and Acrivos [Leighton and Acrivos, 1987] of

the complex diffusion process associated with shear induced particle migration. They

showed that the viscosity µ = µ (φ) of concentrated suspensions at Peclet number of

Pe≫ 1 can be approximated by

µ

µc
=

(

1− φ

φm

)−1.82

(2.15)

where µ/µc is the relative viscosity, and µc is the solvent viscosity, φ is the volume

fraction of particles, and φm is the volume fraction at which µ/µc tends to infinity,

which was reported [Phillips et al., 1992] to be equal to 0.68 with volume fractions in

the range 0.01 < φ < 0.5. The changes in the viscosity versus the volume fraction

based on equation (2.15) is illustrated in Figure 2.3(a).

Moreover, the migration of the particles inside a fluid is influenced by the gravita-

tional force. Gravity induced particle migration results from the competition between

the difference in density of the mixture components that forces them to separate and the

viscous drag of the flowing suspending fluid that slows down the phenomenon, leading to

an advection process. A comprehensive review on the shear induced as well as the grav-

ity induced migration of the particles inside a non-Newtonian fluid has been reported

by Spangenberg et al. [Spangenberg et al., 2012a,b]. They showed that for a spherical,

solid particle inside a fluid the settling velocity, Vs, is equal to Vs = g△ρa2/18µs, where
a is the diameter of the particle, △ρ is the density difference between the particle and

the surrounding material, and µs is the viscosity of the suspending material. However,

the nature of the fluid used in their research (concrete) and the process dimensions are

totally different from the one in this thesis. Moreover, the rheological behavior used by

Spangenberg et al. [Spangenberg et al., 2012a,b] is different from the one in this thesis,

i.e. they used Bingham material behavior.

Although, in the works done by Spangenberg et al. [Spangenberg et al., 2012a,b] the

settling velocity (Vs) has been taken into account for the migration of the particles, the

impact of the particles and the volume fraction was not mentioned in their simulations.

Buscall et al. [Buscall et al., 1982] showed that the rate of settling, V , for a dilute

suspension of particles, which is not grossly aggregated can be expressed by an equation

of the form

V

Vs
=

(

1− φ

̺

)k̺

(2.16)
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Figure 2.3: The influence of the particle volume fraction on (a) the viscosity based
on equation (2.15) and (b) the settling rate of the particles based on equation (2.16)
[PAPER VI].

in which φ is the volume fraction of the particles, ̺ is the volume fraction when the

particles approach the close packing region, and k is a constant. Buscall et al. [Buscall

et al., 1982] also showed that for polymeric and ceramic fluids the values for ̺ and

k would be 0.58 and 5.4, respectively. The variation of the settling rates versus the

volume fraction is illustrated in Figure 2.3(b). In this thesis both equations (2.15) and

(2.16) are used in the developed local variation of the viscosity (LVOV) model as a

function of the particle volume fraction.

The particle migration, which is calculated through an advection and settling pro-

cedure, is given by

∂φ

∂t
+∇ (φV ) = 0 (2.17)

where V is the settling velocity vector which is updated in the LVOV model with

equation (2.16). It should be noted that having particles of very small size, results in

reducing the variation in the settling velocity.
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Chapter 3

Modelling Approaches

This chapter presents the results of different numerical/analytical models of fluid

flow simulating of tape casting of single material. Numerical results of the side-by-side

tape casting of two-fluid system as well as particle migration inside a ceramic slurry

are also presented.

3.1 Analytical Models

It is well-known that analytical solutions to the coupled flow equations (2.1) and (2.2)

are limited to relatively simple cases in terms of geometry, boundary conditions and

material properties. This is certainly also the case for the relatively few analytical

solutions for the flow in tape casting. More specifically only 1D flow is considered,

constant material data is assumed as well as incompressible behavior of the slurry.

Moreover, only steady state or quasi-steady state conditions are considered. Under

these assumptions it is possible to develop some relatively simple, yet highly applicable

analytical solutions for the flow in the doctor blade region in tape casting. The most

important of these solutions will be presented next.

3.1.1 Steady State Model

In order to express the volume flow and thus the tape thickness, the velocity field

equation in the doctor blade region must be developed. Based on the number of doctor

blades there are two kinds of tape casters, a simple tape caster which has only one

doctor blade (illustrated schematically in Figure 3.1), and a double-blade tape caster
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3. MODELLING APPROACHES

(see Figure 3.8) in which a rear doctor blade is used to ensure a hydrostatic pressure

in front of the rear one [Zhang et al., 2002].

Figure 3.1: Schematic geometry of the tape casting machine in 2D.

The pressure gradient inside the channel below the doctor blade is constant, since

there is a hydrostatic pressure in front of the doctor blade and it can be determined by

the height of the slurry as shown below [Zhang et al., 2002],

dp

dx
= −A0 = −ρgH0

W
(3.1)

where ρ is the density of the slurry, g is the acceleration due to gravity, H0 is the height

of the slurry in front of the doctor blade, and W is the width of doctor blade.

By assuming an infinitely long and wide plate as compared to the thickness and

combining with momentum conservation in the x-direction under steady state condi-

tions, we obtain the following [Tok et al., 2000; Zhang et al., 2002], highly simplified

1D version of the momentum equation (equation (2.1))

dτ

dy
=
dp

dx
(3.2)

where τ is the shear stress. From equations (3.1) and (3.2), τ is found to be

τ = −A0y +A1 (3.3)

where A1 is an integration constant.

For the power law or the Bingham fluid the shear stress, τ , is given by the consti-

tutive equation [Tok et al., 2000; Zhang et al., 2002]:

τ = k
(

∂u
∂y

)n

τ = τB0 + µB

(

∂u
∂y

)

(3.4)

where it has been assumed that the only velocity component contributing to the shear

rate is the velocity in the x-direction, u.
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Rewriting equations (3.3) and (3.4) and integrating along the channel height (h) we

get

∫ h
0 (−A0y +A1) dy =

∫ h
0 k
(

∂u
∂y

)n
dy

∫ h
0 (−A0y +A1) dy =

∫ h
0

[

τB0 + µB

(

∂u
∂y

)]

dy

(3.5)

These equations compose the main structure of almost all research carried out to

analytically model the fluid flow below the doctor blade region [Chou et al., 1987;

Jabbari et al., 2013b; Joshi et al., 2002; Kim et al., 2006; Pitchumani and Karbhari,

1995; Tok et al., 2000; Zhang et al., 2002]. By solving the above equations the velocity

profile below the doctor blade region (u(y)) will be found, and subsequently used to

find the tape thickness as follows

δ =
1

v0

∫ h

0
u(y) · dy (3.6)

which follows from mass conservation and incompressibility of the slurry. An exam-

ple of such analytical model is illustrated in Figure 3.2. As seen, by decreasing the

hydrostatic pressure (P ) due to a reduction in the level of the slurry height, the veloc-

ity profile is changed and the area under the velocity profile is decreased. Moreover,

an increased substrate velocity results in decreasing the tape thickness since the drag

force is increased by increasing the substrate velocity, and it becomes more dominant

compared to the pressure force which results in more stretching of the slurry over the

peeling belt.
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Figure 3.2: Results of analytical modelling for (a) velocity profile below the doctor
blade region with different pressure head [Huang et al., 1997; Joshi et al., 2002], and
(b) influence of the casting velocity on the tape thickness [Joshi et al., 2002; Pitchumani
and Karbhari, 1995].
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3.1.2 Quasi-steady state model

By assuming that k and n are constants, equation (3.5) for the power law material can

be solved for u [Jabbari et al., 2013b]

u =

(

− 1

A0 · k
1

n

)

·
(

1
1
n + 1

)

· (−A0y +A1)
1

n
+1 +A2, (0 < y < h) (3.7)

where A2 is another integration constant.

The boundary conditions for equation (3.7) in the doctor blade region of tape casting

are

{

u(0) = 0

u(h) = v0

}

(3.8)

where v0 is the velocity of the moving belt.

Applying these boundary conditions in equation (3.7), and introducing the expres-

sions that 1
n + 1 = χ and −1

A0·k
1
n

= ψ, the thickness of the green tape, δ, can be

determined by integrating u over the channel height and dividing by the tape velocity

as indicated in equation (3.6) [Jabbari et al., 2013b], i.e.:

δ =
1

v0

∫ h

0
u · dy =

−
[

(−A0h+A1)
χ+1 − (A1)

χ+1
]

v0 ·A0 · ψ · χ · (χ+ 1)
+A2h (3.9)

Reaching a constant tape thickness is not an impossible goal, since most of the man-

ufacturing processes for tape casting are of the continuous form in which the reservoir

at all times is fed by slurry. Moreover, using two doctor blades in the design of the

machine will result in having almost constant hydrostatic pressure during the casting

process (see section (3.1.3)). However, it is of great importance to control the tape

thickness in small tape casters especially in small scale production and laboratories, in

which the slurry height is not constant in the reservoir but gradually decreasing with

time. This phenomenon leads to a modification of the standard steady state model

[Chou et al., 1987; Joshi et al., 2002; Kim et al., 2006; Pitchumani and Karbhari, 1995;

Tok et al., 2000; Zhang et al., 2002] making it dependent on the slurry height variation.

The steady state formulation shown previously is developed based on the continuity

equation [Jabbari et al., 2013b]. For the quasi-steady state solution a similar approach

was adopted. Thus, assuming that the slurry is incompressible the volume of the slurry

which drops down in the reservoir is equal to the volume of the slurry which is conveyed

out of the doctor blade region by the peeling belt. Further assuming that during the

time period equal to ∆t, the height of the slurry will decrease from the initial value of

H0 to H1, the aforementioned decrease in volume (which equals the area in the present

2D model) in the reservoir will be given as:
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∆S1 =

[

d+
1

2
· l · cos θ

(

1 +
H1 + h

H0 + h

)]

· (H0 −H1) (3.10)

This area is moved out of the doctor blade region with the constant velocity of v0

and the distance of v0×△t, hence it is equal to v0×∆t× δ1. The new initial height in

the next time step is now H1 and the new ∆S2 is found from using H1 as initial height

in equation (3.10) and so forth.

As seen in Figure 3.2a, since the hydrostatic pressure (P ) decreases by time due to

the reduction in level of the slurry height, the velocity profile is changed and the area

under the velocity profile is decreased, and consequently the “area” out of the blade is

decreased. On the contrary, decreasing the pressure head for a constant velocity, the

thickness of the tape is decreased in the exit and vice versa. This behavior very much

emphasizes the importance and relevance of the proposed quasi-steady state model,

in which the transient effect of the slurry height in the reservoir (which resembles

the pressure head) is implemented. This phenomenon can easily be seen in Figure 3.3,

where the tape thickness decreases in the casting direction due to the transient decrease

of the slurry height (the pressure head) in the reservoir.

Figure 3.3: Schematic illustration of the effect of the increased pressure head on the
tape thickness (P1 > P2 > P3) [Kim et al., 2006].

Figure 3.4 shows the effect of the substrate velocity on the dried tape thickness

based on experimental findings as well as steady state and quasi-steady state analytical

models for the same set-up [Jabbari et al., 2013b]. As seen from the figure for all types

of data, an increased substrate velocity results in decreasing the tape thickness. More

specifically, it is found that the tape thickness decreases hyperbolically with substrate

velocity [Chou et al., 1987; Pitchumani and Karbhari, 1995], which is also seen from

equation (3.9). From previous work [Chou et al., 1987; Jabbari and Hattel, 2011;

Pitchumani and Karbhari, 1995], it was found that when the drag force is increased by

increasing the substrate velocity it becomes more dominant as compared to the pressure

force which results in more stretching of the slurry over the peeling belt. Figure 3.4

shows that the quasi-steady state model proposed by the author [Jabbari et al., 2013b]

is in better agreement with corresponding experiments as compared to the steady state

model, since in the quasi-steady state model the effect of decreasing the level of the

slurry height is taken into account.

Another comparison between the quasi-steady state model, steady state model and
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Figure 3.4: Effect of substrate velocity on tape thickness with a doctor blade height of
1 mm [Jabbari et al., 2013b]. ([PAPER I])

experimental results is shown in Figure 3.5 [Jabbari et al., 2013b]. It can be seen that

the proposed model by the author [Jabbari et al., 2013b] is in better agreement with

experiments in comparison to the steady state model. The highest deviation between

data was observed for the higher values of the doctor blade height.
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Figure 3.5: Comparison of the quasi-steady state model proposed by the author with
steady state model and experiments for v0 = 3.67mm/s [Jabbari et al., 2013b]. ([PA-
PER I])

The slurry load, known as the hydrostatic pressure, is the other main parameter

which influences the final tape thickness. This parameter is a direct consequence of

the height of the fluid behind the doctor blade region (△P = ρgH). Using this, it

is possible to define one single parameter which determines the shape of the velocity

profiles as well as the wet tape thickness and this is the ratio of pressure force to viscous

force (̟) [Jabbari and Hattel, 2011; Kim et al., 2006]

̟ =
△P · h
2µWv0

(3.11)
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As illustrated in Figure 3.6 increasing the value of the aforementioned ratio (̟)

results in increasing of the velocity shape (area) below the doctor blade region, and as

shown before in Figure 3.3, this leads to an increase of the tape thickness.
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Figure 3.6: The non-dimensional velocity profile in the doctor blade region on the basis
of different ̟ [Jabbari and Hattel, 2011].

In most existing models [Chou et al., 1987; Jabbari and Hattel, 2011; Joshi et al.,

2002; Kim et al., 2006; Pitchumani and Karbhari, 1995; Tok et al., 2000; Zhang et al.,

2002] this ratio is assumed to be constant. However, as discussed earlier the height of

the slurry inside the reservoir is not constant, but decreasing with time [Jabbari et al.,

2013b]. As seen from Figure 3.7 the thickness of the tape in the beginning of a strip

(which is the part leaving the doctor blade region first) is higher than the end of a strip.

This is due to the higher level of material in the reservoir in the beginning of process.

As time passes the height of the slurry in the reservoir decreases and consequently the

resultant height of the tape will decrease. This means that the hydrostatic pressure

decreases with time and the drag forces start to show their dominance by making the

tape thinner. However, this phenomenon can of course not be detected by the steady

state model.

3.1.3 Steady state two doctor blade model

As already mentioned, using the two doctor blade configuration is one of the ways to

reach an almost constant tape thickness in the tape casting process. The interesting

thing in this case is to control the height of the slurry in both doctor blade regions

based on the desired tape thickness, substrate velocity, constitutive behavior of the

ceramic slurry and the machine design parameters [Jabbari and Hattel, 2014]. A general

schematic of the two doctor blade configuration is illustrated in Figure 3.8. The author

[Jabbari and Hattel, 2014] has modeled analytically the velocity and the pressure field

in both doctor blade regions assuming the Bingham-plastic model for the fluid flow.
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Figure 3.7: Results of modelling and their comparison with experimental data for tape
casting of LSM slurry with a substrate velocity of v0 = 3.67mm/s and an initial slurry
height of (a) H0 = 6.67mm and (b) H0 = 20.8mm [Jabbari et al., 2013b]. ([PAPER I])

The developed model then was used to predict the height of the slurry in both doctor

blade regions based on the desired tape thickness and the belt velocity.

Figure 3.8: 2D illustration of the tape casting process with two doctor blades [Jabbari
and Hattel, 2014]. ([PAPER III])

We showed that based on the ability of the flow to overcome the yield stress (for

the Bingham-plastic fluid), there are two different zones, i.e. a sufficient one and an

insufficient one, in which the predicted values for the slurry height and velocity profiles

are totally different. The region with the insufficient belt velocity shifts toward the

higher velocities by increasing the value of the critical velocity, vcr =
A0ih

2

i

2k , (see Figure

3.9), when increasing the doctor blade (hi), increasing the slurry height behind the

doctor blade (Hi), decreasing the doctor blade width (Wi), and the plastic viscosity

(k), which all gives an increase in the critical velocity vcr =
A0ih

2

i

2k . Moreover, the tape

thickness is always larger than half of the doctor blade height (δ > hi/2) no matter

what belt velocity is used [Jabbari and Hattel, 2014].
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Figure 3.9: Variation of the tape thickness by the substrate velocity for (a) h2 = 4mm,
and (b) h2 = 5mm [Jabbari and Hattel, 2014]. ([PAPER III])

We also showed that when the belt velocity is not high enough to overcome the

Bingham yield point (insufficient belt velocity), there is always a region with zero shear

rate below the doctor blade (see Figure 3.10), and this region decreases its width by

increasing the plastic viscosity (k). The results of the required slurry height based on

the desired tape thickness as well as the belt velocity showed that in the insufficient

condition the slurry height behind both doctor blades will increase in comparison to

the sufficient condition (see Figure 3.11). Moreover, the variation of the aforemen-

tioned heights are different in the sufficient and insufficient conditions, showing a linear

increase for the sufficient condition. On the other hand, increasing the doctor blade

width, Wi, (or decreasing the reservoir size, di) with constant velocity and tape thick-

ness, the required slurry height behind the both doctor blades will be increased. The

proposed model by the author [Jabbari and Hattel, 2014] contains all main parameters

which influence the process, and it has the flexibility to be used for different slurries

with different constitutive behaviors as well as different machine design.

3.2 Numerical models

Numerical modeling is a powerful method of visualizing the dynamic behavior of phys-

ical systems. Numerical solutions have several advantages over analytical solutions

such as being much more intuitive and easy to handle. Thus more realistic models of

greater complexity can be investigated using numerical techniques. This is certainly

the case for computational fluid dynamics (CFD) methods, which numerically solve the

differential equations governing the flow, and makes them a prime tool for analyzing

manufacturing processes involving material flow. Nonetheless, only few CFD studies

have considered tape casting so far and those which did have been restricted to two

dimensions. One reason why CFD-based simulations are not widely used to simulate
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Figure 3.11: Impact of increasing the value of the tape thickness on the required height
of the slurry behind both doctor blades with (a) sufficient and (b) insufficient belt
velocity [Jabbari and Hattel, 2014]. ([PAPER III])

tape casting - despite their obvious benefits - might be due to their complex nature, re-

quiring extensive know-how and special software. In the following the numerical models

used for modelling the tape casting process will be reviewed.

3.2.1 General fluid flow

The first numerical model to solve the fluid in tape casting was introduced by Loest

et al. [Loest et al., 1994], where the finite element method (FEM) was used for the

forming flow of ceramic tapes having viscoplastic Bingham behavior with a yield stress.

In their work the flow domain encompassed both the slurry reservoir and the doctor-

blade region with free surface (the free surface modelling will be discussed in detail

in part 3.2.2) and was two-dimensional. They changed the design of the doctor blade
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from being a straight wall to a tapered one to avoid recirculation.

Gaskell et al. [Gaskell et al., 1997] modeled the fluid flow in the reservoir region of

the tape casting process numerically using a linear finite element formulation. Their

analysis showed that the flow is characterized by an ever-present primary recirculation,

adjacent to the moving substrate, and that the size and number of secondary recircula-

tions above the primary one depend upon both the aspect ratio of the reservoir (height

over width) and the angle of inclination of the side walls (see Figure 3.12).

Figure 3.12: Flow pattern inside the reservoir solved by (a) finite element formulation
[Gaskell et al., 1997], and (b) corresponding finite volume modelling that we conducted.

The first numerical model based on the finite volume method was conducted by the

author through this thesis [Jabbari and Hattel, 2011]. The flow field was computed

inside the reservoir and below the doctor blade region. Based on the velocity profiles

obtained below the doctor blade region the tape thickness was predicted for a Newtonian

fluid.

Wonisch et al. [Wonisch et al., 2011] also conducted a CFD calculation in the tape

casting process. They used smoothed particle hydrodynamics (SPH) to simulate the

flow of the non-Newtonian fluid, and consequently the orientation of the particles (and

resultant anisotropic particle alignment) was predicted by Jeffery’s equations of motion.

3.2.2 Free surface tracking

As previously introduced, Loest et al. [Loest et al., 1994] conducted FEM simulations

on tape casting combined with a free surface model implemented in the close region

to the doctor blade region. We modeled the flow of a slightly non-Newtonian ceramics

slurry with the power law constitutive behavior as well as tracking the free surface [Jab-

bari and Hattel, 2012]. We also investigated the different interface capturing methods

in modelling of free surface tracking of tape casting, and reported that the Compres-

sive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) method is the most

reliable scheme for capturing of the free surface in the modelling of the tape casting

process [Jabbari et al., 2013a]. Apart from this, the authors presented a coupled fluid

flow-multiphase model to predict the influence of the process parameters on the side
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flow, as the flow leaves the doctor blade region [Jabbari and Hattel, 2013]. Some 3D

results for the flow of the (La0.85Sr0.15)0.9MnO3 (LSM) slurry in the tape casting pro-

cess are illustrated in Figure 3.13. The LSM slurry showed to follow the power law

constitutive behavior for the viscosity as τ = 3.31 · γ̇0.90.

Figure 3.13: Flow of LSM ceramic slurry in tape casting in different simulation time
(a) 2.5 sec, (b) 5 sec, and (c) 7.5 sec. The dark blue surface is the symmetry plane.

3.2.3 Side flow

One of the parameters that influences the final tape thickness is the side flow factor

(α) which is mostly measured at the end of the process by a volumetric comparison

of the tape which flowed outside the casting width to the tape within the casting

width. Although this side flow in tape casting is of relatively limited magnitude it is

interestingly enough always mentioned as an influencing parameter in the calculations

of the tape thickness and always measured experimentally [Chou et al., 1987; Jabbari

et al., 2013b; Jabbari and Hattel, 2011; Joshi et al., 2002; Kim et al., 2006; Pitchumani

and Karbhari, 1995; Tok et al., 2000; Zhang et al., 2002]. We have presented the first

example in literature where the side flow factor (α) is predicted numerically [Jabbari

and Hattel, 2013] ([PAPER II]). Moreover, we investigated the influence of the process

parameters, i.e. substrate velocity, doctor blade height and slurry height, on the side

flow factor (see Figure 3.14).

The effect of substrate velocity on the side flow factor is illustrated in Figure 3.14a.

The results showed that by increasing the velocity of the peeling belt, the value of the

side flow factor will be increased, which means that the slurry flows less towards the

sides. This is due to the increase of the drag forces in the casting direction compared to

the side direction, which gives the slurry less possibility to flow towards the sides. Note

that the side flow factor is defined in such a way, that when the side flow increases, the

side flow factor decreases. As shown in Figure 3.14b, by increasing the doctor blade

height, the size of the side flow factor (α) increases. For the lower value of the doctor

blade height, since the slurry height in the reservoir and the velocity of the peeling belt

are constant, the hydrostatic pressure behind the flow is higher compared to the one

with the bigger doctor blade height. Increasing the hydrostatic pressure will increase

the flow to the sides and hence lead to a decrease in the resultant side flow factor. On
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Figure 3.14: Numerical modelling and corresponding experiments values of side flow
factor (α) influenced by (a) substrate velocity, (b) doctor blade height, and (c) slurry
height [Jabbari and Hattel, 2013]. The dash lines are guides to the eye. ([PAPER II])

the other hand, due to the low velocity used in these series of experiments, the ceramic

slurry has much time to flow towards the sides after leaving the doctor blade region.

These two phenomena obviously interact, but with the bigger doctor blade height, the

effect of hydrostatic pressure decreases and leads to a decrease in the flow to the sides

and hence an increase of the side flow factor. And finally, increasing the initial slurry

height in the reservoir will increase the tape thickness, thereby promoting the flow

towards the sides and hence decrease the resultant side flow factor (see Figure 3.14c).

3.2.4 Side-by-Side Tape Casting

Among the more common applications of tape casting mentioned in the introduction,

the process is well suited for manufacturing of functionally graded materials (FGMs).

The concept of graded materials was first established by Bever and Duwez[Bever and

Duwez, 1972] for composite materials, and then further developed for polymeric ma-

terials [Shen and Bever, 1972]. FGMs are materials that have a gradual variation of

material properties from one end to another. The FGMs were originally developed as
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special materials which could sustain long-term exposure to high temperature and large

differences of temperature. There are different techniques to produce FGMs which are

well summarized by Kieback and et al. [Kieback et al., 2003], and among them tape

casting is reported extensively in literature [Acikbas et al., 2006; Yeo et al., 1998] due

to producing large-area, thin, flat ceramics, which can be patterned, stacked, and lam-

inated to form three-dimensional structures [Grader and Zuri, 1993].

In an era of critical demand for the development of alternative energy sources,

magnetic refrigeration attracts significant interest as an environmentally friendly and

energy efficient alternative to conventional refrigeration [Jr. and Pecharsky, 2008].

The technology relies on the so-called magnetocaloric effect (MCE), for reversible heat-

ing and cooling of magnetocaloric material (MCM) in magnetization/demagnetization

cycles [Smith et al., 2012]. It is known for ferromagnetic materials that the largest

temperature changes, as a response to a variation in magnetic field, occur near the

phase transition, also known as the Curie temperature. The Curie temperature is very

sensitive to changes in electronic or crystal structure and can thus often be chemically

tuned. In order for a magnetic refrigeration device to produce a temperature span,

a graded magnetocaloric material is desired, where the range of Curie temperatures

is close to that of the device temperature span. In perovskite ceramic materials the

Curie temperature can be tuned by a small amount of chemical doping. These materi-

als can then be shaped into parts using the recently proposed method of side-by-side

(SBS) tape casting [Dinesen et al., 2012]. Plates containing materials with two differ-

ent ceramic materials have been prepared by this method and successfully tested in a

magnetic refrigeration test device [Bahl et al., 2012]. A large batch of plates containing

five different Curie temperatures have recently been prepared and will soon be tested

in a large-scale magnetic refrigeration device at DTU Energy Conversion (EC).

As explained by Dinesen et al. [Dinesen et al., 2012], in the recently developed

technique of side-by-side (SBS) tape casting, multiple slurries are tape casted adjacently

forming a single tape to produce functionally graded ceramics (FGCs). Then, these

FGCs are used in the magnetic refrigeration process in which there is a temperature

gradient along the part (see Figure 3.15(a)).

One of the most important parameters which has a significant effect on the final

properties of the SBS ceramics, is the behavior of the interface (Φ) between the adjacent

layers (see Figure 3.15(b)) [Jabbari et al., 2012] ([PAPER IV]). The aforementioned

interface in the FGCs used for magnetic refrigeration are supposed to be close in shape

to its ideal form of a 2D in-plane surface (in the y − z plane), which is perpendicular

to the substrate plane (x− y plane). However, based on the slurry properties (i.e. the

density and the viscosity) and the process conditions (i.e. the initial slurry height in the

reservoir and the velocity of the peeling belt), the interface between the two adjacent

layers can vary from its ideal shape to have different shapes as follows:
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1. α1 = α2 6= 90: Φ is a planar interface.

2. α1 6= α2 6= 90: Φ is a twisted-planar interface.

Figure 3.15: (a) Schematic example of FGCs used in magnetic refrigeration, and (b)
schematic representation of the interface between the two adjacent layers [Jabbari et al.,
2012]. ([PAPER IV])

We conducted numerical modeling of the SBS tape casting process with two fluid

entries [Jabbari et al., 2012, 2013c,d]. The predicted interface was investigated to

understand the influence of the material parameters of the two adjacent fluids, i.e. the

density (ρ) and the viscosity (µ), on the position of the interface. It was observed

that the densities of the fluids do not influence the interface between the adjacent

fluids, whereas the viscosity of the fluids plays a key role in the interface behavior.

Specifically, it is seen that the viscosity difference (△µ) causes the fluid with lower

viscosity to move toward the one with the higher viscosity. Moreover, increasing the

aforementioned difference leads to further movement of the interface toward the fluid

with the higher viscosity.

The impact of the substrate velocity was also investigated. As expected, it was found

that by increasing the substrate velocity the height of both fluids decreased. Moreover,

in the presence of the viscosity difference for the adjacent fluids, by increasing the

substrate velocity the interface moved more toward the fluid with the higher viscosity.

Finally, it was concluded that for the magnetic refrigeration applications with the

objective of an ideal (totally perpendicular) interface between the adjacent fluids, the

viscosities of the fluids should be kept as close as possible. Moreover, in the presence of

a viscosity difference (△µ), to decrease the diffusive region, as low velocities as possible

for the substrate should be used. This is illustrated in Figure 3.16. This is due to

an increase of the drag force by increasing the substrate velocity (v0), which makes it

more dominant compared to the pressure force, and results in more stretching of the

slurry over the peeling belt [Jabbari et al., 2013b; Joshi et al., 2002; Kim et al., 2006;

Pitchumani and Karbhari, 1995].

3.2.5 Tracking of Particles

As already discussed in section 2.4, the LVOV model is used in this thesis to track the

migration of the ceramic particles in tape casting. The dimensions for the machine
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Figure 3.16: The change in the predicted interface between the adjacent layers for
different cases, (a) v0 = 3.67mm/s, ρF2 = 2ρF1 = 4kg/m3 and µF2 = 2µF1 = 6Pa.s,
(b) v0 = 3.67mm/s, ρF2 = 2ρF1 = 4kg/m3 and µF2 = µF1 = 3Pa.s, (c) v0 =
7.34mm/s, ρF2 = 2ρF1 = 4kg/m3 and µF2 = 2µF1 = 6Pa.s, (d) v0 = 7.34mm/s,
ρF2 = 2ρF1 = 4kg/m3 and µF2 = µF1 = 3Pa.s. The gray lines indicate the geometry
at the exit from the tape caster [PAPER IV].

configuration are also taken from previous works [Jabbari et al., 2013b; Jabbari and

Hattel, 2012, 2013], in which the doctor blade height is equal to h = 0.4mm. The

density of the ceramic slurry is ρc = 2kg/m3 [Jabbari et al., 2013b; Jabbari and Hattel,

2012, 2013], and for the particles inside the slurry it is equal to ρp = 10kg/m3 (κ =

ρp/ρc = 5). The particle size (a) is assumed to be 0.1 µm, and moreover the initial

particle load (the volume fraction of the particles in the inlet boundary) inside the

slurry is assumed to be 0.35.

The particle distribution inside the ceramic slurry is shown in Figure 3.17 for two

sets of simulations, with and without applying the LVOV model. As seen, the results

are totally different from the constant distribution to the spatially varying one. Using

the LVOV model, showed that there are some parts inside the ceramic in which the

concentration of the particles are higher compared to other parts, creating the resulting

packing structure [Chantaramee et al., 2008, 2007]. This can be discussed from the

actual velocity distribution and corresponding shear rates for both cases in the doctor

blade region. As illustrated in Figure 3.18(a) and (b), there are two high shear rate

zones when using the LVOV model. These zones cause a ceramic slurry flow with

higher concentrations of the particles. The high shear rate zones below the doctor

blade (just before the exit) will drive the particles inside the flow in the horizontal

direction (x). Moreover, due to relatively high shear rates in the bottom boundary,

particles tend to swirl and create some regions with high concentrations (see the right

hand side of Figure 3.17(b)). The high concentration region which was the first to

be carried out by the peeling belt will be pushed forward by the flow coming from

behind. This means that in the real life process, one should cut the aforementioned
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region due to its highly nonuniform distribution of the particles. However, even the flow

behind shows a somewhat layered structure (left hand side of Figure 3.17(b)) resulting

in a heterogeneous particle distribution. This certifies the existence of a nonuniform

distribution (or packing) of the particle in tape casting of ceramics, which was also

found experimentally by Chantaramee et al. [Chantaramee et al., 2008, 2007].

Figure 3.17: Distribution of the volume fraction for the particles inside the ceramic
slurry, (a) without applying, and (b) with applying the LVOV model [PAPER VI].

The velocity of the substrate (the casting speed, v0) has been increased in order to

evaluate the influence of increasing the shear rates in the LVOV model. Comparing

the results from Figure 3.19 with Figure 3.17(b), it is seen that the region with the

concentration of particles still exists (right hand side of Figure 3.19). As mentioned

earlier this region will be moved by the flow behind, and that part of the tape can be

cut off at the end of process. However, the pattern of the produced layered structure

in the case with the higher velocity (Figure 3.19) is different from the one with lower

velocities tending to have more horizontal layers. Looking at the velocity and the shear
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Figure 3.18: (a) The velocity profile, and (b) the shear rate distribution in the doctor
blade region [PAPER VI].

rate distribution below the doctor blade, Figures 3.20(a) and (b), shows that increasing

the substrate velocity will increase the shear rates and also the regions with the high

shear rate zones. The presence of these zones will promote migration of the particles

inside the ceramic slurry. Moreover, the higher the shear rates in the slurry, the less

the gravity induced particle migration. This leads to less settlement of the particles

inside the fluid.

Figure 3.19: Distribution of the volume fraction for the particles inside the ceramic
slurry with the increase (doubled) substrate velocity [PAPER VI].

As mentioned earlier, the region with the highest concentration of the particles

(right hand side of the Figure 3.17 and 3.19) is being carried by the flow behind. It

is of course interesting to see the particle distribution in the point of time in which

steady state conditions are reached. To do so, two sensors are implemented in the flow

domain with a reasonable distance (here 10 and 20 cm from the doctor blade exit) to
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Figure 3.20: (a) The velocity profile, and (b) the shear rate distribution in the doctor
blade region [PAPER VI].

check the variation of the volume fraction with time. Two different substrate velocities

of v1 = 3.67mm/s and v2 = 2v1 = 7.34mm/s as well as two different density ratios of

κ = 0.1 and κ = 10 are investigated.

It was found that, after some reasonable time in the simulation, the particle distri-

bution inside the ceramic slurry is not changing anymore. The particle volume fraction

inside the ceramic slurry in the steady state condition are illustrated in Figure 3.21(a)

and (b). It should be noted that the tape thickness decreases with an increase in the

substrate velocity [Jabbari et al., 2013b; Jabbari and Hattel, 2012, 2013], and therefore

the comparison is made by dividing the “Y” position along the tape thickness with the

tape thickness itself (corresponding to normalizing with the correct tape thickness).

Again, it is seen that for the case with the lower shear rates (slower speed), particles

tend to settle more in the bottom resulting in a higher concentration. This confirms

that, using higher velocities for casting increases the dominance of the shear induced

particle migration, creating a relatively uniform distribution of the particles. However,

with lower casting speed the particles have enough time to settle in the bottom of the

tape forming two different layers containing different particle distributions. Based on

this, one can also conclude that changing any of the process parameters, i.e. the doctor

blade height and the slurry height in the reservoir, in a way that leads to higher shear

rates in the flow domain, can lead to a similar behavior. As reported in the previous

works [Jabbari et al., 2013b; Jabbari and Hattel, 2012, 2013], decreasing the doctor

blade height as well as the slurry height in the reservoir will increase the shear driven

flow in the tape casting process.

Seen from Figure 3.21(a) and (b), it can moreover be concluded that for higher

density ratio (κ = 10) the gravity shows its dominance by making the particles settled

in the bottom of the tape. However, for the lower values of κ the shear induced particle

migration becomes dominant producing a more uniform distribution of the particles but
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in the small region of upper area of the tape. Comparing Figure 3.21(a) and Figure

3.21(b), one can see that in the closer region of the doctor blade exit (d = 10cm) all

of the investigated cases are showing more or less the same behavior. This trend stays

somewhat the same for the cases further from the doctor blade region (d = 20cm) but

the cases with higher value of the density ratio (κ = 10). This means that the particles

with higher density are moved by the shear forces in the beginning of the process more

than the gravity forces. However, gravity forces show their impact mostly in the regions

further from the doctor blade region.
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Figure 3.21: Distribution of the volume fraction in the thickness of the produced tapes
at two different distances of doctor blade exit, (a) d = 10, and (b) d = 20cm [PAPER
VI].
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Chapter 4

Drying Kinetics

This chapter presents a brief introduction to the drying process of thin ceramic

sheets as well as the results of a single analysis of water evaporation from a ceramic-

water mixture.

4.1 Introduction

As earlier mentioned in this thesis, tape casting consists of three major sub-processes

which are (see Figure 4.1):

1. Tape casting of an aqueous (fluid) ceramic slurry in a doctor blade configuration

2. Drying of the green tape

3. Additional processing (which is often a sintering process).

Mostly the first and third stages have been investigated numerically [Jabbari et al.,

2013b; Jabbari and Hattel, 2011, 2012, 2013, 2014; Olevsky, 1998] whereas the second

has remained almost unexplored numerically. The sintering of the tape casted parts has

been investigated in literature using continuum modelling [Olevsky, 1998]. The drying

stage and the characterization of it in the form of final shrinkage is often measured

experimentally, simply by the weight difference of the green and dried tapes, without

really noticing that the drying is one of the most important steps in the tape casting

process. As the solvent is removed from the green sheet (or layer) via evaporation, the

tape undergoes a transformation from its initial fluid-like state to a solid-like, composite

layer. This leads to changes in the rheological behavior (mostly viscosity) of the ceramic

41



4. DRYING KINETICS

Heater

(1) (2) (3)

Figure 4.1: Schematic of the tape casting process with three sub-processes [PAPER
VII].

slurry, and this is related to the amount of solvent (water in this study) evaporated

during drying [Martinez and Lewis, 2002].

With many additives, and typically multiple solvents, drying of the tape as well as

the behavior of the tape during the drying process can vary greatly from slip to slip.

The tape casting process is somewhat unique among ceramic processes in the sense

that a one-side drying process exists. After the slip is spread into a thin layer, all of the

solvent is removed from a single side of the cast. Two things work together to cause

the one-sided drying; a thin, essentially two-dimensional shape with no real height, and

an impermeable carrier on the bottom. This single-sided drying is the cause of some

very interesting phenomena within the tape matrix. Ideally, the chemical composition

of the tape (primarily the solvent concentration) should stay uniform throughout the

tape during the entire drying process. This, however, simply cannot occur, since all

of the solvent must migrate to the top surface of the tape to evaporate. Hence, the

two major mechanisms controlling the drying in the tape-cast layer are: (1) the rate

of solvent evaporation from the surface of the cast and (2) the rate of solvent diffusion

through the tape to the drying (top) surface. Of these two mechanisms, diffusion

through the tape tends to be the rate-limiting factor [Scherer, 1990].

The two aforementioned mechanisms can be adjusted by various means. The volatil-

ity of the solvent at the tape surface can be adjusted by adapting the types of solvent

used, the concentration of solvent vapor in the local atmosphere, the local air temper-

ature, and the solvent temperature. The diffusion rate through the tape layers can be

adjusted by changing the binder concentration, altering particle size, adjusting the wet

film temperature, and keeping an open pathway to the surface. Some of these control

techniques, such as particle size and binder content, need to be addressed during the

preparation of the slip and factored into the initial slip recipe. Other parameters like
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air temperature, slip temperature, and local vapor concentration are controlled by the

drying equipment separate from the casting slip.

As the solvent on the top surface of the cast layer takes energy from the air and

from the rest of the slip, it starts to evaporate into the surrounding atmosphere. The

rate of evaporation is governed by the energy available to the solvent, the volatility of

the solvent species, the vapor concentration of the local atmosphere, and the saturation

concentration of the local atmosphere, which depends upon the gases in the atmosphere,

the solvent species, and the temperature. Since evaporation requires an input of energy,

raising the temperature of the solvent will speed the surface evaporation process by

providing an excess of energy. Raising the air temperature will not only provide the

energy for evaporation (heat of vaporization), but will also increase the saturation

concentration of the atmosphere. Air heating greatly increases the surface evaporation

rate, and that is why many tape casting machines are equipped with an air heating

option to speed up the surface evaporation of the tape. In this study, only the raise of

energy (by the temperature field) is considered for the drying process and the influences

of saturation are neglected.

Diffusion of the solvent to the top surface of the tape is normally the rate limiting

factor in drying. The rate of evaporation of surface solvent is normally so much faster

than the solvent motion to the surface that a drying crust forms across the surface of

the tape. Efforts to limit surface evaporation stem from the desire to avoid this skin on

the surface. Ideally, the solvent concentration should stay nearly uniform throughout

the tape during drying so that all parts of the tape dry at the same rate. This would

be accomplished by making the rate of diffusion equal to the rate of evaporation. The

ideal case, however, is unattainable. In practice, the drying conditions, tape structure,

tape components, and solvent mixtures are balanced to get as close to ideal conditions

as the downstream manufacturing needs allow.

The hypothetical progression of solvent concentration during the drying process

is illustrated in Figure 4.2 graphically. On the figure, y = 0 represents the carrier

surface whereas y = 1 represents tape thickness (the drying surface). It is assumed

that at time equal to zero the concentration of the solvent is equal to one, and the final

concentration of the solvent at t = 1s is equal to C = 0.1. As mentioned, the ideal case

shows a uniform solvent concentration through the thickness of the tape throughout

the drying process (Figure 4.2(a)). In reality, the evaporation rate from the surface

will always be faster than the motion of solvent to the surface. Thus the best-case

scenario displays a dry film on the top of the tape, yet a diminishing amount of solvent

at the slip/carrier interface (Figure 4.2(b)). This best-case scenario exists when the

rates of diffusion and evaporation are as close to equal as possible. The worst-case

scenario is realized when the rate of evaporation is much greater than the diffusion

rate through the tape matrix. The top surface of the tape, giving off solvent much
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more quickly than the diffusion mechanism can replace it at the surface, forms an ever-

thickening dry layer, while the solvent concentration at the slip/carrier interface does

not significantly decrease (Figure 4.2(c)).
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Figure 4.2: Schematic illustration for distribution of solvent content for (a) ideal, (b)
best obtainable, and (c) worst cases[Mistler and Twiname, 2000].

The speed at which the solvent can move to the surface is always the slowest mech-

anism of drying. The rate of motion through the body of the tape is limited mainly

by the body itself. The pathway for the solvent through the tape matrix is crowded

with particles, binder, plasticizer, and dispersant. As the drying process progresses,

the tape shrinks, creating the dense, packed bed of particles which is the goal of tape

casting. This dense, packed bed, however, limits the escape paths for the solvent at

the slip/carrier interface. As a rule, liquids diffuse much more quickly through a liquid

medium than through any other medium [Callister, 2000]. At some point in the drying

process, the binder at the top surface of the cast will lose enough solvent to form a

solid sheet or skin across the top of the tape. This is unavoidable since the dry tape is

simply a solid piece of this skin. The diffusion rate of the underlying solvent is much

slower through this skin than through the liquid matrix of the slip. This, once again,

is why effort is made to slow the surface evaporation rate to delay the formation of this

low-diffusion-rate skin. The dried polymer effectively plugs up the inter-particulate

spaces, creating a low-permeability layer across the top of the tape and limiting the

bulk drying rate. This is where a balance must somehow be established between drying

rate and tape porosity. Allowing some porosity in the tape will increase solvent diffu-

sion to the top surface by keeping an open pathway to the top surface. The addition of

a slow-drying solvent can also aid solvent migration speed by delaying skin formation

and providing a liquid pathway from bottom to top. This type of additive would prop-

erly be called a skin retarder and may actually be used as one of the primary solvents

in the slip.

Heating the tape body is the last general phenomenon which affects both drying

mechanisms. This not only increases solvent evaporation rate by heating the solvent,

but also increases the diffusion speed of solvent through the matrix, as the diffusion

is a thermally controlled phenomenon. Heating the tape matrix promotes liquid-like
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behavior and increases the diffusion rate of the solvent. Many practitioners in the field

find that the fastest way to dry a tape is to heat the bottom of the tape without heating

the air. Heating the bottom of the tape increases solvent mobility in the tape body,

driving the solvent up to the surface, while air heating tends to have a greater impact

on the tape surface evaporation. In most cases, the surface evaporation does not need

help.

In general, modelling of the drying process deals with complex physics, e.g. heat

transfer, mass transfer (Darcy’s law and diffusion), and capillary forces (pressure),

which are coupled together. The theory of the drying is well discussed by Schere

[Scherer, 1990] for the sol-gel processing, where there is a polymer chain. On the

other hand, only experimental and analytical investigations [Kiennemann et al., 2005;

Martinez and Lewis, 2002] have been conducted in literature so far for the drying process

of ceramic slurries. The current study is the first example of numerical investigation

for coupled heat and mass transfer for drying in tape casting of ceramics. The capillary

forces are neglected in this study and it is assumed that the mass transfer is governed

only by diffusion of the solvent. It should, moreover, be mentioned that as the solvent

used in every slurry formulation varies for every desired application, and the thermo-

physical properties of each solvent are not available in literature, the solvent in this

study is assumed to be water, and hence the system simulated is the mixture of ceramic

and water. The first stage of drying where the solvent is evaporating from the tape

matrix is simulated numerically. The 1D heat conduction equation is solved numerically

to obtain the temperature field in a ceramic sheet. The change in the concentration of

the water content is then used as driving force for the diffusive mass transport of water

(described by Fick’s second law also in 1D).

4.2 Mathematical model

4.2.1 Simulation domain

The 1D simulation domain used in this study is illustrated schematically in Figure 4.3.

As seen, a heater with the length of Lheat and the temperature of Theat is located above

the tape layer, and the tape (which is a ceramic-water mixture) is passing beneath

the heater with the velocity of vcast. This means that the tape experiences the major

part of the temperature load for a period of time equal to Lheat/vcast. The domain

is discretized into a number of control volumes (here N), in a way such that the air

region is assumed to be one single control volume. This leads to the space increments

as follows

{

dx(1) = dgap air region

dx(2 : N) = δ
N−1 tape region

(4.1)
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where δ is the tape thickness, and dgap is the distance between the heater and the top

surface of the tape.

Lheat

vcast

dgap

δ

Theat

mixture

Diffusion

air

+

Conduction

Convection

Radiation

Conduction

Figure 4.3: Schematic illustration of the simulation domain [PAPER VII].

The physics to be considered in this numerical study, is also shown in Figure 4.3

for each region, and will be discussed in the following.

4.2.2 Thermal calculations

It is well-known that in the presence of a temperature gradient, energy conducts from

the high temperature region to the low one. Based on Fourier’s law the heat flow per

unit area is proportional to the normal temperature gradient, i.e.:

q = −kA∂T
∂x

(4.2)

where q is the diffusive heat flux (W ), A is the area (m2), k is the thermal conductivity

(W/mK), T is temperature (K or ◦C), and x is length (m). Assuming a constant

thermal conductivity, the integration of Fourier’s law becomes

q = − kA

x2 − x1
(T2 − T1) = − △T

Rcond
th

where Rcond
th =

△x
kA

(4.3)

in which Rcond
th is the thermal conductive resistance.

Based on Newton’s law of cooling the overall effect of convection can be expressed

by:

q = −hA (T∞ − Ts) (4.4)

where h is the convective heat transfer coefficient (W/m2K), Ts and T∞ are the body

surface temperature and the cooling temperature, respectively. Comparing equations
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Rconv
th =

1

hconvA
(4.5)

The third mode of heat transmission taking place is radiation, which is expressed

with a special version of Stefan-Boltzmann’s law

q = −Aεσ
(

T 4
2 − T 4

1

)

= −Aεσ
(

T 3
1 + T 2

1 T2 + T1T
2
2 + T 3

2

)

(T2 − T1) (4.6)

where σ is the Stefan-Boltzmann constant, and equals to 5.67×10−8 (W/m2K4). This

equation assumes a radiative heat exchange between two surfaces (with the same area,

A), and accounts for the gray nature of the surface (accounting for the emissivity, ε).

Comparing equation (4.3) and (4.6), the thermal radiative resistance can be found as

Rrad
th =

1

hradA
where hrad = εσ

(

T 3
1 + T 2

1 T2 + T1T
2
2 + T 3

2

)

(4.7)

The general heat conduction equation can be derived based on Fourier’s law together

with the first law of thermodynamics:

ρcp
∂T

∂t
= ∇ (k · ∇T ) + Q̇ (4.8)

where ρ is the density (kg/m3), cp is the specific heat (J/kgK), and Q̇ is the generated

heat per unit time per unit volume (W/m3). Assuming constant thermal conductivity,

the 1D heat conduction equation finally takes the form

∂T

∂t
= α

∂2T

∂x2
+ Q̇ (4.9)

where α is the thermal diffusivity equal to k/ρcp. In the present study the above

equation is discretized in the simulation domain via the finite volume method (FVM)

in order to solve it numerically [Hattel, 2005]. Mass-averaged thermal properties are

assumed for the ceramic-water mixture in the initial stage. However, as the water

evaporates the thermal properties of the solid ceramic become more dominant since

the fraction of water approaches zero. The mass-averaged thermal properties assumed

for the ceramic-water mixture then are as follows

αmix = fwaterαwater + (1− fwater)αceramic (4.10)

where fwater is the fraction of water in each control volume.

An implicit scheme is used to find the new temperatures in each time step [Hattel,

2005]
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−HCon
i T t+△t

i−1 +
(

HCap
i +HCon

i +HCon
i+1

)

T t+△t
i −HCon

i+1 T
t+△t
i+1 = HCap

i T t
i +

Q̇t+△t
gen,i

A
(4.11)

where T t+△t
i is the new temperature, T t

i, is the old temperature, and

HCap
i ≡ △xi(ρcp)i

△t capacity function

HCon
i ≡ 1

△xi−1

2ki−1
+

△xi
2ki

conductivity function
(4.12)

It should be noted that for the nodes 2 (i = 2), the conductivity function is as

follows

HCon
2 ≡ 1

1
htot +

△x2

2k2

(4.13)

where htot is the equivalent heat transfer coefficient for the total transfer in the air gap

htot =
1

Rcond
th

+ hconv + hrad (4.14)

where hconv is assumed to be 10 (W/mK), and hrad is given by equation (4.7). The

coefficients in front of the unknown temperatures on the left hand side of equation (4.11)

are now called a, b, and c, and the right hand side is called d. Thus for i = 2, ..., N − 1,

we have

ai · T t+△t
i−1 + bi · T t+△t

i + ci · T t+△t
i+1 = di (4.15)

where

ai = −HCon
i

bi = HCap
i +HCon

i +HCon
i+1

ci = −HCon
i+1

di = HCap
i T t

i + Q̇t+△t
gen,i /A

(4.16)

The system of equations for the inner nodes, i = 2, ..., N − 1, as well as for node 1

and N as boundary condition becomes
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The boundary conditions express that at node i = 1 the temperature of the heater

is Theat, and at i = N the heat flux is zero

i = 1 ⇒ b1 = 1 c1 = 0 d1 = Theat

i = N ⇒ aN = −1 bN = 1 dN = 0

(4.18)

The equation system is solved easily by Gaussian elimination.

4.2.3 Diffusion

Fick’s second law, also known as the Diffusion Equation, states that the change of

concentration in time equals to the net influx by diffusion. This leads to an equation

which is totally similar to the heat conduction equation

∂φ

∂t
=

∂

∂x

(

D
∂φ

∂x

)

(4.19)

where φ is the concentration of water (mol/m3), and D is the diffusion coefficient

(m2/s), which in general is dependent on temperature in the present work. In order to

solve equation (4.19), the same implicit scheme is used as described in section 4.2.2.

4.3 Preliminary Results

As mentioned earlier, the drying process in thin layers is derived by both the tem-

perature load on top of the domain and the diffusion of the solvent through the tape

body. In order to test the diffusion module, a simple test was conducted in which the

inter-diffusion happens between two regions with different concentration values (see

Figure 4.4). Inter-diffusion is popular between two semi-infinite specimens of different

compositions c1, c2, when they are joined together and annealed, or mixed in case of

two solutions (liquids). Many examples in practice fall into the case of inter-diffusion,

including two semiconductor interface, metal-semiconductor interface, etc.

The magnitude of the diffusion coefficient D is indicative of the rate at which

atoms diffuse. The diffusing species as well as the host material influence the diffusion
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Lx

[H2O] = 1 [H2O] = 0

Figure 4.4: Simulation domain for a 1D inter-diffusion phenomenon.

coefficient. For example, there is a significant difference in magnitude between self-

and carbon inter-diffusion in iron at 500◦C, the D value being greater for the carbon

inter-diffusion (3.0 × 10−21 vs. 2.4 × 10−12 m2/s). This comparison also provides a

contrast between rates of diffusion via vacancy and interstitial modes [Callister, 2000].

Self-diffusion occurs by a vacancy mechanism, whereas carbon diffusion in iron is inter-

stitial. A very well-known analytical solution for the inter-diffusion for different initial

compositions c1, c2, is as follows

c (x, t) =

(

c1 + c2
2

)

−
(

c1 + c2
2

)

erf

(

x

2
√
Dt

)

(4.20)

where the error function (erf) is equal to

erf (z) =
2√
π

∫ z

0
e−y2dy (4.21)

The results of numerical modelling for two different diffusion coefficients, D, and

their comparison with the corresponding results from the analytical solution with c1 =

1, c2 = 0, are illustrated in Figure 4.5(a) and (b). As seen, not surprisingly the diffusion

region becomes wider by by increasing the diffusion coefficient, D. Moreover, the results

of numerical modelling are in a very good agreement with the analytical ones.
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Figure 4.5: Concentration variation along the x axis for Lx = 400µm, and for different
diffusion coefficient of (a) D = 1e− 8, and (b) D = 1e− 7.

The diffusivity is found to vary in most systems as an exponential function of

temperature, hence it is modeled by the Arrhenius relationship:
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Dw = D0exp

(

−Qa

RT

)

(4.22)

where Qa is the activation energy for diffusion, R is the gas constant, T is the absolute

temperature, and D0 is the pre-exponential “frequency factor” which is empirically

determined. The activation energy may be thought of as that energy required to pro-

duce the diffusive motion of one mole of atoms. A large activation energy results in a

relatively small diffusion coefficient. Taking the natural logarithm of equation (4.22)

yields

lnD = lnD0 −
Qa

R

(

1

T

)

(4.23)

or in terms of logarithms to the base 10

logD = logD0 −
Qa

2.3R

(

1

T

)

(4.24)

Since D0 , Qa , and R are all constants, equation (4.24) takes on the form of an

equation of a straight line:

y = ax+ b (4.25)

where y and x are analogous, respectively, to the variables logD and 1/T . Thus, if

logD is plotted versus the reciprocal of the absolute temperature, a straight line should

be the result, having slope and intercept of Qa/2.3R and logD0, respectively. This is,

in fact, the manner in which the values of Qa and D0 are determined experimentally.

For this study such data are used through the fitted line from the experimental results

published by Holz et al. [Holz et al., 2000] (shown in Figure 4.6), as follows:

logDw = 3× 10−7 − 8× 10−8

(

1

T

)

(4.26)

The mass-averaged diffusion coefficient is used for the ceramic-water mixture as

follows

Dmix = fwaterDw + (1− fwater)Dd (4.27)

where Dd is the diffusion coefficient in the dried control volumes which is assumed to

be logDd = −11, and Dw is given by equation (4.26).

All thermo-physical properties used in this study are summarized in Table 4.1.

It should be noted that the thermal [Hattel, 2005] model has been validated against

proper analytical solutions. The simulation domain considered for the present study

is illustrated in Figure 4.3. The temperature of the heater on the top region of the
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Figure 4.6: Fitted data used for the temperature-dependent diffusion coefficient of
water [Holz et al., 2000] [PAPER VII].

tape matrix is assumed to be 140◦C. The initial temperature of the tape matrix and

the air above it is assumed to be in the room temperature (20◦C). It should also be

mentioned that since the saturation of air is neglected in this study, choosing a different

temperature for air from the one for tape matrix does not make any sense.

Table 4.1: Thermo-physical material properties used in this study [PAPER VII].
Water Ceramic Ceramic-water mixture

k (W/mK) 0.6 2.4 mass-averaged
ρ (kg/m3) 997.1 1900 mass-averaged
cp(J/kgK) 4187 2000 mass-averaged
Levap
H (kJ/kg) 2260 - -

logD equation (4.26) −11 mass-averaged

Results of simulations for three different tape thicknesses, δ = 400, 300, 200 µm

with an initial water content of 12%, are shown in Figure 4.7(a). The results show that

for each tape there is a specific time period in which the water content is not changing

hence being equal to the initial value of water content (12%). This region corresponds

to the period in which the tapes are heating up, and it has the highest value for the

thickest tapes which of course is expected, see Figure 4.7(a).

As seen from the sub-plot of Figure 4.7(a) (which is also representative for thick-

nesses of 200 and 300 µm), there are two specific regions, (1) and (2), where the

evaporation shows two principally different behaviors. A similar example of such plots

showing these two regions can be found in the work by Kiennemann et al. [Kienne-

mann et al., 2005], in which mass loss, shrinkage, Young’s modulus evolution and stress

development of aqueous (alumina+latex) tape cast suspensions were observed experi-

mentally during drying. They also reported that the mass loss shows a constant drying

rate period, followed by a falling rate period. In region (1) the total evaporation (mass

loss) is increasing almost linearly by time. This region is called the constant rate period
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Figure 4.7: (a) Variation of water content due to evaporation, and (b) the temperature
profiles for the top control volume in the tape [PAPER VII].

(CRP), in which the rate of evaporation per unit area of the drying surface is indepen-

dent of time [Scherer, 1990]. During the CRP, the liquid-vapor meniscus remains at

the surface of the tape layer, and evaporation occurs at a rate close to that of a free

liquid surface (e.g., an open dish of liquid).

When evaporation starts, in the early stages, the temperature at the surface of

the top layer drops because of a loss of heat due to the latent heat of vaporization

of the water. On the other hand, heat flows to the surface from the atmosphere thus

quickly establishing thermal equilibrium where transfer of heat to the surface balances

the heat loss due to the latent heat of vaporization. However, when the amount of

mass loss increases, the heat loss due to the latent heat of vaporization of the water

will also increase. This reduces the evaporation rate, as a consequence of low migration

of the water from the bottom layers to the top ones due to diffusion (which is highly

dependent on the temperature). This is the late stage in the CRP, where the drying

rate starts to decrease.

The top layers of the tape, which are already dried, will now act as a barrier for

diffusion of the water from bottom to top. This is reflected by region (2), which is

known as the falling rate period (FRP). Transport of liquid during drying can occur by

flow if a pressure gradient exists in the liquid, and diffusion if a concentration gradient

exists. The first type is categorized as flow in porous media where the liquid flow obeys

Darcy’s law. This type of liquid transport, however, is neglected in this study due to

the low level of pressure gradient in the tapes. The latter type is the one considered

in this study, which is highly sensitive to temperature. As mentioned, the temperature

drop reduces the diffusion coefficient of the water, and consequently the drying rate

is decreased drastically. It can, moreover, be seen from Figure 4.7(a) and (b) that by

deceasing the tape thickness (δ) the mass loss occurs in a shorter period of time. This
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means that the drying rate is high in the tapes with smaller tape thickness, which can

be seen in Figure 4.8. As shown, the maximum mass loss happens in the tape with

smaller thickness. This is expected, as the smaller tape thickness gives the liquid ability

to diffuse to the top surface more. Such information can be used in thermo-mechanical

simulation in order to predict the stress evolution during drying.
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Figure 4.8: Amount of mass loss for three different tape thickness [PAPER VII].

Another interesting phenomenon in the drying process is to investigate the different

drying modes, i.e. fast, intermediate, and slow. Results of such investigations are

shown in Figure 4.9 based on the variation of the non-dimensional water concentration

(C∗ = Cnew/C0) for the thickness of δ = 400µm. As seen, when the drying is fast,

the water in the upper region evaporates fast and makes a solid-like region in almost

the entire upper half of the tape. This creates a barrier for the diffusion of the bottom

water and makes the rest of the drying slow. In other words, when the drying mode is

fast, the diffusion of the water from bottom to the top surface is slow. This is similar to

the worst case shown in Figure 4.2(c), which may happen if extensive heating is used in

the drying process. Moreover, it is seen that for the slow drying mode the evaporation

of water from the top region is somewhat slow, though the drying (diffusion) from the

bottom region is faster. This case is also similar to the ideal case shown in Figure

4.2(a). The mode of drying can hence be argued based on the competition between the

evaporation rate from the top surface and the diffusion of the water from bottom to

the top. As mentioned before, in reality, the evaporation rate from the top surface will

always be much faster than the motion of solvent (water in this study) to the surface.

By this simulation, we have shown that the developed model for the evaporation of

water from a ceramic-water mixture can be used with the purpose of understanding the

drying rate in the drying process of thin sheets produced by the tape casting process.

The results showed that initially, the mass loss due to the evaporation is increasing

close to linearly with the drying time corresponding to an almost constant drying rate.

However, the rate starts to decrease after some time in the simulation. This is in
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Figure 4.9: The results of numerical modelling for the different drying modes for the
tape thickness of δ = 400µm [PAPER VII].

good agreement with experimental findings of the real life process where the drying

is categorized into two stages: (1) a constant rate period (CRP), in which the rate of

evaporation per unit area of the drying surface is independent of time, and (2) a falling

rate period (FRP), in which the evaporation rate is reduced, as a consequence of low

migration of the water from the bottom layers to the top ones due to diffusion (which

is highly dependent to the temperature).
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Chapter 5

Summary of Appended Papers

In this chapter a short summary of the seven appended papers are given.

5.1 PAPER I

M. Jabbari, R. Bulatova, J. Hattel, C. R. H. Bahl, “Quasi-steady State Power Law

Model for the Flow of (La0.85Sr0.15)0.9MnO3 Ceramic Slurry in Tape Casting”, Journal

of Materials Science & Technology 29 (2013) 1080-1087.

In the present work, the flow in the doctor blade region of a slurry containing

(La0.85Sr0.15)0.9MnO3 (LSM) material is described with a simple quasi-steady mo-

mentum equation in combination with an Ostwald-de Waele power law constitutive

equation. Based on rheometer experiments, the constants in the Ostwald-de Waele

power law are identified for the considered LSM material and applied in the analytical

solution for the tape thickness. This solution is then used for different values of sub-

strate velocity and doctor blade height and compared with experimental findings of the

wet tape thickness, and good agreement is found.

5.2 PAPER II

M. Jabbari and J. Hattel, “Numerical Modelling of the Side Flow in Tape Casting of a

Non-Newtonian Fluid”, Journal of the American Ceramic Society 96 (2013) 1414-1420.
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5. SUMMARY OF APPENDED PAPERS

In this study, the flow of (La0.85Sr0.15)0.9MnO3 (LSM) slurry in the tape casting

process is modeled numerically with ANSYS Fluent in combination with an Ostwald-de

Waele power law constitutive equation. Based on rheometer experiments, the constants

in the Ostwald-de Waele power law are identified for the considered LSM material and

applied in the numerical modeling. This model is then used for different values of

substrate velocity, initial doctor blade height and material load in the reservoir, to

investigate their effect on the side flow factor, α. It is found that this factor mostly

ranges between 0.8 and 0.9. Results of the modeling are compared with experimental

findings and good agreement is found.

5.3 PAPER III

M. Jabbari and J. Hattel, “Numerical Modelling of the Side Flow in Tape Casting of a

Non-Newtonian Fluid”, Journal of the American Ceramic Society 96 (2013) 1414-1420.

One of the most common processes used in manufacturing of multilayer ceramic

packages, multilayer capacitors and large scale integration circuits is tape casting. In

this process, the wet tape thickness is one of the single most determining parameters

affecting the final properties of the product, and it is therefore of great interest to

be able to control it. One way to control the tape thickness is to use a two doctor

blade configuration in the tape casting machine. In this case, it becomes important

to fix the height of the slurry in front of both doctor blades according to the desired

tape thickness and casting speed (belt velocity). In the present work, the flow in both

doctor blade regions of a slurry is described with a steady state momentum equation

in combination with a Bingham plastic constitutive equation, and this is integrated

to a closed form analytical solution for both reservoirs based on the desired wet tape

thickness and casting speed. The developed model is used to investigate the impact

of different material parameters and machine designs on the required slurry height.

The solution is compared with experimental findings from the literature, and good

agreement is found.

5.4 PAPER IV

M. Jabbari, J. Spangenberg, J. Hattel, “Modeling of the Interface Behavior in Tape

Casting of Functionally Graded Ceramics for Magnetic Refrigeration Parts”, Interna-

tional Journal of Refrigeration 36 (2013) 2403-2409.

The main goal of this work is to study the multiple material flows in side-by-side
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(SBS) tape casting and analyze the influence of the different material properties, i.e.

the density and the viscosity, on the interface between the fluids, since this is highly

important for the efficiency of a graded configuration of the magnetocaloric materials.

The Newtonian flow behavior with relatively high viscosity is assumed for each fluid

and used in the simulation with a commercial CFD code (ANSYS Fluent). The results

show that the density difference does not affect the interface between the adjacent fluids,

whereas the viscosity of the fluids plays the most important role in the behavior of the

interface. Moreover, increasing the viscosity difference of the adjacent fluids, △µ, leads
to increasing the diffusive region between them. However, this can be counteracted by

decreasing the velocity of the substrate.

5.5 PAPER V

M. Jabbari, R. Bulatova, J. Hattel, C. R. H. Bahl, “An Evaluation of Interface Captur-

ing Methods in a VOF Based Model for Multiphase Flow of a Non-Newtonian Ceramic

in Tape Casting”, Applied Mathematical Modelling 38 (2014) 3222-3232.

The aim of the present study is to evaluate the different interface capturing methods

as well as to find the best approach for flow modelling of the ceramic slurry in the tape

casting process. The conventional Volume Of Fluid (VOF) method with three differ-

ent interpolation methods for interface capturing, i.e. the Geometric Reconstruction

Scheme (GRS), High Resolution Interface Capturing (HRIC) and Compressive Interface

Capturing Scheme for Arbitrary Meshes (CICSAM), are investigated for the advection

of the VOF, both for Newtonian and non-Newtonian cases. The main purpose is to

find the best method for the free surface capturing during the flow of a ceramic slurry

described by a constitutive power law equation in the tape casting process. First the

developed model is tested against well-documented and relevant solutions from litera-

ture involving free surface tracking and subsequently it is used to investigate the flow of

a La0.85Sr0.15MnO3 (LSM) ceramic slurry modeled with the Ostwald-de Waele power

law. Results of the modeling are compared with corresponding experimental data and

good agreement is found.

5.6 PAPER VI

M. Jabbari, J. Spangenberg, J. Hattel, “Particle Migration Using Local Variation of

the Viscosity (LVOV) Model in Tape Casting of Ceramics”, Applied Mathematical Mod-

elling, 2013 (under review).
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5. SUMMARY OF APPENDED PAPERS

In this paper, the migration of secondary particles in a non-Newtonian ceramic

slurry in the tape casting process is investigated with the purpose of understanding the

particle distribution patterns along the casting direction. The Ostwald-de Waele power

law model for the non-Newtonian flow behavior is assumed in the simulation of the

ceramic slurry flow. A local variation of the viscosity (LVOV) model as a function of

the particle volume fraction is introduced and taken into account in the advection and

the settling of the particles in the flow field. The results show that using the LVOV

model changes the particle distribution pattern from being a constant distribution

to a semi-layered one. The presence of such layered structure is highly affecting the

subsequent sintering process, which in turn causes an anisotropic shrinkage behavior of

the dried tapes. It is also found that increasing the substrate velocity (casting speed)

leads to a more uniform distribution of the particles inside the ceramic slurry, in which

case the shear induced particle migration is dominating over the gravity induced one.

5.7 PAPER VII

M. Jabbari, J. Hattel, “Modelling the drying process in tape casting with a simple

ceramics-water system”, Continuum Mechanics and Thermodynamics, 2014 (under re-

view).

In this study, the evaporation of water from a ceramic-water mixture is investigated

with the purpose of understanding the drying rate in the drying process of thin sheets

produced by the tape casting process. The rate of mass loss in the drying process is a

key factor which often is of interest, as it affects the final properties of the tapes. The

1D heat conduction equation is solved numerically to obtain the temperature field in

a ceramic sheet. The change in the concentration of the water content is then used

as the driving force for diffusive mass transport of the water. Mass-averaged thermal

properties are assumed for the ceramic-water mixture in the initial stage, and as the

water evaporates, the thermal properties of the solid ceramic become more dominant

since the fraction of water approaches zero. The developed model is used to simulate a

simple test for the drying process. The drying rate is simply calculated by examining

the water content in each time step. It is found that the mass loss due to the evaporation

is increasing close to linearly with the drying time corresponding to an almost constant

drying rate. However, the rate starts to decrease after some time in the simulation.
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Chapter 6

Conclusions and Future Work

In the present chapter the conclusions of the analytical/numerical investigations are

summarized and a description of the future perspectives within the field of modelling

of the tape casting process are given.

6.1 Summary of Results

6.1.1 Analytical Models

Analytical approaches for fluid flow analysis in the tape casting process showed that

a relative good agreement could be achieved between the results of the modelling and

the experimental data. The study, furthermore, demonstrated that the aforementioned

agreement was increased by improving the steady state model with a quasi-steady

state analytical model. In order to control the most important process parameter, tape

thickness, the two-doctor blade configuration was also modeled analytically. The model

was developed to control the tape thickness based on the machine configuration and the

material constants. Many of the affecting parameters in the process were embedded and

they can easily be varied to evaluate their influence. Overall, the proposed analytical

models describe the general flow characteristics of tape casting well. Based on the

findings of this thesis, Table 1.1 can be updated as follows

6.1.2 Numerical Models

This study showed that using computational fluid dynamics (CFD) the process can

be modeled with more details in order to better control the produced tapes. Very

importantly, the free surface of the ceramic as leaving the doctor blade region was
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Table 6.1: Updated version of Table 1.1 based on the findings of this thesis.
Newtonian behavior Non-Newtonian behavior

[Chou et al., 1987] [Ring, 1989]
[Gaskell et al., 1997] [Loest et al., 1994]
[Kim et al., 2006] [Pitchumani and Karbhari, 1995]
c©[Jabbari and Hattel, 2011] [Huang et al., 1997]
c©[Jabbari et al., 2013c,d] [Terrones et al., 1997]

[Tok et al., 2000]
[Joshi et al., 2002]
[Joshi et al., 2002]
[Zhang et al., 2002]
c©[Jabbari and Hattel, 2012, 2013, 2014]
c©[Jabbari et al., 2012, 2013a,b]

modeled. The rheological behavior of the ceramic slurry was also taken into account.

The influence of the main process parameters, i.e. the substrate velocity, the initial

slurry load, and the doctor blade height, were investigated.

Based on the developed model, one phenomenon inherit to the process called side

flow was also modeled. The results showed that to reach a desired uniform tape the

side flow factor should be kept as close as to the value of one. The impact of the

process parameters were also discussed in details in order to control the side flow, and

consequently the tape thickness.

Moreover, a CFD model was developed to simulate multiple flow of the ceramic

slurry in tape casting. The simulation was aimed to analyze the production of func-

tionally graded ceramics (FGCs) which are used for magnetic refrigeration applications.

The results identified that the densities of the fluids do not influence the interface be-

tween the adjacent fluids, whereas the viscosities of the fluids play a key role in the

interface behavior. Specifically, it is seen that the viscosity difference (△µ) causes the
fluid with lower viscosity to move toward the one with higher viscosity. Moreover,

increasing the aforementioned difference leads to further movement of the interface

toward the fluid with the higher viscosity. The impact of the substrate velocity was

also investigated. As expected, it was found that by increasing the substrate velocity

the height of both fluids decreased. Moreover, in the presence of a viscosity difference

for the adjacent fluids, by increasing the substrate velocity the interface moved more

toward the fluid with the higher viscosity.

Numerical models were developed to track the migration of the particles inside the

ceramic slurry. The results showed the presence of some areas inside the ceramic in

which the concentration of the particles is higher compared to other parts, creating

the resulting packing structure. It was shown that the movement of the particles is

influenced by two forces, shear rates and gravity. As expected, the numerical simulation

demonstrated that particles with higher values of the relative density tend to settle
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in the lower parts of the tape. Moreover, numerical simulation suggested that by

increasing the substrate velocity the settlement of the particles can be avoided due to

increase of shear force inside the flow.

And finally a numerical code was developed to simulate the drying process. The

results showed that the mass loss due to the evaporation is increasing close to linearly

with the drying time corresponding to an almost constant drying rate. However, the

rate starts to decrease after some time in the simulation. This is in good agreement

with the real life process where the drying categorized into two stages: (1) constant

rate period (CRP), in which the rate of evaporation per unit area of the drying surface

is independent of time, (2) falling rate period (FRP), in which the evaporation rate is

reduced, as a consequence of low migration of the water from the bottom layers to the

top ones due to diffusion (which is highly dependent to the temperature).

Based on the findings of this thesis, Table 1.2 can be updated as follows

Table 6.2: Updated version of Table 1.2 based on the findings of this thesis.
Analytical modelling Numerical modelling

[Chou et al., 1987] [Loest et al., 1994]
[Ring, 1989] [Gaskell et al., 1997]
[Pitchumani and Karbhari, 1995] [Joshi et al., 2002]
[Pitchumani and Karbhari, 1995] c©[Jabbari and Hattel, 2011, 2012, 2013]
[Huang et al., 1997] c©[Jabbari et al., 2012, 2013a,c,d]
[Tok et al., 2000]
[Joshi et al., 2002]
[Tok et al., 2000]
[Kim et al., 2006]
c©[Jabbari et al., 2013b]
c©[Jabbari and Hattel, 2014]

6.2 Future Work

The developed models in this thesis have the flexibility of adding additional physics.

Most of the models used in this study were based on fluid flow analysis, which possibly

can be coupled with energy equations.

One of the interesting phenomena that was investigated in this thesis was simulating

the side flow. However, the rheological behavior of the flow was assumed to be con-

stant during the process. It could be interesting to investigate the side flow factor for

some fluids with different rheological behavior. The correlation between the rheological

parameters and the side flow factor would create a valuable bench mark.

The flow of two adjacent ceramic slurries in the side-by-side tape casting produced

valuable information from a practical view point. One of the potential investigations

in this respect could be aimed to evaluate the behavior of the interface between the
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adjacent fluids by changing the shape of the notch between the two fluids in the doctor

blade region. This will need to extend the present model to evaluate the shape effect

of the notch, and of course comparing with corresponding experiments.

Another beneficial investigation in this study was to model the migration of the

particles inside the ceramic slurry. The particles in this study were assumed to have a

spherical shape. The extension of the present model to track particles of more general

shape, such as elliptical would be of great interest. By modelling the migration of

elliptical particles, the anisotropic behavior of the particles and their impact on the

subsequent processes (i.e. drying and sintering) can be argued.

And finally, as described in the last part of the numerical investigations, the drying

process needs further improvement. In order to simulate the real life drying process,

the current model needs to be extended by adding more physics to the equations of the

state. This is the core potential to continue the current project for the next couple of

years.
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Quasi-steady state power law model for flow
of (La0?85Sr0?15)0?9MnO3 ceramic slurry in tape
casting

M. Jabbari*1, R. Bulatova2, J. H. Hattel1 and C. R. H. Bahl2

One of the most common ways used to produce multilayer ceramics is tape casting. In this

process, the wet tape thickness is one of the single most determining parameters affecting the

final properties of the product, and it is therefore of great interest to be able to control it. In the

present work, the flow in the doctor blade region of a slurry containing (La0?85Sr0?15)0?9MnO3 (LSM)

material is described with a simple quasi-steady momentum equation in combination with an

Ostwald–de Waele power law constitutive equation. Based on rheometer experiments, the

constants in the Ostwald–de Waele power law are identified for the considered LSM material and

applied in the analytical solution for the tape thickness. This solution is then used for different

values of substrate velocity and doctor blade height and compared with experimental findings of

the wet tape thickness, and good agreement is found.

Keywords: Tape casting, Doctor blade, Fluid flow, Non-Newtonian, Power law

Introduction

Tape casting is an important process for producing large

area, thin, flat ceramics, which can be patterned, stacked

and laminated to form three-dimensional structures.1

The method was originally developed for producing

electronic ceramics (insulating substrates and packages

and multilayer capacitors) and is still mainly used for

this. Structural laminates, knives, membranes and solid

oxide fuel cells are examples of other applications for

thin ceramics formed by tape casting. The tape thickness

that can be achieved is generally in the range of 25 up to

1 mm, but it is possible to produce tapes with

thicknesses of ,5 mm.

The parallel (doctor) blade process was first used in

preparing ceramic tapes in the 1940s, and it has a key

role in producing thin and flat ceramic tapes.2,3

Thickness control is of critical importance in tape

casting, since it affects the final properties of the tape.

Different parameters such as powder distribution, slurry

composition, flow field and sintering affect the thickness

of the final tape.4–6 In addition to this, the geometry of

the process set-up itself has different effects on the

related final properties of the manufactured product.7

In the tape casting process, a slurry is pumped into a

reservoir and this slurry is then moved by the peeling

belt. Since this technique is used to produce tapes with

relatively small thicknesses, accurate control of the tape

thickness which exits the doctor blade is a key factor

determining the final properties.

One of the most challenging parts of modelling the

flow of the ceramic slurry in the tape casting process is to

conduct the modelling with the proper constitutive

equation which governs the material’s rheological

behaviour. In general, this rheological behaviour can

be classified by five different material types as shown in

Fig. 1. For Newtonian fluids, the shear stress t has a

linear correlation with the shear rate:c in which the slope

of the line is the constant Newtonian viscosity m. The

second type is represented by pseudoplastic fluids that

are often represented by the Ostwald–de Waele power

law equation. The third one is named dilatant fluids, and

they are characterised by an increasing slope of the shear

stress–shear rate behaviour. The fourth is the Bingham

plastic material which has a yield point ty below which

no flow takes place, whereas above it, the behaviour is

linear and characterised by the plastic viscosity. Finally,

for viscoplastic materials, there is also a yield point like

for the Bingham material, but above that, a polynomial

behaviour can be seen.

The first model for predicting the tape thickness in

tape casting was developed by Chou et al.4 In their

work, the Newtonian behaviour was used and they

assumed that the flow in the parallel doctor blade region

is a linear combination of pressure and drag flow.

However, in the tape casting process of ceramics,

the slurry seldom behaves like a Newtonian fluid.

Pitchumdni and Karbhari9 evaluated the effects of an

imposed pressure gradient due to the height of the slurry

in the casting head, as well as those of the drag due to

the moving substrate on the slurry flow by modelling the

slurry discharge as a generalised power law flow, i.e.
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t~k
:
c
n

(1)

where k and n are the consistency of the fluid and

deviation from a Newtonian fluid respectively, and both

are constants for a specific slurry. However, in their

work, the height of the ceramic slurry is assumed to be

constant as opposed to the present work where it is

allowed to vary.

Ring10 modelled the tape casting slurry by applying

the Bingham plastic constitutive law

t~t0zm:c (2)

where t0 is the Bingham yield stress, which is the finite

stress required for flow initiation, and m is the plastic

viscosity. In this model, the material acts as a rigid body

below the yield point, and above it, the ceramic slurry

flows with the constant plastic viscosity. However, the

(La0?85Sr0?15)0?9MnO3 (LSM) ceramic used in the present

work did not show any yield point, which means that the

slurry flows all the time. Recently, the Herschel–Bulkley

model was used in the tape casting process for modelling

the flow field by Huang et al.11 This model is a

combination of the Bingham plastic and power law

models; however, again, they did not consider the

transient behaviour of the ceramic slurry height.

Ceramics might be attractive materials for high

temperature applications provided that both their

reliability and toughness could be improved. The key

factor improving the toughness of these materials is the

presence of weak interfaces between fibres and the

composite matrix or between the ceramic layers in

multilayered structures. These interfaces allow for

energy dissipation before fracture through mechanisms

of crack deflection, crack bridging, fibre pullout and

interface delamination. Multilayered ceramics are gen-

erally processed by tape casting and firing or hot

pressing.12 The presence of the different layers in

multilayer materials controls the crack path, frequently

avoiding completely brittle behaviour. When the layers

are strongly bonded together, a crack in one layer can

propagate readily into the adjacent layer, and then the

material behaves as a conventional ceramic.13 Most

often, the graded structures are produced from laminat-
ing two or more single layers. In this respect, controlling
the tape thickness and its uniformity along the casting
direction becomes more important.

Moreover, the shape changes that happen during the
sintering process due to the shrinkages in different
directions will result in shape instability.14 This shape
instability is more important in the multilayer materials,
since during the sintering process every layer has
different thermal behaviour. However, even in the case
of monolayer tape casting, it is of great importance to
control the aforementioned shape instabilities. Raj and
Cannon14 proposed a formula to measure the percentage
of anisotropic shrinkage in the tape casting process.
They showed that the tape thickness and its variation
have a great impact on the anisotropic shrinkage and the
resultant mechanical properties, where an increase in the
tape thickness causes a decrease in the anisotropic
shrinkage. This emphasises the importance of the
thickness control in the tape casting process.

Hence, in the present paper, an analytical model
capable of predicting the final tape thickness is
presented. It is based on a quasi-steady state description
of the velocity and the pressure field in the doctor blade
region, allowing the slurry height to drop during casting,
and this is combined with a power law model for the
fluid flow. Many of the affecting parameters in the
process are embedded and they can easily be varied to
evaluate their influence. The proposed models describe
the flow characteristics of tape casting well. Results of
the model are compared with experiments, and good
agreement is obtained.

In the present paper, a quasi-steady state description
of the velocity and the pressure field in the doctor blade
region, allowing the slurry height to drop during casting, is
combined with a power lawmodel for the fluid flow.Many
of the affecting parameters in the process are embedded,
and they can easily be varied to evaluate their influence.
The proposed models describe the flow characteristics of
tape casting well. Results of the model are compared with
experiments, and good agreement is obtained.

Analysis
In order to express the volume flow and thus the tape
thickness, the velocity field equation in the doctor blade
region must be developed. Based on the number of
doctor blades, there are two kinds of tape casters: a
simple tape caster that has only one doctor blade
(illustrated schematically in Fig. 2), and a double blade
tape caster in which a front doctor blade is used to
ensure a hydrostatic pressure in front of the rear one.15

As shown in Fig. 2, d is the green tape thickness, h is
the doctor blade height, W is the width of the doctor
blade,H0 is the height of the slurry in front of the doctor
blade, d is the depth of the reservoir, l is the inclined
length of the reservoir and h is the angle of the reservoir.

The pressure gradient inside the channel below the
doctor blade is constant, since there is a hydrostatic
pressure in front of the doctor blade and it can be
determined by the height of the slurry as shown below15

dp

dx
~{A0~{

rgH0

W
(3)

where r is the density of the slurry, and g is the
acceleration due to gravity.

1 Rheological classification of flow8
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By assuming an infinitely long and wide plate as

compared to the thickness and combining with momen-

tum conservation in the x direction under steady state

conditions, we obtain the following15,16

dt

dy
~

dp

dx
(4)

where t is the shear stress. From equations (3) and (4), t

is found to be

t~{A0yzA1 (5)

where A1 is an integration constant.

For power law fluids, the shear stress t is given by the

constitutive equation16

t~k
Lu

Ly

� �n

(6)

where it has been assumed that the only velocity

component contributing to the shear rate is the velocity

in the x direction u.

Rewriting equations (5) and (6) and integrating along

the channel height h

ðh

0

{A0yzA1ð Þdy~

ðh

0

k
Lu

Ly

� �n

dy (7)

and assuming that k and n are constants, we obtain

u~ {
1

A0k
1

n

0

B

@

1

C

A

1

1

n
z1

0

B

@

1

C

A
{A0yzA1ð Þ

1
n
z1

zA2 0vyvhð Þ

(8)

where A2 is another integration constant.

The boundary conditions for equation (8) in the

doctor blade region of tape casting are

u 0ð Þ~0

u hð Þ~u0

�

(9)

where u0 is the velocity of the moving belt.

Applying these boundary conditions in equation (8),

and introducing the expressions that (1/n)z15x and

{ 1=A0k 1=nð Þ½ �~y, we get

0~
y

x
A

x
1zA2

u0~
y

x
{A0hzA1ð ÞxzA2

8

>

>

<

>

>

:

(10)

which is rewriting into

u0~
y

x
{A0hzA1ð ÞxzA

x
1

� �

A2~{
y

x
A

x
1

8

>

>

<

>

>

:

(11)

In order to find the integration constant A1, the
Newton–Raphson method is used. To do so, the
following equation originating from the upper expres-
sion in equation (11) is solved numerically to find the
parameter A1

F A1ð Þ~
y

x
{A0hzA1ð ÞxzA

x
1

� �

{u0~0 (12)

and consequently after finding A1, the parameter A2 is
calculated from the lower expression in equation (11).

As a consequence of mass conservation, the thickness
of the green tape d, can then be determined by
integrating u over the channel height and dividing by
the tape velocity, i.e.

d~
1

u0

ðh

0

udy~
{ {A0hzA1ð Þxz1

{A
xz1
1

h i

u0A0yx xz1ð Þ
zA2h (13)

Reaching to a constant tape thickness is not an
impossible goal, since most of the manufacturing
processes for tape casting are at the continuous form
in which the reservoir at all times is fed by slurry.
Moreover, using two doctor blades in the design of the
machine will result in having almost constant hydro-
static pressure during the casting process. However, it is
of great importance to control the tape thickness in the
small tape casters especially in small scale production
and laboratories, in which the slurry height is not
constant in the reservoir but gradually decreasing with
time. This phenomenon leads to the present modifica-
tion of the standard steady state model,2,4,9,15,16 making
it dependent on the height variation.

Now, the proposed quasi-steady state formulation is
developed based on the continuity equation. Assuming
that the slurry is incompressible, the volume of the slurry
which drops down in the reservoir is equal to the volume
of the slurry which is conveyed out of the doctor blade
region by the peeling belt. Assuming that during the
time period equal to Dt, the height of the slurry will
decrease from the initial value of H0 to H1, the
aforementioned volume (equals area in the present

2 Schematic geometry of tape casting machine
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two-dimensional model) in the reservoir which is

decreased will be given as

DS1~ dz
1

2
l cos h 1z

H1zh

H0zh

� �� �

H0{H1ð Þ (14)

This area is moved out of the doctor blade region with

the constant velocity of u0 and the distance of u06Dt;

hence, it is equal to u06Dt6d1. The new initial height in

the next time step is now H1 and the new DS2 is found

from using H1 as initial height in equation (14) and so

forth.

In the tape casting process, when the flow exits the

doctor blade region, the fluid starts to flow in a

transverse direction also (here in the z direction) and

this is mostly named side flow. As the final tape is in

general very wide in the z direction compared to its

thickness, this side flow will be relatively small.

Moreover, after the drying stage, the tape thickness is

decreased due to weight loss. Considering both these

effects, the final thickness of the dried tape is

dtp~
abr

rtp
d (15)

where dtp is the thickness of the dried tape, a is the

fraction loss for side flow, b is the fraction loss for

weight reduction due to drying, r is the density of green

tape and rtp is the density of dried tape, and d is the

thickness of the green tape.

Experimental

The different constituents and their function for the

LSM slurry used in the experiments are given in Table 1.

A commercial LSM was calcined at 1000uC and used in

the amount of 62?05 wt-% in the final slurry. The

average particle size and specific surface area were

12?42 mm and 23?24 m2 g21 respectively. Moreover, the

weight ratios between LSM and MEKET (solution of

methylethylketone and ethanol with the weight ratios of

1 : 3) and PVB/LSM were 1 : 2?44 and 1 : 11?53 respec-

tively. To remove air bubbles from the slurries,

mechanical vacuum was enforced for 15 min. The mean

particle size and density of the final slurries were

accordingly equal to 2?20–2?73 mm and 1?91 g mL21.

The particle size distributions were measured with a

laser diffraction particle size analyser LS 13 320 from

Beckman Coulter (USA). The rheological profiles were

measured using a narrow gap parallel plate sensor

system in Rheometer HAAKE Rheo Stress 600 (Haake,

Germany).

Experiments were carried out using a one-doctor

blade continuous type of tape casting bench, and the

plastic carrier tape (Mylar in the present case) was

driven by stainless steel rollers. The doctor blade gap

distance was set by using etalon sticks and a micrometre

screw with an accuracy of 0?01 mm. After the propul-

sion of the torque drum, whose speed was programmed

in advance, the slurry was peeled out according to the

carrier movement, forming a thin layer of tape. The cast

tapes were dried in air for 5 days, and their thicknesses

were measured using the micrometer screw. The

thicknesses of the cast tapes were measured in every

10 cm from doctor blade exit.

Experiments were conducted in three different cases,

which are summarised in Table 2. For the first set of

experiments, the same amount of ceramic slurry (con-

stant H0) was cast with three different substrate

velocities. Then, in case 2, with constant velocity and

slurry height, the amount of the doctor blade height was

varied. In the last set of experiments during constant

substrate velocity, the material load in the reservoir H0

was varied. These experiments were carried out to

investigate the effect of the three important parameters,

i.e. drag forces related to substrate velocity, hydrostatic

pressure and doctor blade height on the side flow

amount.

Results and discussion

Results from the rheology experiment showed that the

LSM slurry follows the Ostwald–de Waele power law

fluid behaviour. This is illustrated in Fig. 3, and the

relationship for the shear rate and shear stress was found

to be

t~3:31 Lu=Lyð Þ0
:90

(16)

where the constant k, which is the consistency of fluid, is

equal to 3?31 mPa sn (where n50?90), and the constant

n, which is the proximity to a Newtonian fluid, is equal

to 0?90, quite close to the Newtonian fluid value of 1.

The constant for the side flow a was obtained by a

volumetric comparison of the tape which flowed outside
Table 1 Material content and their function for LSM

slurry used in experiments

Material Function

(La0?85Sr0?15)0?9MnO3 (LSM) Ceramic substrate

Methylethylketone Solvent

Ethanol Solvent

Polyvinyl pyrrolidone (PVP) Dispersant

Polyvinyl butyral (PVB) Binder

Polyethylene glycol (PEG) Plasticiser

Dibutyl phthalate (DBP) Plasticiser

Additol Deflocculant

Table 2 Summary of experimental studies

Parameter Case 1 Case 2 Case 3

W/mm 6.4 6.4 6.4

h/mm 1 0.25, 0.4, 1 0.4

v0/mm s21 3.67, 10, 14.67 3.67 3.67
H0/mm 1.2 10.6 3.1, 6.6, 20.8

d/cm 8.8 8.8 8.8

a/u 45 45 45

3 Rheology behaviour of LSM slurry
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the casting width to the tape within the casting width

(0?8,a,0?9). The drying weight loss factor b was

obtained from drying experiments, which measured the

dried tape mass and compared it to the wet slurry mass

(0?58,b,0?64).

Effect of substrate velocity
Figure 4 shows the effect of the substrate velocity on the

dried tape thickness for the experimental data, steady

state and quasi-steady state model. As seen from the

figure for all types of data, an increased substrate

velocity results in decreasing of the tape thickness. By

further increase in the substrate velocity, it is found that

the tape thickness decreases hyperbolically,4,9 which is

also seen from equation (13). From previous works,4,8,9

it was found that when the drag force is increased by

increasing the substrate velocity, it becomes more

dominant compared to the pressure force that results

in more stretching of the slurry over the peeling belt.

Figure 4 shows that the proposed quasi-steady state

model is in better agreement with corresponding

experiments as compared to the steady state model,

since in the quasi-steady state model the effect of

decreasing level of the slurry height was taken into

account. It should be noted that the variation of the

height in the slurry will change the parameter A0 and the

resultant values of A1 and A2 (which are calculated

numerically); this of course is neglected in the steady

state model.

Figure 5 depicts the velocity profiles below the doctor

blade for three different tape velocities. It is seen that for

the higher substrate velocity (of 14?67 mm s21), the

distribution approaches a linear correlation, which

corresponds to Couette flow conditions. For lower

velocities, the hydrostatic pressure plays a more
dominant role, resulting in a velocity peak ,0?25 mm

above the peeling belt, which originates from the

combination of Couette and Poiseuille flow conditions.

These tendencies are also found in the analytical model
for flow in tape casting originally proposed by Kim

et al.2 and further developed on dimensionless form by

Jabbari and Hattel.8

Effect of doctor blade height
The effect of the doctor blade height on the tape

thickness is illustrated in Fig. 6. It is seen that increasing

the doctor blade height leads to a higher tape thickness,

which is expected. However, the difference between the
curves in Fig. 6 is decreased by increasing the velocity.

For a constant pressure height, increasing the doctor

blade height results in more material being carried out of

the doctor blade region. This means that the thickness of
the tape will be increased. As mentioned before, for high

casting velocities (substrate velocity), the drag force

becomes more dominant. The increase in the tape

thickness coming from a higher doctor blade gap is
reduced as the velocity is increased.

The comparison between the proposed model, steady
state model and experimental results is shown in Fig. 7.

It can be seen that the new proposed model is in better

agreement with experiments in comparison to the steady

state model. The highest deviation between data was
observed for the higher values of the doctor blade

height. This could arise from some of the assumptions

used in the equations for the proposed model. The main

assumption in this regards is the use of constant side

4 Effect of substrate velocity on tape thickness with doc-

tor blade height of 1 mm

5 Average velocity profile below doctor blade region with

different substrate velocities

6 Results of modelling for effect of doctor blade height

on tape thickness

7 Comparison of proposed quasi-steady state model with

steady state model and experiments for u053?67 mm s21
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1084 Materials Science and Technology 2013 VOL 29 NO 9



flow factor a for calculating the tape thickness based on

equation (15). However, this factor is not constant

based on the numerical investigation done by the

authors,17 and highly dependent on the geometry of

the tape caster and the process parameter. On the other

hand, in most cases, the desired thickness for the final

tapes is in the range of #100 mm, in which the proposed

model agrees well with the experimental data. The

smaller deviation found in the experiment might be due

to the effect of side flow, which obviously reduces the

tape thickness as compared to the analytical solution.

Effect of slurry load
It should be emphasised that for the comparisons shown

in Figs. 4 and 7, the height of the slurry that was

inserted in the steady state solution15,16 was the initial

height H0. This of course overestimates the hydrostatic

pressure and hence the tape thickness in cases where the

slurry height is actually decreasing over time.

Thus, in order to make a more fair comparison

between the analytical steady state model and the

proposed quasi-steady state model, it was chosen to

represent the slurry height (which is constant) in the
steady state model by some reasonable average.

Now, consider Fig. 8 in which the decrease in the

height of the slurry in the reservoir over time is
represented schematically. Here, H0 is the initial ceramic

height andHf is the last point where the fluid experiences

the hydrostatic pressure (equal to the doctor blade

height h). Of course, the real trend for the decrease of the

height is a non-linear behaviour, starting with high

hydrostatic pressure and decreasing by time, but as a

reasonable average, one could assume that there is a
linear behaviour in the reduction of the slurry height by

time, i.e.

Hm~
H0zHf

2
(17)

This mean value is used in the steady state model when

comparing with the quasi-steady state model in Figs. 9

and 10.

By choosing fairly small time increments for the

modelling, the results for different values of heights in

the reservoir are shown in Fig. 9. As it seen from Fig. 9,

the thickness of the tape in the end of a strip is higher
than that in the beginning of a strip. This is due to the

higher level of material in the reservoir in the beginning

of the process. As time passes, the height of the slurry in

the reservoir decreases, and consequently, the resultant

height of the tape will decrease. This means that the

hydrostatic pressure decreases by time and the drag
forces start to show their dominance by making the tape

thinner. However, this phenomenon cannot be detected

by the steady state model, no matter which value of the

slurry height (initial or average) is applied. Moreover, it

can be seen that the higher level of slurry in the reservoir

leads to a higher tape thickness in the strip. On the other

8 Schematic illustration of slurry height change by time

a H053?1 mm; b H056?6 mm; c H0520?8 mm

9 Results of modelling and their comparison with experimental data for case 3
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hand, it is also seen that the mean assumption for the

initial slurry height (steady state with Hm) in some points

catches the experimental data better than the one with the

initial height (steady state with H0). However, it does not

predict the transient behaviour of the slurry height, which

is embedded in the quasi-steady state model.

Furthermore, the higher level of slurry will result in a

longer final strip because of more material content in the

process. The predicted values from the quasi-steady

state, steady state model with initial height and steady

state with the mean height assumption and the estimated

data from experiments for the length of strip with the

different heights of the slurry are shown in Fig. 10. The

results of the quasi-steady state model are in very good

agreement with the experimental data. The small

differences between the experiments and the proposed

model might be due to the influence of the side flow.

However, it can also be seen that there is much more

difference between the steady state model and the

experimental data, which was expected. It is obvious

that the steady state model with the initial height gives a

constant value of the tape thickness, which only fits to

the experimental and the quasi-steady state model in the

beginning where the slurry height is actually H0.

Moreover, the results of the steady state model with

the mean assumption for the initial slurry height are in

good agreement with both the quasi-steady state and the

experimental data; however, they are still constant and a

more representative level is expected.

To get a better understanding of the effect of the

variable slurry height on the tape thickness, the velocity

profile was analysed below the doctor blade region for

one of the tests in case 3 (H0520?8 mm, h50?4 mm and

u053?67 mm) which is shown in Fig. 11. Here, the line

with the asterisk marker represents the velocity profile

for the initial slurry height (H0520?8 mm), the line with

the ‘o’ marker is the representative of the velocity profile

after some period of time and the line with the dot

marker represents results even later in time. As seen,

since the hydrostatic pressure decreases by time due to

the reduction in level in the slurry height, the velocity
profile is changed and the area under the velocity profile
is decreased, which can be seen in Fig. 12, and
consequently, the ‘area’ out of the blade is decreased.
On the contrary, decreasing the pressure head for a
constant velocity, the thickness of the tape is decreased
in the exit and vice versa. This behaviour very much
emphasises the importance of the proposed quasi-steady
state model, in which the transient effect of the slurry
height in the reservoir (which resembles the pressure
head) is implemented. As already discussed, the varia-
tion in the velocity profile will cause a change in the tape
thickness (Fig. 12). This phenomenon can easily be seen
in Fig. 9, where the tape thickness decreases in the
casting direction due to the transient decrease of the
slurry height in the reservoir.

Conclusions
A quasi-steady state power law model for the constitu-
tive behaviour of the non-Newtonian slurry of LSM was
proposed and used to analyse the effect of substrate
velocity, doctor blade height and slurry height in the
reservoir on the final tape thickness in tape casting. This
proposed model was based on the continuity equation
assuming incompressibility such that the decrease of the
volume of the slurry in the reservoir is equal to the one
that leaves the doctor blade region. The results show
that increasing the substrate velocity (casting speed)
causes a decrease in the tape thickness due to the
dominance of drag force over hydrostatic pressure. On
the other hand, increasing the doctor blade height with
constant velocity, the thickness of the final tape will be
increased, since the gap size for the slurry is high enough
for it to be conveyed more out of the doctor blade
region. In both cases, the developed quasi-steady state
model has better agreement with the experiments
compared to the well known steady state model. For
both quasi-steady state model and experiments, it is
observed that the height of tape at the end point of the
strip is higher in comparison to the beginning of the

10 Correlation between height of slurry and length of

strip from model and experiments with substrate velo-

city of 3?67 mm s21

11 Effect of variation in slurry height on velocity profile

below doctor blade region with doctor blade size of

h50?4 mm

12 Schematic illustration of effect of increased pressure head on tape thickness (P1.P2.P3)
2
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strip, which is not predictable by steady state solution.
Moreover, by increasing the material load (the height of
slurry in the reservoir), the aforementioned differences
between the beginning and the end of strip and the length
of strip will be increased. A new modified steady state
model is also presented based on a linear correlation
between the level in the slurry height and the time.
Although the presented model does not have the full
accuracy of the quasi-steady state model, it showed some
good results compared to the conventional steady state
calculations from the literature. Although the LSM
ceramic used in the present study has a slightly non-
Newtonian behaviour (n50?90), the model contains all
main parameters that influence the process, and it has the
flexibility to be used for different slurries, which are more
non-Newtonian, as well as different machine designs.
Moreover, the results show that the classical steady state
is not so well describing for the real process in which the
ceramic height in the reservoir is not constant. However,
the results of the proposed quasi-steady state model show
that it has good agreement with the experimental data.
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Numerical Modeling of the Side Flow in Tape Casting of a
Non-Newtonian Fluid

M. Jabbari† and J. H. Hattel

Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs Lyngby, Denmark

One of the most common ways used to produce multilayer
ceramics (MLC) is tape casting. In this process, the dried tape
thickness is of great interest to control the desired products and
applications. One of the parameters that influences the final
tape thickness is the side flow factor (a) which is mostly mea-
sured at the end of the process by a volumetric comparison of
the tape which flowed outside the casting width to the tape
within the casting width. This phenomenon has not been
predicted theoretically yet in the literature. In this study, the
flow of (La0.85Sr0.15)0.9MnO3 (LSM) slurry in the tape casting
process is modeled numerically with ANSYS FLUENT in com-
bination with an Ostwald-de Waele power law constitutive equa-
tion. Based on rheometer experiments, the constants in the
Ostwald-de Waele power law are identified for the considered
LSM material and applied in the numerical modeling. This
model is then used for different values of substrate velocity, initial
doctor blade height and material load in the reservoir, to investi-
gate their effect on a. It is found that this factor mostly ranges
between 0.8 and 0.9. Results of the modeling are compared with
experimental findings and good agreement is found.

I. Introduction

T HE production of ceramics is growing as their usage is
expanding, often requiring high quality and low geom-

etry tolerance, like in capacitors, piezoelectric actuators,
gas sensors, etc. The parallel (doctor) blade process was
first used in preparing ceramic tapes in the 1940s and it
plays a key role in producing thin ceramic tapes.1,2 Tape
casting is a forming method that has mainly been used in
the electronics industry to produce multilayer capacitors
and electronic substrates.3,4 This technique is a well-estab-
lished process which is used to produce ceramic layers and
MLC. The general schematic of the process is illustrated
in Fig. 1.

In the tape casting process, the ceramic slurry is mostly
categorized as a non-Newtonian fluid with relatively high vis-
cosity. A summary of work published regarding the rheologi-
cal classification of non-Newtonian fluids and the existence
of analytical/numerical models with focus on tape casting
was well documented before by the authors (M. Jabbari, R.
Bulatova, J. H. Hattel, and C. R. H. Bahl, under review).5

In general, the fluid flow in the doctor blade region and the
subsequent outflow can be analyzed solving the momentum
equation together with the continuity equation in two dimen-
sions assuming that the flow is generated by both the viscous
drag due to the peeling velocity of the substrate and the static
hydraulic pressure in the slurry reservoir (M. Jabbari et al.,
under review).5 There are a few research articles in which the

flow field and tape thickness were modeled analytically. Chou
et al.6 modeled the flow in the parallel blade region. Because
of the low Reynolds number, they neglected the inertia forces
by assuming Stokes flow for a Newtonian fluid. It is shown5

that the most important parameters in the tape casting process
are the hydrostatic pressure behind the flow in the doctor
blade region and the velocity of the peeling belt. Depending on
the dominance of these parameters one over another, the final
thickness of the tape will vary. The transient behavior of the
slurry height in the reservoir (i.e., the decreasing of the height
in the casting chamber) has commonly been neglected in the
literature,5,6–8 even though it has an influence on the tape
thickness and its uniformity along the casting direction.
Hence, an analytical model for the transient behavior of the
slurry height was proposed by the authors to overcome the
mentioned problems (M. Jabbari et al., under review).

The most important parameters determining the quality of
the parts produced by tape casting are the tape thickness and
the flatness of the tape. Although there are many parameters
to check and control in the process, these two are the most
important ones from a manufacturing view point. Reaching
a constant tape thickness is not an unrealistic goal industri-
ally, as most of the manufacturing processes for tape casting
are in the continuous form in which the reservoir is continu-
ously fed by the slurry. Moreover, using two doctor blades
in the design of the machine will result in having an almost
constant hydrostatic pressure during the casting process.
However, in small tape casters, especially in small-scale pro-
duction and laboratories, it is of great importance to control
the tape thickness. Finally, another inherent phenomenon
which affects the tape thickness is the side flow of the slurry
when it leaves the doctor blade. Although this side flow in
tape casting is of relatively limited magnitude, it is interest-
ingly enough always being mentioned as an influencing
parameter in the calculations of the tape thickness and
always measured experimentally5–8 by a volumetric compari-
son of the tape which flowed outside the casting width to the
tape within the casting width. Hence, the side flow factor is
measured by relating the width of the doctor blade to the
width of the produced tape. To understand the nature of the
side flow and the way it can be calculated, the three follow-
ing stages are now introduced and corresponding expressions
for the mass per length of the tape slurry are given:

1. Initial stage: side flow and drying has not taken place,
M0 = qWh.

2. Second stage: side flow has taken place but drying has
not taken place, M1 = qW′h′.

3. Third stage: both side flow and drying has taken place,
M2 = qtpW″dtp.

where the different parameters are summarized in Table I
and illustrated schematically in Fig. 2.

As there is no mass loss until stage 3, the masses in stages
1 and 2 are equal (M0 = M1), and due to the side flow the
tape width is increased, hence decreasing the tape height
(thickness). This results in the side flow factor to be defined
as follows:
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a ¼
W

W0
¼

h0

h
(1)

Moreover, due to the drying process, the mass in stage 3 is
different from the previous stages (M2 < M1 = M0). In fact,
the ratio of the mass in stage 3 and 2 (b = M2/M1) is typi-
cally denoted the drying factor, which is the fraction loss for
weight reduction due to drying:

b ¼
qtpW

00dtp

qW0h0
(2)

Assuming in the above equation the drying does only affect
the tape height (thickness) whereas its influence on the width
is negligible, we get W′ � W″. By combining Eq. (1) with
Eq. (2), the side flow factor becomes:

a ¼
W

W0
¼

1

b
�

dtp � qtp
h � q

� �

(3)

thus yielding the well-known expression that is typically used
to describe the side flow factor (a) in the literature.5–8

By assuming symmetrical flow in the sides, the final tape
width becomes W′ = W + 2/, and the side flow factor can be
calculated by the simple relationship:

a ¼
W

W0
¼

W

Wþ 2/
(4)

which is the expression used henceforth in the numerical
calculations in the present work. Equation (4) shows that by
increasing the amount of the flow in the sides (/), the side
flow factor (a) decreases, and vice versa.

In the present work, the flow of the weakly non-Newto-
nian ceramic fluid (La0.85Sr0.15)0.9MnO3 - LSM) described
with the Ostwald-de Waele constitutive model in the tape
casting process is investigated using the finite volume-based
commercial code (ANSYS FLUENT). The flow of the slurry
in the sides after leaving the doctor blade and when stretch-
ing over the peeling belt was evaluated to predict the side
flow effect in the tape casting process. The effect of the
hydrostatic pressure on the side flow was modeled by choos-
ing three different initial slurry heights inside the reservoir.
Moreover, the effect of the substrate velocity as well as the
doctor blade height on the side flow was studied. For all
these investigations, the results of the numerical modeling are
compared with corresponding experimental findings.

II. Governing Equations and Boundary Conditions

When dealing with flow problems, the momentum and conti-
nuity equations should be solved:

q
@u

@t
þ u � ru

� �

¼ �rpþr � Tþ F (5)

@q

@t
þr � ðquÞ ¼ 0 (6)

where q is density, u is velocity vector, p is pressure, T is vis-
cous stress tensor, and F is the contribution from external
forces. Here, the momentum Eq. (5) is equivalent to New-
ton’s second law of motion, and the continuity Eq. (6)
ensures conservation of mass.

The non-Newtonian behavior of the slurry is described by
the Ostwald-de Waele power law, i.e.:

s ¼ k _cn (7)

in which k is the consistency of the fluid and the exponent n
characterizes the flow type, respectively. The deviation of n
from unity denotes the amount of deviation from a Newto-
nian fluid.

To describe and model the side flow properly, apart from
solving the momentum and continuity equations with the

Table I. Parameters Definitions for the Three Stages of the
Calculations

Stage Side flow/drying Tape width Tape thickness Density

1 No side flow
no drying

W h q

2 With side flow
no drying

W′ h′ q

3 With side flow
with drying

W″ dtp qtp

Fig. 2. Schematic illustration of side flow factor.

Fig. 1. Schematic of tape casting process.
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relevant constitutive law, the tracking of the free surface as
well as the effect of surface tension should be sufficiently
addressed.

The volume of fluid (VOF) model9 which is such a
surface-tracking technique applied to a fixed Eulerian mesh
is used in the present work. It is designed for two or more
immiscible fluids where the position of the interface between
the fluids is of interest and it relies on the fact that the two
or more fluids (or phases) are not interpenetrating. For this
study the two phases are the ceramic slurry and the air. For
each additional phase which is added to the model, a vari-
able is introduced: the volume fraction of the phase in the
computational cell. In each control volume, the volume frac-
tions of all phases sum to unity. The fields for all variables
and properties are shared by the phases and represent vol-
ume-averaged values, as long as the volume fraction of each
of the phases is known at each location.

The properties appearing in the transport equation are
determined by the presence of the component phases in each
control volume. In a two-phase system, for example, if the phases
are represented by the subscripts 1 and 2, and if the volume
fraction of the second of these is being tracked, the density in
each cell is given by the following equation:

q ¼ f2q2 þ ð1� f2Þq1 (8)

The evolution of scalar f (volume fraction of fluid) is gov-
erned by the simple advection equation:

@f

@t
þ
@uif

@xi
¼ 0 (9)

The VOF model can also include the effect of surface ten-
sion along the interface between each pair of phases. In
ANSYS FLUENT, the model can be augmented by the addi-
tional specification of the contact angles between the phases
and the walls, and the solver will include the additional tan-
gential stress terms that arise due to the variation in surface
tension coefficient. The surface tension is modeled by means
of the continuum surface force (CSF) model proposed by
Brackbill et al.10 With this model, the addition of surface
tension to the VOF calculation results in a source term in
the momentum equation. In the case of constant surface ten-
sion along the surface and considering only the forces normal
to the interface, the pressure drop across the surface depends
on the surface tension coefficient, r, and the surface curva-
ture as measured by two radii in orthogonal directions, R1

and R2, as expressed in Eq. (10).

p2 � p1 ¼ r
1

R1

þ
1

R2

� �

(10)

where p2 and p1 are the pressure in the two fluids on either
side of the interface. In the formulation of the CSF model,
the surface curvature is computed from local gradients in the
surface normal at the interface. The surface normal n is then,
defined via Eq. (11) as the gradient of aq, the volume

fraction of the q th phase, the following way:

n ¼ raq (11)

The curvature, j, to be used in Eq. (10) (j = 1/R) is defined
in Eq. (12) in terms of the divergence of the unit normal,10 n̂:

j ¼ r � n̂ (12)

where

n̂ ¼
n

j n j
(13)

The surface tension is expressed in terms of the pressure
jump across the surface. The force at the surface can be
expressed as a volume force using the divergence theorem. It
is this volume force that is the source term which is added to
the momentum equation and has the following form:

Fvol ¼ Rrij

aiqijjraj þ ajqjjirai
1
2
ðqi þ qjÞ

(14)

Equation (8) allows for a smooth superposition of forces
near cells where more than two phases are present. If only
two phases are present in a cell, then ji = �jj and ∇ai =
�∇aj, then Eq. (14) simplifies to Eq. (15)

Fvol ¼ rij

qjirai
1
2
ðqi þ qjÞ

(15)

where q is the volume-averaged density computed using the
following equation:

q ¼ Raqqq:

A schematic illustration of the 3D computational domain
is shown in Fig. 3. The dimensions are chosen relevant to
the machine design of the tape caster and according to the
experimental setup applied in the present work. The domain
was discretized with a relatively fine mesh (cell side lengths in
the order of 10 lm).

To reduce the computation time, the reservoir region was
not included in the model instead pressure boundary condi-
tion was implemented in the inlet face as shown in Fig. 3.
The analytical equation for calculating the pressure gradient
in the doctor blade region is given below (M. Jabbari et al.,
under review)11

dp

dx
¼ �

qgH0

wl
(16)

where q is density, g is body acceleration due to gravity, H0

is the initial height of the slurry in the reservoir, and w is the
length of the doctor blade region.

Fig. 3. Schematic illustration of computational domain for numerical analysis.
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As seen from Eq. (16) the pressure gradient inside the
channel below the doctor blade is assumed constant, and it
can be determined by the height of the slurry in the reservoir.
However, this height is not constant for the setup considered
in the present work, but decreasing with time. To simulate
this transient behavior of the slurry height, a user defined
function (UDF) based on Eq. (16) was coded in the pro-
gramming language C and linked to ANSYS FLUENT. This
UDF was treated as a variable pressure boundary condition
which is changed by the actual flow time and updated every
time step. An example of such boundary condition is illus-
trated in Fig. 4. A fixed velocity in the x-direction (v0) is
implemented on the substrate as the velocity of the peeling
belt with no slip condition. A zero gradient is assumed for
all flow properties in the outlet boundary condition. All
other boundaries are implemented as wall boundaries with
no slip condition. The initial conditions are the inlet pressure
boundary condition at the “Inlet Face” based on Eq. (16),
no fluid is yet present in the calculation domain and the peel-
ing belt velocity is v0.

III. Numerical Analysis

For the present transient calculations, the noniterative time-
advancement (NITA) scheme12 is used to reduce the amount
of computations. The idea underlying the NITA scheme is
that, to preserve overall time accuracy, there is no need to
reduce the splitting error to zero, but only have to make it
the same order as the truncation error. The NITA does not
need any outer iterations and hence there is only a single
outer iteration per time step, which significantly speeds up
transient simulations. The NITA is used with the fractional-
step method, which offers the possibility of considerable
increase in efficiency.13 The Compressive interface capturing
scheme for arbitrary meshes (CICSAM) method was used for
interpolation of the interface, as it was already evaluated and
found to be suitable for the tape casting process by the
authors (M. Jabbari and J. H. Hattel, under review). The
CICSAM, based on Ubbink and Issa’s work,14 is a high-
resolution differencing scheme. It is particularly suitable for
flows with high ratios of viscosities between the phases. CIC-
SAM is implemented in ANSYS FLUENT as an explicit
scheme and offers the advantage of producing an interface
that is almost as sharp as the geometric reconstruction scheme.

IV. Experiments

The different ingredients and their function for the LSM slurry
used in the experiments are given in Table II. A commercial
LSM was calcined at 1000°C, and used in the amount of
62.05 wt% in the final slurry. The average particle size and spe-
cific surface area were 12.42 lm and 23.24 m2/g, respectively.
Moreover, the weight ratio between LSM:MEKET (solution of

methyl ethyl ketone and ethanol with the weight ratio of 1:3)
and PVB:LSM was 1:2.44 and 1:11.53, respectively. To remove
air bubbles from slurries, mechanical vacuum was enforced for
15 min. The mean particle size and density of the final slurries
were accordingly equal to 2.20–2.73 lm and 1.91 g/mL. The
particle size and distribution were measured by a Laser Diffrac-
tion Particle Size Analyzer LS 13 320 from BECKMAN
COULTER (Beckman Coulter Danmark ApS, København,
Denmark). The rheological profiles were measured using a nar-
row-gap parallel plate sensor system in Rheometer HAAKE
Rheo Stress 600 (Thermo Scientific, Odense C Denmark).

The experiments were carried out using a one-doctor blade
continuous type of casting bench, and the plastic carrier
(Mylar in the present case) was driven by a stainless steel
roller. The doctor blade gap distance was set using etalon
sticks and a micrometer screw with an accuracy of 0.01 mm.
After the propulsion of a torque drum, whose speed was pro-
grammed in advance, the slurry was peeling out along the
carrier movement, forming a thin layer of tape. The casted
tapes were dried in air for 5 days, and their thickness was
measured using a micrometer screw.

Experiments were conducted in three different cases, which
are summarized in Table III. For the first set of experiments,
the same amount of ceramic slurry (constant H0) was casted
with three different substrate velocities. Then in case two,
during a constant substrate velocity (v0) the material load in
the reservoir (H0) was varied. Finally, in the last set of exper-
iments with a constant velocity and slurry height, the doctor
blade height was varied. These experiments were carried out
to investigate the effect of the following three important
parameters, i.e.,: drag forces related to substrate velocity as
well as hydrostatic pressure and doctor blade height on the
side flow factor (a).

V. Results and Discussion

(1) Material Constants
The results of the rheology experiment showed that the LSM
slurry follows the Ostwald-de Waele power law fluid behav-
ior. This is illustrated in Fig. 5 and the relationship between
shear rate and shear stress is found to be:

s ¼ 3:31 � ðdu=dyÞ0:90 (17)

Comparing Eqs (7) and (17), the constant k which is the
consistency of the fluid is found to be equal to

Fig. 4. Example of implemented inlet boundary condition for
H0 = 20.8 mm.

Table II. Material Content and Their Function for
Non-Newtonian LSM Slurry used in Experiments

Material Function

(La0.85Sr0.15)0.9MnO3 (LSM) Ceramic substrate
Methyl ethyl ketone Solvent
Ethanol Solvent
Polyvinyl pyrrolidone (PVP) Dispersant
Polyvinyl butyral (PVB) Binder
Polyethylene glycol (PEG) Plasticizer
Dibutyl phthalate (DBP) Plasticizer
Additol Deflocculant

Table III. Overview of the Experimental Studies
Carried Out

Parameter Case 1 Case 2 Case 3

w (cm) 17.8 17.8 17.8
l (cm) 0.6 0.6 0.6
h (cm) 1 0.4 0.25, 0.4, 1
v0 (mm/s) 3.67, 10, 14.67 3.67 3.67
H0 (mm) 1.2 3.1, 6.6, 20.8 10.6
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k = 3.31 mPa.sn. Moreover, the constant n is equal to 0.90
which denotes a small deviation from a Newtonian fluid,
indicating a closely Newtonian behavior. These parameters
are implemented in the numerical calculations for the behav-
ior of the non-Newtonian LSM ceramic.

(2) Impact of Substrate Velocity
The effect of substrate velocity on the side flow factor is illus-
trated in Fig. 6. The results showed that by increasing the
velocity of the peeling belt, the value of the side flow factor
will be increased. It should be kept in mind that an increased
value of the side flow factor means that the slurry flows less
toward the sides. Moreover, for high values of the side flow
factor and neglecting the drying factor, the dried tape thick-
ness will be closer to that of the green tape. Increasing the
substrate velocity increases the drag forces in the cast-
ing direction (x-direction) compared with the side direction
(z-direction), and gives the slurry less possibility to flow
toward the sides. It should be mentioned that the side flow
factor expresses the mean value of the side flow along the
tape. It should also be emphasized that for higher velocities,
the side flow factor is near to one indicating almost no side
flow. However, this does not mean that the tape thickness
remains constant, as the actual tape thickness is proportional
to the reverse of the velocity function (d = 1/f(v)), which
means that by increasing the substrate velocity the final tape
thickness will decrease. So, for high velocities the real
tape thickness will decrease a little bit due to the combina-
tion of the elucidated reciprocal relationships as well as
caused by the reduced flow of the slurry toward the sides.
The minimum and maximum values for the side flow factor
predicted by the numerical model are 0.79 and 0.93, respec-
tively. This was in good agreement with the corresponding
experimental values of 0.82 and 0.92.

(3) Impact of Doctor Blade Height
Figure 7 shows the influence of the variation in doctor blade
height on the side flow factor. As the doctor blade height
increases, the size of the side flow factor (a) increases for
both numerical and experimental predictions. As discussed
before, a higher side flow factor results into less flow of
slurry toward the sides after leaving the doctor blade region.
For the lower value of the doctor blade height, as the slurry
height in the reservoir and the velocity of the peeling belt are
constant, the hydrostatic pressure behind the flow is higher
compared with the one with the bigger doctor blade height.
Increasing the hydrostatic pressure will increase the flow to
the sides and hence lead to a decrease in the resultant side
flow factor (this will be discussed in more details in the next
section). On the other hand, due to the low velocity used in
these series of experiments, the ceramic slurry has much time
to flow toward the sides after leaving the doctor blade
region. These two phenomena obviously interact, but with
the bigger doctor blade height, the effect of hydrostatic pres-
sure decreases and leads to a decrease in the flow to the sides
and hence an increase of the side flow factor. The minimum
and maximum values for the side flow factor predicted by
the numerical model are 0.82 and 0.86, respectively. This was
in good agreement with the corresponding experimental
values of 0.81 and 0.85.

Increasing the doctor blade height will increase the
amount of the material (here the ceramic slurry) which is car-
ried out, and consequently increases the initial tape thickness
in the outlet region. This increase in the initial tape thickness
over the peeling belt results in increasing the amount of flow
to the sides, and consequently the side flow factor decreases.
This phenomenon is illustrated in Fig. 8 for two different
initial tape thicknesses for two different instants in time. It is
seen that by increasing the initial tape thickness, the flow to
the side increases for both instants. This can be caused by
the surface tension forces which are predominant in the tape
with the smaller thickness compared with the tape with larger
thickness. As already discussed, the higher initial tape thick-
ness is the result of the bigger doctor blade height. This
means that for high values of the doctor blade height the side
flow factor (a) decreases. This can be used as an explanation
for the almost constant behavior of the right-hand part of
the graph in Fig. 7 as opposed to the left part where the
slope is relatively high.

(4) Impact of Slurry Height
The effect of the initial slurry height on the side flow factor
is illustrated in Fig. 9. As expected, increasing the initial
slurry height in the reservoir will increase the tape thickness
[Section V(3)], thereby promoting the flow toward the sides
and hence decrease the resultant side flow factor. Further-
more, a higher hydrostatic pressure behind the flow (inside

Fig. 5. Rheology behavior of LSM slurry.

Fig. 6. Impact of the substrate velocity on the side flow factor
(H0 = 1.2 mm, h = 1 mm). The lines are guides to the eye.

Fig. 7. Effect of the doctor blade height on the side flow factor
(H0 = 10.6 mm, v0 = 3.67 mm/s). The lines are guides to the eye.
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the doctor blade region) will result in an increase in the abil-
ity to flow toward the sides. The minimum and maximum
values for the side flow factor predicted by the numerical
model are 0.80 and 0.91, respectively. This was in good
agreement with the corresponding experimental values of
0.80 and 0.90.

For the highest value of the initial slurry height in the res-
ervoir, it can be observed that the side flow in the beginning
is considerably higher as compared with later stages in the
process. This phenomenon is illustrated in Fig. 10, for both
FVM modeling and experiments showing a “trumpet” shape

to the right-hand side of the figure. This region which was
the first to be carried out by the peeling belt will remain
until the end of the process. This phenomenon is of course
due to the high level of the hydrostatic pressure in combina-
tion with the free boundary being very close to the doctor
blade region in the beginning of the process. As the time
passes, the height of the slurry starts to decrease in the reser-
voir and the level of the pressure decreases (as it can be seen
from Fig. 4), which will reduce the flow in the sides.

VI. Conclusions

The effect of different process parameters (substrate velocity,
doctor blade height, and initial slurry height in the reservoir)
on the side flow behavior and resultant side flow factor was
investigated in the tape casting process. A slightly non-
Newtonian ceramic slurry was used for both modeling and
experiments. The slurry, LSM, followed the Ostwald-de Waele
power law (s ¼ k _cn), in which the constant k = 3.31 mPa.sn

and n = 0.90 was extracted from rheometer experiments. The
material constants were implemented in the commercial CFD
code ANSYS FLUENT which is capable of tracking the free
surface using the conventional VOF method.

It is found that increasing the substrate velocity will
reduce the flow toward the sides (/), which means that the
side flow factor (a) will increase. This is because when
increasing the substrate velocity the drag forces in the casting
direction (x-direction) also increase compared with the side
direction (z-direction), and this gives the slurry less possibil-
ity to flow toward the sides. So, by increasing the substrate
velocity one can reach a more uniform tape in terms of the
thickness.

By increasing the doctor blade height, generally the side
flow decreases, increasing the side flow factor. However, at
some point due to the increase in the tape thickness after
leaving the doctor blade, the side flow will increase, decreas-
ing the side flow factor (see Fig. 8). The competition between
these two phenomena is seen in Fig. 7 in which the increase
in the side flow factor is reduced for higher values of the
doctor blade height. This means that to control the tape uni-
formity along the casting direction as well as reaching the
desired tape thickness (by minimizing the side flow), it is
recommended to keep the doctor blade height as high as pos-
sible, however, without coming into the regime in Fig. 8,
where the side flow factor becomes more or less constant as
a function of the doctor blade height.

When the initial height of the slurry in the reservoir
increases, the side flow factor decreases as a consequence of
increased flow toward the sides coming from the higher
hydrostatic pressure. And since the slurry height is decreasing

(a)

(b)

(c)

(d)

Fig. 8. Effect of initial tape thickness on the flow of slurry in the
side obtained from the numerical model with (a) 200 lm and t = 4 s,
(b) 834 lm and t = 4 s, (c) 200 lm and t = 30 s, and (d) 834 lm
and t = 30 s.

Fig. 9. Effect of the initial slurry height on the side flow factor. The
lines are guides to the eye.

(a)

(b)

Fig. 10. Increased value of side flow in the beginning of the tape
for the highest value of initial slurry height (20.8 mm) for (a)
numerical prediction and (b) experimental tape casting.
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as the process progresses, this might lead to a tape with an
unacceptable difference in green tape thickness between the
front part of the tape as compared with the rear part.

The minimum and maximum values for the side flow
factor (a) predicted by the model are 0.78 and 0.93, respec-
tively. This was in good agreement with the corresponding
experimental values of 0.80 and 0.91.
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Bingham plastic fluid flow model in tape
casting of ceramics using two doctor blades –
analytical approach

M. Jabbari* and J. Hattel

One of the most common processes used in manufacturing of multilayer ceramic packages,

multilayer capacitors and large scale integration circuits is tape casting. In this process, the wet

tape thickness is one of the single most determining parameters affecting the final properties of

the product, and it is therefore of great interest to be able to control it. One way to control the tape

thickness is to use a two doctor blade configuration in the tape casting machine. In this case, it

becomes important to fix the height of the slurry in front of both doctor blades according to the

desired tape thickness and casting speed (belt velocity). In the present work, the flow in both

doctor blade regions of a slurry is described with a steady state momentum equation in

combination with a Bingham plastic constitutive equation, and this is integrated to a closed form

analytical solution for both reservoirs based on the desired wet tape thickness and casting speed.

The developed model is used to investigate the impact of different material parameters and

machine designs on the required slurry height. The solution is compared with experimental

findings from the literature, and good agreement is found.

Keywords: Tape casting, Two doctor blade, Bingham plastic, Fluid flow

Introduction

Ceramics are growing in production and usage for

numerous devices, like e.g. capacitors, piezoelectric

actuators, gas sensors, etc., where high quality and low

geometry tolerances are required. The parallel (doctor)

blade process was first used in preparing ceramic tapes

in the 1940s, and it has a key role in producing thin and

flat ceramic tapes.1 Tape casting is a forming method

that has mainly been used in the electronics industry to

produce multilayer capacitors and electronic substrates.2

This technique is a well established process that is used

to produce ceramic layers and multilayer ceramics. The

general schematic of the process is illustrated in Fig. 1a.

In the tape casting process, the ceramic slurry is mostly

categorised as a non-Newtonian fluid with relatively

high viscosity. A summary of work published regarding

the rheological classification of non-Newtonian fluids

and the existence of analytical/numerical models with

focus on tape casting has been given before by the

authors.3 In the present study, the Bingham plastic

constitutive model is used, where the material has a yield

point (ty515 Pa in Fig. 1b), below which no flow takes

place, whereas above it, the behaviour is linear and

characterised by the plastic viscosity k

t~tyzk
du

dy

� �

(1)

Generally, the fluid flow in the doctor blade region

and the subsequent outflow can be analysed using

Navier–Stokes equations in two dimensions assuming

that flow is generated by both the viscous drag due to

the peeling velocity of the substrate v0 and the static

hydraulic pressure due to the height of the slurry (either

H1 or H2) in the reservoir.3 There are a few research

papers in which the flow field and tape thickness were

modelled analytically.4–8 However, all of them modelled

the flow of the ceramic slurry for tape casting with one

doctor blade only.

It should be emphasised that in the field of materials

processing technology, there exists an inherent link

between materials structure, processing conditions and

final properties of the part. This is also very much the

case for the present work. However, since we deal with a
multistep processing route of manufacturing (tape

casting followed by firing or drying and finally sinter-

ing), there exist some inherent constraints on the

possibilities of varying the different materials and

process parameters in the tape casting process, which

will be elaborated in the following.

In general, the parameters influencing tape casting are

related to either the material content (i.e. the ceramic

powder, solvent, dispersant, binder, plasticiser and

deflocculant) or the machine configuration (i.e. the slurry
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height in the reservoir, the doctor blade height, substrate
velocity, the doctor blade width and so forth).2,8–10 It is
moreover also well known that all these aforementioned
parameters influence the tape structure and its thickness.8

Albano and Garrido9 investigated the influence of the
slurry composition on the properties of the tapes based on
the changes taking place in the rheological behaviour of
the slurry. However, when it comes to the slurry
composition, this is to a large extent already predeter-
mined due to constraints from the subsequent sintering
process because of the inherent relation between the
material content and the final microstructures and
properties of the sintered part. This means that most
often, the same recipe is used for the material contents in
tape casting, leaving this part of the influencing para-
meters relatively constrained. Thus, when trying to
control important resulting parameters like tape thick-
ness, etc. during the tape casting process itself, the main
possibilities for that lie in the processing parameters
rather than the slurry composition.

In general, the tape thickness is the most important
parameter determining the quality of the parts produced
by tape casting.8,10–12 Reaching a constant tape thickness
is normally achieved industrially either using a contin-
uous form tape caster in which the reservoir all the time is
fed by slurry or by applying two doctor blades in the
design of the machine (Fig. 1a), which will result in
having an almost constant hydrostatic pressure during
the casting process. The latter type is investigated in the
present work. More specifically, the aim is to model
analytically the velocity and the pressure field in both
doctor blade regions combined with the Bingham plastic
model for the fluid flow. Then, this model is used to
predict the height of the slurry in both doctor blades
based on the desired tape thickness and the belt velocity.
The model is based on an approach similar to the one
presented by the authors in Ref. 8, however, for two
doctor blades instead of one and a Bingham fluid instead
of a power law fluid. Many of the affecting parameters in
the process are embedded, and they can easily be varied to
evaluate their influence. The proposed models describe
the flow characteristics of tape casting well. Results of the
model are compared with experiments from the work by
Zhang et al.,7 and good agreement is obtained.

Fluid flow analysis

In order to express the volume flow and thus the tape
thickness, the velocity field equation in the doctor blade
region must be developed. The pressure gradient inside

the channel below the doctor blade is constant, since
there is a hydrostatic pressure in front of the doctor
blade, and it can be determined by the height of the
slurry as shown below

dp

dx
~{A0i~{

rgDH

Wi

(2)

where r is the density of the slurry, g is the acceleration
due to gravity, Hi is the height of the slurry in front of
the doctor blade, Wi is the width of doctor blade and the
subscript i corresponds to each doctor blade. The values
of DHi for the first doctor blade DB1 and the second one
DB2 are equal to DH15H12H2 and DH25H22h2
respectively. By assuming an infinitely long and wide
plate as compared to the thickness and combining with
momentum conservation in the x direction under steady
state conditions, we obtain the following

dt

dy
~

dp

dx
(3)

From equations (2) and (3), t is found to be

t~{A0iyzA1i (4)

where A1i is an integration constant. Rewriting equa-
tions (1) and (4) for a Bingham plastic fluid and
integrating along the channel height hi, we obtain

ð

({A0iyzA1i)dy~

ð

tyzk
du

dy

� �� �

dy (5)

Sufficient belt velocity
When the velocity of the substrate is high enough to
overcome the yield point, (t52A0iyzA1i.ty in
0,y,hi), the shear rates are always positive (du/
dy.0), and the velocity profile below the doctor blade
region can be found from equation (5)

u(y)~{
A0i

2k
y2z

A1i{ty

k
yzA2i (6)

The integration constants A1i and A2i can be found by
applying the boundary conditions [u(y50)50 and
u(y5hi)5v0] as below

A1i~tyz
v0k

hi
z

A0ihi

2

A2i~0

8

<

:

: (7)

1 a two-dimensional illustration of tape casting process with two doctor blades and b example of Bingham plastic model
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The critical belt velocity for flow can easily be found
by combining the first equation of equation (7) with
equation (4) and setting v05vcr as well as y5hi and t5ty,
which results in

vcr~
A0ih

2
i

2k
(8)

The green tape thickness can also be found from the
continuity equation as

d~
1

v0

ðhi

0

u(y)dy~
A0ih

3
i

12v0k
z

hi

2
(9)

Using a similar approach upstream (i.e. for the first
doctor blade region), combining equations (2) and (9) and
using that DH25H22h2, the height of the slurry behind
the second doctor blade can be determined as follows

H2~
6v0kW2

rgh32
(2d{h2)zh2 (10)

Based on the calculated value of H2, and using a
similar approach upstream (i.e. for the first doctor blade
region) and that DH15H12H2, the value of the height
behind the first doctor blade region can be expressed by

H1~
6v0kW1

rgh31
(2d{h1)zH2 (11)

Insufficient belt velocity
When the velocity of the peeling belt is not sufficient to
overcome the yield point, i.e. v0#vcr, the doctor blade
region will divide into two regions with a critical value of
y, ycr, where below ycr the shear rates are always positive
(du/dy.0), and above that are equal to zero (du/dy50).
Consequently, the velocity profile below the doctor
blade region becomes

u(y)~
{

A0i

2k
y2z

A’1i{ty

k
yzA’2i 0vyƒycr

v0 ycrvyvhi

8

<

:

(12)

Applying the boundary conditions in momentum and
constitutive equations (equations (3) and (4)), the value
of ycr and the integration constants can be determined as
follows

B:C: :

t(y~ycr)~ty

u(y~0)~0

u(y~ycr)~v0

8

>

<

>

:

[

A’1i~ 2v0kA0ið Þ1=2zty

A’2i~0

ycr~
2v0k

A0i

� �1=2
(13)

In addition, finally, the green tape thickness can be
determined by solving the continuity equation as follows

d~
1

v0

ðycr

0

u yð Þdyz

ðhi

ycr

u yð Þdy

" #

~hi{
1

3

2v0k

A0i

� �1=2

(14)

Assuming that the tape thickness and the belt velocity
are known parameters, the value of the height behind
the second doctor blade and consequently the first
doctor blade can be determined as below

H2~h2z
w2

rg

{18v0kz {18v0kð Þ2z
4 6kdv0ð Þ2

k22

" #1=2

2h22

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

H1~H2z
w1

rg

{18v0kz {18v0kð Þ2z
4 6kdv0ð Þ2

k21

" #1=2

2h21

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(15)

Model validation
To test the proposed model, results of modelling were
compared with the experimental data from Zhang et al.7

Based on each tape thickness, the values for the height in
the second reservoir obtained from the present model in
the form of A02 (A025rgH2/W2), compared to that of
the data from Zhang et al.,7 and summarised in Table 1.
As seen, a very good agreement is found.

Results and discussion

Thickness versus velocity
Figure 2 shows the effect of the substrate velocity on the
green tape thickness for two different values of the
second doctor blade height (h2). As seen from the figure,
an increased substrate velocity results in decreasing of
the tape thickness. From previous works,3–5 it was found
that when the drag force is increased by increasing the
substrate velocity, it becomes more dominant compared
to the pressure force, which results in more stretching of
the slurry over the peeling belt. Moreover, it is seen that
there are two zones in both figures (separated with a
dashed line), which correspond to the sufficient and
insufficient belt velocity. It was found that the insuffi-
cient zone shifts to higher velocities by increasing the
height of the doctor blade, which is also seen from
equation (8). The other point that can be understood
from the figures is that the tape thickness is always
higher than the half of the doctor blade height (d.hi/2).
This can also be seen from equations (10) and (11), in
which d#hi/2 results in zero or negative pressure
gradient (Hi#hi). Furthermore, based on equation (8),

Table 1 Comparison of present model with experimental data from Zhang et al.
7

ty/Pa
7

k/Pa s7 h2/mm7
v0/mm s21,7 d/mm7

A02/Pa m21
A02/Pa m21

Relative error/%Zhang et al.7 Present model

18.28 8.16 1.5 2 0.653 3347.86 3493.20 4.16

39.14 39.42 2 2 0.744 6584.31 6710.65 1.88

31.11 8.81 2.5 2 1.327 3324.81 3421.87 2.83

27.27 4.08 3 2 1.4873 3363.15 3452.13 2.57
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it can be found that the insufficient region will shift
toward the higher velocities when increasing the slurry
height, decreasing the doctor blade width and decreasing
the plastic viscosity.

Velocity profiles in doctor blade region
As already discussed, the flow behaviour based on the
critical velocity for the belt can be categorised into two
groups, i.e. sufficient and insufficient. The velocity
profiles for two categories are illustrated in Fig. 3 for
h254 mm and different k values. It can be seen that,
when the velocity in the substrate is smaller than the
critical velocity, the flow experiences the needed shear
rate in some point above the belt. The aforementioned
point in the velocity profile gets closer to the peeling belt
by increasing the plastic viscosity k. This phenomenon
can be better seen in Fig. 4, where a region with zero
shear rate can be found with the belt velocities below the
critical velocity. Moreover, it can be seen that for the
belt velocities above the critical velocity, the shear rate
values are always .0.

Slurry heights
As already discussed, the main aim of the present study

is to find the slurry height behind both the doctor blades

when knowing the desired tape thickness and belt

velocity. When solving the equations to find the
aforementioned heights, one should consider whether

the belt velocity is sufficient. Moreover, the momentum

and continuity equations should be solved in both

doctor blade regions. Figure 5 represents the height of

the slurry behind the both doctor blades for the domain

presented in the box in the Fig. 1a with a dashed line.

The geometrical parameters used for the data shown in
Fig. 5 are summarised in Table 2. As it seen, for the

constant tape thickness, if the belt velocity cannot

overcome the yield point (Fig. 5b), the slurry height

behind both doctor blades should be increased.

The effect of the desired tape thickness on the

required slurry height behind both doctor blades is

shown in Fig. 6 for both the sufficient and the

insufficient condition. As seen, the slurry height behind

the first doctor blade is always greater than that of the

second doctor blade (H1.H2). As previously mentioned,

the slurry heights for both doctor blades are higher for
the insufficient condition. Moreover, it can be seen that

in the case of sufficient belt velocity, the relation between

the variation of the tape thickness and required slurry

heights are linear.

The effect of changes in the second doctor blade width

W2 on the desired tape thickness is illustrated in Fig. 7a

and b. Increased value of the width results in increase in

the required value of the slurry height. This can be easily

understood from equations (10), (11) and (15), where a

3 Velocity profiles in doctor blade region for a v0.vcr and different k and b v0#vcr and different k; value of critical velo-

city in these special tests is equal to 10?5

2 Variation of tape thickness by substrate velocity for a h254 mm and b h255 mm

Table 2 Geometrical parameters used for modelling
represented in Fig. 5

Parameter Value/mm

d 2.7

W1 6.38

W2 6.38

d1 9
d2 9

h1 4.2

h2 4
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5 Height of slurry behind both doctor blade with a sufficient belt velocity (v0512 mm s21) and b insufficient belt velocity

(v055 mm s21)

6 Impact of increasing value of tape thickness on required height of slurry behind both doctor blades with a sufficient

and b insufficient belt velocity

4 Shear rates below doctor blade region for a v0.vcr and different k and b v0#vcr and different k; value of critical velo-

city in these special tests is equal to 10?5

7 Effect of second doctor blade width on both slurry heights for a sufficient and b insufficient belt velocity
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higher value of the doctor blade width leads to a higher
value of H2 and the resultant H1. By assuming that the
value of d2zW2 is constant, then the variation in the
value of W2 resembles the impact of the second reservoir
size d2 on the slurry height.

Conclusions
A steady state model for the Bingham plastic constitu-
tive behaviour of a non-Newtonian slurry was proposed
and used to analyse the flow field below the doctor blade
region in tape casting using two doctor blades. This
proposed model was based on the continuity equation
assuming incompressibility such that the decrease in the
volume of the slurry in the reservoir is equal to the one
that leaves the doctor blade region. The results show
that based on the ability of the flow to overcome the
yield stress, there are two different zones, i.e. a sufficient
one and an insufficient one, in which the predicted
values for the slurry height and velocity profiles are
totally different. The region with the insufficient belt
velocity shifts toward the higher velocities by increasing
the value of the critical velocity, i.e. increasing the
doctor blade hi, increasing the slurry height behind the
doctor blade Hi, decreasing the doctor blade width Wi

and the plastic viscosity k). Moreover, the tape thickness
is always smaller than the half of the doctor blade height
(d.hi/2), no matter what belt velocity is used.

The results show that when the belt velocity is not high
enough to overcome the Bingham yield point (insufficient
belt velocity), there is always a region with a zero shear
rate below the doctor blade, and this region decreases its
width by increasing the plastic viscosity k. The required
slurry height based on the desired tape thickness and the
belt velocity predicted by the proposed model and the
results show that in the insufficient condition, the slurry
height behind the both doctor blades will increase in
comparison to the sufficient condition. Moreover, the
variations of the aforementioned heights are different in
the sufficient and insufficient condition, showing a linear

increase for the sufficient condition. On the other hand,
increasing the doctor blade width Wi (or decreasing
the reservoir size di) with constant velocity and tape
thickness, the required slurry height behind both doctor
blades will be increased. The model contains all main
parameters that influence the process, and it has the
flexibility to be used for different slurries, which they
have different constitutive behaviour as well as different
machine design.
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a b s t r a c t

The main goal of this work is to study the multiple material flows in side-by-side (SBS) tape

casting and analyze the influence of the different material properties, i.e. the density and

the viscosity, on the interface between the fluids, since this is highly important for the

efficiency of a graded configuration of the magnetocaloric materials. The Newtonian flow

behavior with relatively high viscosity is assumed for each fluid and used in the simulation

with a commercial CFD code (ANSYS FLUENT). The results show that the density difference

does not affect the interface between the adjacent fluids, whereas the viscosity of the fluids

plays the most important role in the behavior of the interface. Moreover, increasing the

viscosity difference of the adjacent fluids, Dm, leads to increasing the diffusive region be-

tween them. However, this can be counteracted by decreasing the velocity by the substrate.

ª 2013 Elsevier Ltd and IIR. All rights reserved.

Modélisation du comportement de l’interface lors du coulage

en bande des céramiques calibrées pour les composants

utilisés dans le froid magnétique

Mots clés : froid magnétique ; céramiques calibrées sur le plan fonctionnel ; coulage en bande ; écoulement du fluide

1. Introduction

The concept of graded materials was first established by Bever

and Duwez (1972) for composite materials, and then further

developed for polymeric materials (Shen and Bever, 1972).

Functionally gradedmaterials (FGMs) are materials that have a

gradual variation of material properties from one end to

another. The FGMs were originally developed as special mate-

rials which could sustain long-term exposure to high temper-

ature and large differences of temperature. Nowadays, FGMs

offer great promise in applications where the operating con-

ditions are severe. For example, wear-resistant linings for

* Corresponding author. Tel.: þ45 45254734; fax: þ45 45930190.
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handling large heavy abrasive ore particles, rocket heat shields,

heat exchanger tubes, thermoelectric generators, heat-engine

components, plasma facings for fusion reactors, and electri-

cally insulating metal/ceramic joints. They are also ideal for

minimizing thermo-mechanical mismatch in metal-ceramic

bonding. There are different techniques to produce FGMs

which iswell summarized by Kieback et al. (2003). Among them

tape casting is reported extensively in literature (Yeo et al.,

1998; Acikbas et al., 2006) due to producing large-area, thin,

flat ceramics, which can be patterned, stacked, and laminated

to form three-dimensional structures (Grader and Zuri, 1993).

The method was originally developed for producing electronic

ceramics (insulating substrates and packages and multilayer

capacitors) and is still mainly used for this.

Magnetic refrigeration is a cooling technology based on the

magnetocaloric effect, which can be used to attain extremely

low temperatures, as well as the ranges used in room-

temperature refrigerators, depending on the design of the

system. The magnetocaloric effect (MCE) was originally

discovered by Warburg as reported by Pecharsky and

Gschneidner (1999). There are several examples in literature

in the field of magnetic refrigeration regarding the process

(Brück et al., 2003; Okamura et al., 2006), material selection

(Engelbrecht et al., 2011; Bahl et al., 2012a) aswell as numerical

modeling (Nielsen et al., 2009, 2011). However, so far nothing

has been reported in literature regarding modeling magnetic

refrigeration parts which are produced by tape casting.

Normally the temperature change of the magnetocaloric

effect is too small to be utilized without any amplification

measures. Therefore application of the magnetocaloric effect

for actual cooling (or heating) purposes relies on the creation of

a temperature span that is significantly larger than the tem-

perature change itself. This leads to the establishing of active

magnetic regeneration (AMR), which combines repeated

magnetization and demagnetization of the magnetocaloric

material. However, having one temperature at one end of the

plate of magnetocaloric material and another temperature at

the other endmeans that only part of the plate is actually at the

Curie temperature, i.e. is operating optimally. Having amaterial

with a varying Curie temperature would thus be advantageous

(Bahl et al., 2012b). Being an intrinsic property of amaterial, the

Curie temperature cannot be changed without chemical

modification. Such a modification often consists of doping

small amount of impurities into the material. The other

method of changing the Curie temperature is to use multi-

material layered AMRs as originally proposed by Rowe and

Tura (2006). Moreover, multilayer regenerators produce a

Fig. 1 e (a) Schematic example of FGCs used in magnetic

refrigeration, and (b) Schematic representation of the

interface between the two adjacent layers.

Nomenclature

a,b separator position in reservoir

f1,f2 fluid one/two

F
!

external forces (kg m s�2)

g gravitational acceleration (m s�2)

H0 initial height of slurry (m)

l length of doctor blade (m)

Ly length of calculation domain (m)

n number of phases

p pressure (Pa)

v0 substrate velocity (m s�1)

v!m mass-averaged velocity (m s�1)

v!dr;k drift velocity of secondary phase (m s�1)

w width of doctor blade (m)

wx tape width (m)

Wx width of calculation domain (m)

x, y, z spatial coordinates

Greek symbols

a1, a2 angle between the interface and the substrate

(degree)

_g strain rate (s�1)

_g strain rate tensor

dz tape thickness (m)

zk volume fraction

l distance from inlet (cm)

m1, m2 dynamic viscosity (Pa s)

mm dynamic viscosity of mixture (Pa s)

r, r1, r2 density (kg m-3)

rm density of mixture (kg m-3)

s viscous stress (Pa)

s viscous stress tensor

F interface between two fluids

c constant ratio

Symbols
Q

second invariant

Superscripts

u transpose

Subscripts

dr drift

k phase

m mixture

x, z direction
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larger temperature span and cooling power as compared to

single material regenerators of equivalent mass and geometry

(Richard et al., 2004; Arnold et al., 2011; Engelbrecht et al., 2011).

As explained by Reves et al. (2012), in the recently devel-

oped technique of side-by-side (SBS) tape casting, multiple

slurries are tape casted adjacently forming a single tape to

produce functionally graded ceramics (FGCs). Then, these

FGCs are used in the magnetic refrigeration process in which

there is a temperature gradient along the part (see Fig. 1(a)).

One of the most important parameters which has a sig-

nificant effect on the final properties of the SBS ceramics, is

the behavior of the interface (F) between the adjacent layers

(see Fig. 1(b)). The aforementioned interface in the FGCs used

for magnetic refrigeration are supposed to be close in shape to

its ideal form of a 2D in-plane surface (in the y�z plane), which

is perpendicular to the substrate plane (x�y plane). In this

manner, the graded behavior can be used most efficiently.

However, based on the slurry properties (i.e. the density and

the viscosity) and the process conditions (i.e. the initial slurry

height in the reservoir and the velocity of peeling belt), the

interface between the two adjacent layers can vary from its

ideal shape to have different shapes as follows:

1. a1 ¼ a2s90: F is a planar surface.

2. a1sa2s90: F is a twisted, non-planar surface.

In the presentwork the numericalmodeling of the SBS tape

casting with two slurry inlets will be presented. The model is

implemented and developed in the commercial CFD package

ANSYS FLUENT and used to analyze the interface between

two adjacent fluids. Based on this, the influence of the mate-

rial parameters of the two adjacent fluids, i.e. the density and

the viscosity, and the important process parameter of sub-

strate velocity on the predicted interface are also investigated.

2. Mathematical model

A large number of flows encountered in nature and technology

are a mixture of phases. Physical phases of matter are gas,

liquid, and solid, but the concept of phase in amultiphase flow

system is applied in a broader sense. In multiphase flow, a

phasecanbedefinedasan identifiableclassofmaterial thathas

a particular inertial response to and interaction with the flow

and the potential field in which it is immersed. Advances in

computational fluid mechanics have provided the basis for

further insight into the dynamics of multiphase flows.

Currently there are two approaches for the numerical calcula-

tion ofmultiphase flowswhich are available in ANSYS FLUENT

(ANSYS Inc., 2009): the Euler-Lagrange approach and EulereE-

uler approach. The mixture model which is of the latter type

wasused in thepresentstudy, because ithasbetteraccuracy for

the slurry flow of ceramics (ANSYS Inc., 2009). Moreover, a

second-order time integration scheme is available together

with the Mixture (and Eulerian) multiphase models, which is

not the case for the conventional VOF Explicit Scheme.

The mixture model is a simplified multiphase model that

can be used in different ways. It can be used to model multi-

phase flowswhere the phasesmove at different velocities, but

assuming local equilibrium over short spatial length scales. It

can be used to model homogenous multiphase flow with very

strong coupling and phases moving at the same velocity and

lastly, the mixture model are recommended to use for flows

with high viscosity and non-Newtonian viscosity (ANSYS Inc.,

2009). The mixture model solves the continuity equation, the

momentum equation and the energy equation for the

mixture, and the volume fraction equation for the secondary

phases, as well as algebraic expressions for the relative ve-

locities (if the phases are moving at different velocities).

2.1. Continuity equation

The continuity equation for the mixture is

v

vt
ðrmÞ þ V$ðrm v!mÞ ¼ 0 (1)

where v!m is the mass-averaged velocity

v!m ¼

Pn
k¼1zkrk v

!
k

rm
(2)

and rm is the mixture density

rm ¼
X

n

k¼1

zkrk (3)

in which zk is the volume fraction of phase k.

2.2. Momentum equation

The momentum equation for the mixture can be obtained by

combining the individual momentum equations for all phases

leading to

v

vt
ðrm v!mÞ þ V$ðrm v!m v!mÞ ¼ �V$

�

mm

�

V v!m þ V v!
T

m

��

þ rm g!þ F
!

þ V$

 

X

n

k¼1

zkrk v
!

dr;k v
!

dr;k

!

(4)

where n is the number of phases, F
!

is the contribution from

external forces, and mm is the viscosity of themixture given by:

mm ¼
X

n

k¼1

zkmk (5)

and v!dr;k is the drift velocity for the secondary phase k:

v!dr;k ¼ v!k � v!m (6)

which in the case of two fluids will be zero. The drift velocity

only becomesactivewhenone of thephases is in particle form.

2.3. Constitutive model

We now consider the viscous stress tensor s as well as the

strain rate tensor which is given as:

_g ¼ V v!þ ðV v!Þu (7)

where v! is the velocity vector, V v! is the velocity-gradient

tensor and the superscript u denotes its transpose. The

magnitudes of _g and s, denoted respectively by _g and s, are

defined by
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_g ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

1
2

Y

_g

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

_g : _g

r

and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

1
2

Y

s

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

1
2
s : s

r

(8)

where
Q

stands for the second invariant of a tensor. For the

Newtonian behavior of a fluid the constitutive behavior is

described by

s ¼ m _g (9)

in which m is the dynamic viscosity of the fluid. Most of the

ceramics and polymeric fluids show some non-Newtonian

behavior (Jabbari and Hattel, 2011, 2012). However, in the

present study the fluids are assumed to behave as a Newto-

nian fluid with relatively high viscosity, which is a reasonable

assumption for many slurries (Jabbari and Hattel, 2012, 2013;

Jabbari et al., 2013).

2.4. Boundary conditions

A schematic illustration of the SBS tape casting process with

the separator plane in the reservoir is shown in Fig. 2(a). The

dimensions are chosen relevant to the machine design of the

tape caster (Jabbari and Hattel, 2011, 2012; Jabbari et al., 2013).

The domain was discretized with a relatively fine mesh

(dx ¼ dy ¼ dz ¼ 1 mm). In order to get a better accuracy in the

region between the two inlets (the notch region) where the

two fluids meet, the domain is refined with a finer mesh

(dx ¼ dy ¼ dz ¼ 0.5mm). The analytical equation for calculating

the pressure gradient in the doctor blade region is given below

(Jabbari and Hattel, 2011; Kim et al., 2006):

dp

dy
¼

rgH0

wl
(10)

where r is density, g is body acceleration due to gravity,H0 is the

initial height of the slurry in the reservoir, l is the length of the

doctorblade region, andw is thewidthof thedoctorblade region.

Based on the position of the separator plane in the reservoir

(different values of a and b, where aþb ¼ w), Eq. (10) is hence

modified for each of the fluids in the SBS tape casting process. In

thepresentstudyit isassumedthata¼b, hence foreachfluid the

relevant width becomes half of the total width and in the reser-

voir the pressure gradient in the doctor blade region becomes:

dp

dy
¼

2rgH0

wl
(11)

In order to reduce the computational domain (and hence

the computational time), the reservoir region was neglected

by creating a user defined function (UDF) code written in C

programming language based on Eq. (11) and linked to the CFD

code. This UDF was treated as a constant pressure boundary

condition in the “Inlet Face” (see Fig. 2(a)), which is applied

every time step. A fixed velocity in the (�y)-direction (v0) is

implemented on the substrate as the velocity of the peeling

belt with no slip condition. A zero gradient is assumed for all

flow properties in the outlet boundary condition.

Since the width of the produced graded tape (wx) is much

bigger than the tape thickness (dz), where their ratio (c ¼ wx=dz)

can vary between 10<c< 1� 103, the computational domain in

both sidesof the separatorplane is reduced to reach the ratio of

c ¼ 10 with a symmetry plane on each side. An example of the

computational domain is illustrated in Fig. 2(b). As seen, there

is a movable cross-sectional plane (MCP) at the distance of l

from the inlet, whichwill be used later on for the investigation

of the interface behavior in different distances from the doctor

blade exit. All other boundaries in the doctor blade region and

the notch between the two inlets are implemented as wall

boundaries with no slip condition.

3. Case studies

To evaluate the impact of different parameters on the behavior

of the interface between the two fluids, different cases were

investigated, which are summarized inTable 1. The numbers in

this table are chosen based on the typical slurries used in the

process. Case 1 was simulated to investigate the impact of the

width of the domain. In order to find out which material

parameter, either the density or the viscosity, is affecting the

interface between the adjacent fluids themost, both case 2 and

case 3 were defined and evaluated. Case 4 was created to

investigate the influence of the viscosity difference (Dm) of the

adjacent fluids on the interface between them.And finally, case

5 and case 6 were introduced to evaluate the effect of the sub-

strate velocity (process parameter) on the interface of the adja-

cent fluids, with the increased (double) value of the substrate

velocity as compared to the Base case and case 2, respectively.

4. Results and discussion

4.1. Domain size effect

Before evaluating further about the impact of the material

properties and process parameters on the interface behavior,

the reliability of the chosen reduced calculation domain

Fig. 2 e (a) Schematic illustration of computational domain

for numerical analysis of SBS tape casting, (b) Reduced

computational domain used in the present study.
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should be checked. This means that the solution should be

checked to see whether it is affected by the domain size in

terms of thewidth. To do so, the base casewas comparedwith

Case 1. To get a better idea of the interface behavior, a closer

look at the first fluid inlet (x<�10), the notch between the two

flow inlets (�10 < x < 10), and the second fluid inlet (x > 10)

together with the “z” axis position are shown in Fig. 3(a). The

results of the simulations at the location of the MCP are

illustrated in Fig. 3(b). As seen, the predicted interfaces for the

two mentioned cases are the same, providing that the

reduction in the width (Wx) for the enhanced computational

domain is reliable and efficient for the rest of the calculations.

The variation of the predicted interface between the adja-

cent fluids in the casting direction (�y) was investigated by

analyzing the interface in the different MCPs (by changing l).

Since the width of the domain has no influence on the

interface behavior, it was decided to use the Base case for this

investigation, with four different values for the MCP, i.e.

l1 ¼ 0.2 cm, l2 ¼ 2 cm, l3 ¼ 20 cm and l4 ¼ 30 cm. As seen from

the results shown in Fig. 4, the interface behavior in the MCP

shortly after the doctor blade exit (l1 ¼ 0.2 cm) is changing

along the casting direction. In the beginning, the fluidwith the

lower viscosity diffuses toward the fluid with higher viscosity,

creating a tendency toward the lower viscosity one goes

beneath the higher viscosity one. However, in the next MCPs

the tendency changes by pushing the higher viscosity one

beneath the lower viscosity one. This results in creating a

twisted non-planar interface between the adjacent fluids.

Moreover, it is seen that after some point, the interface does

not change anymore (compare the results for l3 ¼ 20 cm and

l4 ¼ 30 cm).

4.2. Impact of the density

The effect of the densities of the two adjacent fluids on the

interface behavior is evaluated by comparing three cases, i.e.

the base case, case 2 and case 3. The results of the comparison

are shown in Fig.5. It can be seen that for the base case and

case 3, where the viscosity for the two fluids in the two cases

are not changed (although their values are not the same), the

interfaces between the adjacent flows are the same. In both

the base case and case 3, the fluid with the lower viscosity

diffuses toward the fluid with higher viscosity, creating a

tendency towards the higher viscosity one goes beneath the

lower viscosity one. Moreover, it is seen that when the vis-

cosities of the two fluids are the same (case 2), the interface

between the two fluids does not move and stays in the middle

(a)

(b)

Fig. 3 e (a) Doctor blade (DB) region in the notch together

with the MCP for l[ 0 ( y[ 40 cm), and (b) Comparison of

the predicted interfaces for fluid f1 for the two different

cases of different domain width and at the MCP for

l [ 20 cm.

Fig. 4 e Variation of the predicted interface for different

distances from the flow inlets (l) for the base case.

Table 1 e Summary of the parameters used in different cases.

Cases Ly (m) Wx (m) v0 (m s�1) Fluid 1 ( f1) Fluid 2 ( f2)

r1 (kg m�3) m1 (Pa.s) r2 (kg m�3) m2 (Pa.s)

Base 0.4 0.002 0.00367 2 3 4 6

Case 1 0.4 0.02 0.00367 2 3 4 6

Case 2 0.4 0.002 0.00367 2 3 4 3

Case 3 0.4 0.002 0.00367 2 3 2 6

Case 4 0.4 0.002 0.00367 2 2 2 8

Case 5 0.4 0.002 0.00734 2 3 4 6

Case 6 0.4 0.002 0.00734 2 3 4 3
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point (x ¼ 0). This indicates that the density does not play a

role in the behavior of the interface between the two adjacent

fluids; and that the viscosity is the affecting parameter.

4.3. Impact of the viscosity

Knowing that the interface between two fluids is mainly

affected by the viscosity of the fluids, one additional analysis

was carried out to evaluate the effect of the viscosity differ-

ence. This difference (Dm) of the two adjacent fluids was

increased from 3Pa s (case 3) to 4Pa s (case 4). The results of

this investigation are illustrated in Fig. 6. As seen, by

increasing the viscosity difference the interface between the

fluids is moved more toward the fluid with the higher

viscosity.

4.4. Effect of the substrate velocity

The effect of the substrate velocity on the predicted interface

between the adjacent fluids is illustrated in Fig. 7, comparing

the Base case and case 2 with case 5 and case 6, respectively.

The results show that by increasing the substrate velocity, the

level of both fluids decreased (case 5 and case 6). This is due to

increase of the drag force by increasing the substrate velocity,

which makes it more dominant compared to the pressure

force, and results in more stretching of the slurry over the

peeling belt (Jabbari and Hattel, 2011, 2012, 2013). It should be

noted that the mas flow is constant during this case, whereas

the substrate velocity is doubled, leading to thin but long

tapes. Confirming the previous results, it is the viscosity that

influences the interface behavior. It can be seen that the only

change for case 6, where the viscosities of the adjacent fluids

are the same, is the reduction in the height. However,

comparing the Base case and case 5, not only the height is

decreased, the behavior of the interface is changed. It is seen

that by increasing the substrate velocity, the interface be-

tween the fluids is moved more toward the fluid with the

higher viscosity.

5. Conclusions

Numerical modeling of the side-by-side (SBS) tape casting

process with two fluid entries was conducted with the finite

volume (FV) based commercial CFD package ANSYS FLUENT.

The interface between the adjacent flows was modeled using

the CFD code together with a UDF (user defined function) for

the pressure boundary condition. The effect of the flow in the

width direction (x) and the casting direction (�y) on the

interface region was investigated. It is seen that the interface

behavior is not affected by the width of the tapes, and this can

be used to reduce the simulation domain resulting in less

computational efforts. Moreover, as we proceed along the

casting direction the angle of the intersection between the

interface and the MCP changing creating a twisting and hence

a non-planar interface.

The predicted interfacewas investigated to understand the

influence of the material parameters of the two adjacent

fluids, i.e. the density and the viscosity, on the position of the

interface. It was observed that the densities of the fluids do

not influence the interface between the adjacent fluids,

whereas the viscosity of the fluids plays a key role in the

interface behavior. Specifically, it is seen that the viscosity

difference (Dm) causes the fluid with lower viscosity to move

toward the onewith the higher viscosity. Moreover, increasing

the aforementioned difference leads to further movement of

the interface toward the fluid with the higher viscosity.

Fig. 6 e Impact of the viscosity difference (Dm) on the

interface between the adjacent fluids in the MCP with

l [ 20 cm. Case 4 has a higher viscosity difference.

Fig. 7 e The effect of the change in the substrate velocity on

the predicted interface in the MCP with l [ 20 cm.

Fig. 5 e Comparison of the predicted interface between the

adjacent fluids for the three different cases (Base case, case

2 and case 3) in the MCP with l [ 20 cm for evaluation of

the density effect.
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The impact of the substrate velocity was also investigated.

As expected, it is found that by increasing the substrate ve-

locity the height of both fluids decreased. Moreover, in the

presence of the viscosity difference for the adjacent fluids, by

increasing the substrate velocity the interface moved more

toward the fluid with the higher viscosity.

Finally, it can be concluded that for the magnetic refriger-

ation applications with the objective of an ideal (totally

perpendicular) interface between the adjacent fluids, the vis-

cosities of the fluids should be kept as close as possible.

Moreover, in the presence of a viscosity difference (Dm), to

decrease the diffusive region, as low velocities as possible for

the substrate should be used.
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a b s t r a c t

The aim of the present study is to evaluate the different interface capturing methods as

well as to find the best approach for flowmodeling of the ceramic slurry in the tape casting

process. The conventional volume of fluid (VOF) method with three different interpolation

methods for interface capturing, i.e. the Geometric Reconstruction Scheme (GRS), High Res-

olution Interface Capturing (HRIC) and Compressive Interface Capturing Scheme for Arbi-

trary Meshes (CICSAM), are investigated for the advection of the VOF, both for

Newtonian and non-Newtonian cases. The main purpose is to find the best method for

the free surface capturing during the flow of a ceramic slurry described by a constitutive

power law equation in the tape casting process. First the developed model is tested against

well-documented and relevant solutions from literature involving free surface tracking and

subsequently it is used to investigate the flow of a La0.85Sr0.15MnO3 (LSM) ceramic slurry

modeled with the Ostwald de Waele power law. Results of the modeling are compared

with corresponding experimental data and good agreement is found.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Tape casting is a forming method that has mainly been used in the electronics industry to produce multi-layer capacitors

and electronic substrates [1,2]. This method basically starts with a specially designed slurry which can be cast by a blade to a

flat sheet or layer, then dried into a flexible solid tape which can be sintered subsequently into a hard ceramic substrate layer

[3]. This technique is a well-established process which is used to produce ceramic layers and multi-layered ceramics (MLC).

The parallel (doctor) blade process was first used in preparing ceramic tapes in the 1940s and today it plays a key role in

producing thin and flat ceramic tapes [4,5].

Generally, the fluid flow in the doctor blade region and the subsequent outflow can be analyzed using Navier–Stokes

equations in two dimensions assuming that flow is generated by both viscous drag due to the peeling velocity of the sub-

strate and the static hydraulic pressure in the slurry reservoir. There are a few research papers in which the flow field

and the resulting tape thickness were modeled analytically. Chou et al. [6] modeled the flow in the parallel blade region

and due to the low Reynolds number, they neglected the inertia forces by assuming Newtonian-Stokes flow.
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In a general sense, fluids that exhibit characteristics not covered by the Newtonian constitutive equation are non-New-

tonian. The exceptions to the Newtonian fluids are not of rare occurrence, and in fact many common fluids are non-Newto-

nian. Fig. 1 shows the rheological classification of the non-Newtonian fluids.

In the tape casting process, the ceramic slurry is mostly categorized as a non-Newtonian flow with relatively high viscos-

ity. The viscoplastic description was used by Huang et al. [7] to model the flow field in the tape casting process. In their 2D

analytical model the effects of pressure gradient, substrate velocity and resultant tape thickness were evaluated. The effect of

different rheological behaviors of the tape slurry (Newtonian, power law and Bingham plasticity) for a generalized pressure

flow in tape casting was investigated by Joshi and et al. [8]. They estimated the tape thickness analytically and controlled the

size of the parallel channel in tape casting accordingly.

The flow of Bingham fluids are evaluated and investigated in different areas of the engineering sciences [9,10]. The ideal

Bingham material model is characterized by a shear stress (s) which is a linear function of shear rate ( _c). The yield stress (sy
in Fig. 1) is the finite stress which is required for flow initiation (Fig. 1). The main mathematical difficulty when solving ideal

Bingham flows is the non-differentiability of the constitutive law at the yield point. The most straightforward and conve-

nient way to circumvent this difficulty is to approximate the material behavior by a bi-viscosity model, in which the material

has no true yielding point but flows with a very high viscosity below the yield stress and with the plastic viscosity above it

[11]. In most engineering applications, flow of non-Newtonian fluids are characterized by the Bingham, Herschel-Bulkley or

Ostwald deWaele power law constitutive models which are shown in Fig. 1 [8,12–16]. A summary of work published regard-

ing the rheological classification of non-Newtonian fluids and the existence of analytical/numerical models with focus on

tape casting have been given previously by the authors [17].

Flow processes often involve the presence of free surfaces, the tracking of which has significant impact on the manufac-

turing and the final quality of the product. Examples abound, e.g., casting processes, mold filling, thin film processes, extru-

sion, coatings, spray deposition, fluid jetting devices in which material interfaces are inherently present. This phenomenon is

also considered in multi-material flows with sharp immiscible interfaces [18]. Several CFD methods have been developed in

the last decades with the aim of simulating such complex flows with free surfaces. Two very well-known example of this is

the volume of fluid (VOF) and level set methods. In general, there are a lot of different research papers which are dedicated to

free surface modeling, different interpolation schemes, liquid/gas phase flow, multi fluid flow, multiphase flow and different

numerical methods to simulate the flow field with the presence of an interface [18–26].

A proper discretization of the convective term in the equation for transport of the VOF is crucial for simulation of a mul-

tiphase flow. It is well-known that numerical schemes, commonly used for discretization of the convection term, introduce

numerical diffusion or numerical dispersion phenomena [27]. For this reason, some additional techniques are needed, i.e.

high-resolution schemes. Examples of these can be found in [28–31] with special focus on capturing sharp interfaces.

The aim of this paper is to evaluate the different interface capturing methods and to find the best approach for flow mod-

eling of the ceramic slurry in the tape casting process using the commercial software ANSYS FLUENT. The conventional VOF

method will be used with three discretization schemes for the convection of the VOF: Geometric Reconstruction

Scheme (GRS), High Resolution Interface Capturing (HRIC) and Compressive Interface Capturing Scheme for Arbitrary

Meshes (CICSAM), which all will be discussed in detail. The main purpose is to find the best method for capturing the free

surface in the flow of a non-Newtonian ceramic slurry described by the constitutive power law equation in the tape casting

process. To do so, two different test cases will be investigated and compared with data in literature. One of the cases is the
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Fig. 1. Rheological classification of fluids.
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flow of water (as a Newtonian fluid) in a box with a small obstacle in its path. In the other case, the flow of a power law

ceramic fluid on an inclined plate will be tested. The aim of these cases is to serve as validation for the developed model

and to investigate the influence of material behavior, i.e. a Newtonian fluid with n = 1 and a highly non-Newtonian fluid with

n = 0.5294, on the different schemes for interface interpolation. Moreover, these cases are chosen because they are relatively

simple modeling-wise in combination with being very well documented in literature [30,32]. After testing the developed

model, it will be used to investigate the flow of a La0.85Sr0.15MnO3 (LSM) ceramic slurry with the Ostwald de Waele power

law constitutive behavior in tape casting. Results of the modeling will be compared with corresponding experimentally ob-

tained data.

2. Governing equations

When dealing with flow problems, the coupled momentum and continuity equations should be solved:

q
@u

@t
þ u �ru

� �

¼ �rpþr � T þ F ð2:1Þ

@q
@t

þr � ðquÞ ¼ 0 ð2:2Þ

where q is density, u is velocity, p is pressure, T is stress tensor and F is the contribution from external forces. Here, the

momentum Eq. (2.1) expresses Newton0s second law of motion, and the continuity Eq. (2.2) ensures conservation of mass.

The momentum equation is dependent on the volume fraction of all phases through the properties q and l (viscosity in the

term T) via volume-fraction averaging as shown in Eq. (2.4)

The non-Newtonian Ostwald-de Waele constitutive law states that the shearing force (per unit area)) s is proportional to

the shear rates (the rate of shear strain _c ¼ @u=@y) as given below:

s ¼ k _cn ð2:3Þ

in which k and n are the consistency of the fluid and amount of deviation from a Newtonian fluid, respectively.

The volume of fluid (VOF) model is a surface-tracking technique applied to a fixed Eulerian mesh. It is designed for two or

more immiscible fluids where the position of the interface between the fluids is of interest. In the VOF model, a single set of

momentum equations is shared by the fluids, and the volume fraction of each of the fluids in each computational cell is

tracked throughout the domain [33].

The properties appearing in the transport equation are determined by the presence of the component phases in each con-

trol volume. In a two-phase system, for example, if the phases are represented by the subscripts 1 and 2, and if the volume

fraction of the second of these is being tracked, the density in each cell is given by

q ¼ f2q2 þ ð1� f2Þq1 ð2:4Þ

The evolution of scalar f (volume fraction) is governed by the simple advection equation:

@f

@t
þ
@uif

@xi
¼ 0 ð2:5Þ

More information on the VOF method can be found in the original work by Hirts and Nichols [33].

When coupled with the Navier–Stokes equations, the volume fraction is treated as an active scalar (it has influence on the

velocity field). The main numerical difficulties connected with discretization of the transport equation for the volume frac-

tion are: keeping constant width of the interface, i.e. avoiding artificial diffusion of the step interface profile and assuring a

monotonic change of the variables. This last condition is also known as the boundedness criterion [33]. In order to overcome

the aforementioned problems different methods were proposed. For instance, in Hirt and Nicholls [33] a Donor–Acceptor

Scheme (DAS), based on the availability criterion, was introduced. Problems that arose when using this scheme provoked

other proposals that follow the idea of geometric interface reconstruction; examples are SLIC (Simple Line Interface Calcu-

lation) method, PLIC (Piecewise Linear Interface Construction) method or more recent methods that use the least-square pro-

cedure or splines [23]. Methods that employ these ideas give good approximation of the shape of the interface and they allow

for proper calculation of the fluxes through faces of the control volumes. However, their application is often restricted to

structured grids with simple shapes of the control volumes. Moreover, since estimation of a spatial orientation of the inter-

face from the distribution of the volume fraction needs a substantial number of numerical operations, interface reconstruc-

tion methods increase the computational effort [34].

Unlike geometric interface reconstruction methods, the high-resolution schemes, i.e. Compressive Interface Capturing

Scheme for Arbitrary Meshes (CICSAM) [27] and High Resolution Interface Capturing (HRIC) [28], do not introduce geomet-

rical representation of the interface but try to satisfy the aforementioned conditions by properly chosen discretization

scheme [34]. The different VOF differencing schemes of volume fraction equation, i.e. geometrical reconstruction, donor–

acceptor, CICSAM and HRIC, and their definitions are well summarized by Lopez and Quinta-Ferreira [35].
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3. Test case1: dam breaking with obstacle

In this case flow of water (Newtonian fluid) inside a box was investigated. The computational domain used for this cal-

culation is illustrated in Fig. 2. The no-slip boundary condition was used for the wall and the thermal effect (energy equation)

was neglected. The results of numerical modeling with different interface capturing methods are illustrated in Fig. 3a. It is

seen that both the CICSAM and HRIC methods show the same profile, whereas the GRS is substantially different. Moreover,

the numerical results of the present study were compared with the numerical and experimental data by Panahi et al. and

shown in Fig. 3b and c [30]. It is obvious that the GRS scheme deviates from all other numerically obtained results, but it

seems that it does not deviate a lot from the experimental data. Furthermore, the CPU times for the three methods are shown

in Fig. 4. It is seen that the computational efforts are almost similar for the three schemes, however with a slightly higher

value for the GRS scheme as compared to the others.

Fig. 2. Computational domain used for calculation of the flow for Newtonian (water) fluid.

Fig. 3. Results and comparison of dam break for; (a) present study for different surface capturing methods, (b) numerical simulation by Panahi et al., and (c)

experimental visualization by Koshizuka et al. [30].
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4. Test case2: falling film on an inclined plate

The falling film of a non-Newtonian fluid on an inclined plate was investigated in this case. The geometry and the bound-

ary conditions were used from the work by Haeri et al. [32] and are shown in Fig. 5. Full details of the modeling procedure

can be found in Haeri et al. The constitutive model used for the material behavior is the power law equation with the con-

stants shown below:

s ¼ k _cn; ðk ¼ 11:007;n ¼ 0:5294Þ ð4:1Þ
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Fig. 4. CPU time comparison for different interface capturing method.

Fig. 5. Schematic of (a) experimental and (b) 3D computational domain used in the present case and taken from Haeri et al. [32].

a [t = 15s] Haeri et al. [32]
GRS
CICSAM
HRIC

b [t = 20s] Haeri et al. [32]
GRS
CICSAM
HRIC

(b)

(a)

Fig. 6. Comparison of different interface capturing methods at different times of (a) t = 15 s and (b) t = 20 s.
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The main purpose of this case is to test the model implemented in ANSYS FLUENT for the three different interface cap-

turing methods and validate it for the case of a highly non-Newtonian fluid. The position of the resultant film thickness was

extracted from the aforementioned work by Haeri et al. [32] and compared with the model developed in this study, see Fig. 6.

The results reveal that the CICSAM method shows the best agreement. However it should be noted that the interpolation

method that was used in Haeri et al. [32] was also the CICSAM method. Moreover, it is seen that the GRS again has the high-

est deviation from the other schemes. Moreover, in comparison to the Newtonian fluid (Test case1), the non-Newtonian fluid

showed more instability in the interface. This was concluded from investigating the interface obtained by the HRIC method

in more detail. Although the mentioned scheme has the highest accuracy as compared to the other methods, it still showed

some oscillations in the interface.

The CPU times for the simulation of the falling film on a plate with different schemes are shown in Fig. 7. As seen, the

computational time for the GRS method is again the highest. Moreover, for this special case there is a noticeable difference

in the computational time between the CICSAM and the HRIC methods.

From the two test cases it can be concluded that for capturing the free surface, for both Newtonian and non-Newtonian

fluids, the CICSAM scheme has less computational time as compared to the other interpolation schemes. More importantly,

the CICSAM scheme showed less instability in the interface as well as a good prediction of the free surface for both the New-

tonian and the non-Newtonian case.

5. Modeling of tape casting

5.1. Numerical procedure

A schematic illustration of the computational domain is shown in Fig. 8. The calculation domain is designed in 2D, and the

side effect of flow outside the doctor blade region which to some extent affects the tape thickness is neglected. However, the

mentioned effect is mimicked using extra parameters which were measured experimentally. The dimensions are chosen

according to the machine design of the tape caster which was used in the experiments. The domain is discretized with a rel-

atively fine mesh.
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Fig. 7. CPU time comparison for different interface capturing methods.

Fig. 8. Computational domain for modeling of tape casting.
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For the inlet boundary condition the velocity is set to a very small value (10�8m=s), just to avoid the initial zero boundary

condition. A fixed velocity in the x -direction (v0) is implemented on the substrate expressing the velocity of the peeling belt

with no slip condition. A zero gradient is assumed for all flow properties in the outlet boundary condition. All other bound-

aries are implemented as wall boundaries with no slip condition.

For the transient calculations the non-iterative time-advancement (NITA) scheme is used to reduce the amount of com-

putations. The idea underlying the NITA scheme is that, in order to preserve overall time accuracy, there is no need for reduc-

ing the splitting error to zero, but only having to make it the same order as the truncation error. The NITA does not need

outer iterations and hence there is only one single ‘‘outer iteration’’ per time-step, which significantly speeds up transient

simulations. The NITA is used with the fractional-step method, which offers the possibility of a considerable increase in effi-

ciency [36].

The illustrated domain in Fig. 8 is discretized with a structured mesh. The general cell size is chosen to be 10 lm. How-

ever, in order to check the dependency of the solution on the mesh size, two other different mesh sizes were also tested. As

shown in Fig. 9, the convergence history of the wall shear stress in the substrate (where the casting velocity is implemented)

is evaluated by three different mesh sizes of 10, 5 and 1 lm. The results show that the simulation is reasonably independent

of the mesh size where elements smaller than 10 lm are used. For the mesh and the velocity of the substrate used in this

paper, the time step size is set in the range of 0.0005–0.002 s.

5.2. Experiments

The different materials used as well as their function for the La0.85Sr0.15MnO3 (LSM) slurry are given in Table 1. A com-

mercial LSM was calcined at 1000 �C, and used in the amount of 62.05 wt.% in the final slurry. The average particle size

and specific surface area were 12.42 lm and 23.24 m2/g, respectively. Moreover, the weight ratio between LSM:MEKET

(solution of methylethylketone and ethanol) and PVB:LSMwere 1:2.44 and 1:11.53, respectively. To remove air bubbles from

slurries, the mechanical vacuum was enforced for 15 min. The mean particle size and density of the final slurries were

accordingly equal to 2.20–2.73 lm and 1.91 g/ml. The particle size and particle size distribution were measured by the Laser

Diffraction Particle Size Analyzer LS 13 320 from BECKMAN COULTER (USA). The rheological profiles were measured using a

narrow-gap parallel plate sensor system in Rheometer HAAKE Rheo Stress 600 (Haake, Germany).

Experiments were carried out using a one-doctor blade continuous type of casting bench, and the plastic carrier (in the

present case Mylar) was driven by a stainless steel roller. The doctor blade gap distance was set by using etalon sticks and a

micrometer screw with an accuracy of 0.01 mm. After the propulsion of a torque drum, whose speed was programmed in
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advance, the slurry was peeling out along the carrier movement, forming a thin layer of tape. The cast tapes were dried in air

for 5 days, and finally their thicknesses were measured using a micrometer screw.

Experiments were conducted in two different cases, which are summarized in Table 2. For the first set of experiments, the

same amount of ceramic slurry (constant H0) were cast with three different substrate velocities. Then in case 2, during con-

stant substrate velocity the material load in the reservoir (H0) was varied. These experiments were carried out to investigate

the effect of the two important parameters, i.e. drag forces related to substrate velocity and hydrostatic pressure, on the tape

thickness (d).

6. Results and discussion

6.1. Material constants

The results of the rheology experiment showed that the LSM slurry follows the Ostwald power law fluid behavior. This is

illustrated in Fig. 10 and the relationship between shear rate and shear stress is found to be:

s ¼ 3:31 � ð@u=@yÞ0:90 ð6:1Þ

From Eq. (6.1) the constant k which is the consistency of the fluid is found to be equal to k = 3.31mPa � sn. Moreover, the

constant n which is the amount of deviation from a Newtonian fluid is equal to 0.90 (indicating close to Newtonian behav-

ior). These parameters are implemented in the numerical calculations for the behavior of the non-Newtonian LSM ceramic.

In the tape casting process, when the flow exits the doctor blade region, the fluid starts to flow in the transverse direction

also (here the z direction which was neglected in the numerical model) and this is typically named side-flow. However, since

the final tape in general is very wide in the z direction compared to its thickness, this side-flowwill be relatively small. More-

over, after the drying stage, the tape thickness is decreased due to weight loss. Considering both these effects, the final thick-

ness of the dried tape can be expressed as [37]:

dtp ¼ abðq=qtpÞ � d ð6:2Þ

where dtp is the thickness of the dried tape, a is the fraction loss for side-flow, b is the fraction loss for weight reduction due

to drying, q is the density of green tape and qtp is the density of dried tape. The constant for the side flow (a) was obtained by

a volumetric comparison of the tape which flowed outside the casting width to the tape within the casting width leading to

0.8 < a < 0.92 [37]. The drying weight loss factor (b) was obtained from drying experiments which measured the dried tape

mass and compared it to the wet slurry mass resulting in 0.58 < b < 0.65.

6.2. Effect of velocity on thickness

The aim of this case study is to evaluate the effect of velocity changes in the peeling substrate on the tape thickness both

experimentally and numerically. The results of the numerical modeling and the experiments are shown in Fig. 11. As seen, an

increased substrate velocity results in decreasing of the tape thickness. By further increase of the substrate velocity it is

Table 1

The different materials used and their function for the non-Newtonian LSM slurry.

Material Function

La0.85Sr0.15MnO3 (LSM) Ceramic substrate

Methyl ethyl ketone Solvent

Ethanol Solvent

Polyvinyl pyrrolidone (PVP) Dispersant

Polyvinyl butyral (PVB) Binder

Polyethylene glycol (PEG) Plasticizer

Dibutyl phthalate (DBP) Plasticizer

Additol Deflocculant

Table 2

Summary of parameter settings during the two experimental studies.

Parameter Case 1 Case 2

W (lm) 6000 6000

h (lm) 1000 400

v0 (mm/s) 3.67, 10, 14.67 3.67

H0 (lm) 1200 3536, 7074, 21222

d (cm) 8.8 8.8

a (deg) 45 45
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found that the reduction in tape thickness decreases and it seems to become constant. The drag force is increased by increas-

ing the substrate velocity and it becomes more dominant compared to the pressure force which results in more stretching of

the slurry over the peeling belt. On the contrary, increasing the substrate velocity for a constant pressure force, the thickness

of tape is decreased in the exit and vice versa. Moreover, it can be seen that the CICSAM method has the best prediction as

compared to the other schemes. Moreover, a small difference can be detected between the two high resolution schemes, the

CICSAM and the HRIC, which is due to the non-Newtonian behavior of the fluid. However, since the deviation from Newto-

nian behavior for the studied flow is small (n ¼ 0:90), the difference between the aforementioned schemes is relatively lim-

ited, even when considering the GRS scheme. So, the only key factor that makes the CICSAM method more desirable for the

tape casting process is the computational time, which is illustrated in Fig. 12.

6.3. Effect of slurry height

The effect of the material load (slurry height) in the reservoir (H0) on the tape thickness is investigated with different

interface capturing methods. Results of both numerical simulations and experiments are illustrated in Fig. 13. As the slurry

height increases in the reservoir the hydrostatic pressure on the doctor blade region will be increased. Consequently, the

tape thickness increases when it is conveyed out of the doctor blade region. The further increase in the numerical result
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for H0 = 21222 lm as compared to the experiment may be caused by the neglecting of the side effect flow which can de-

crease the final height of the tape especially for higher pressures. Again it is obvious that the CICSAM method has a some-

what better correlation with experimental data in comparison to the other methods. Based on the findings presented in

Figs. 11–13, it was decided to use the CICSAM method for the final analysis in which a comparison with experiments was

carried out. These experiments did show the non-constant tape height as well as the oscillation detected at the interface

which arises from the decreasing slurry height in the reservoir over time. These variations in the tape thickness are recorded

along the casting direction both experimentally and numerically (using the CICSAM scheme as mentioned before). Results of

the measurements are shown in Fig. 14a and b for the slurry height of 7074 and 21222 lm, respectively.

Two types of information can be observed from Fig. 14. In the early stage of the process, the tape thickness is higher than

that of the end due to the decrease in the slurry height in the reservoir over time. Moreover, this difference between the two

ends of the strip gets higher as the initial slurry height is increased. On the other hand the more the height in the reservoir,

the longer the strip which will be produced in the process.

As earlier mentioned, the increased level of material in the reservoir forces the ceramic to flow in the z-direction (and �z,

side flow, see Fig. 8) which is neglected in the numerical modeling in both sides of the tape. Increasing the slurry height will

therefore increase this side flow and decrease the tape thickness. However, increasing the slurry height will also increase the

tape thickness due to the increased pressure. These two competing phenomena obviously work against each other, but the

latter will be most predominant.

7. Conclusions

A multiphase flowmodel based on the volume of fluid (VOF) method was implemented in ANSYS FLUENT. Three different

interpolation schemes, the Geometric Reconstruction Scheme (GRS), High Resolution Interface Capturing (HRIC) and Com-

pressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM), were investigated to find the optimum one for captur-

ing of the free surface. The aforementioned methods were tested both for Newtonian and non-Newtonian fluids with two

cases from literature regarding interface position as well as computational time. The results show that the CICSAM method

has the best combination of accuracy of predicting the free surface and low cost of computation, especially for the non-New-

tonian fluid. Moreover, the results of the validation show that in the fluids with Newtonian behavior, the high resolution

interface capturing methods (both the CICSAM and the HRIC) give the same results. However, the higher deviation from a

Newtonian fluid, the higher the difference between the two methods.

After testing the implemented model, numerical modeling of the non-Newtonian slurry of La0.85Sr0.15MnO3 (LSM) was

conducted by ANSYS FLUENT with the three different interpolation schemes, and the effects of substrate velocity and slurry

height in the reservoir on the final tape thickness were evaluated. It was observed that the CICSAM method gave the closest
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prediction to the experimental cases. Moreover, the results show that increasing the substrate velocity (casting speed)

causes a decrease in the tape thickness due to the dominance of drag force over hydrostatic pressure. On the other hand,

an increased value of the slurry height in the reservoir, results in increasing the final tape thickness. This is also the reason

for the height of the tape in the end point of the strip being higher as compared to the beginning of the strip. Moreover, by

increasing the material load (the initial height of the slurry in the reservoir) the aforementioned differences between the

beginning and the end of strip and the length of the strip were increased.
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Viscosity (LVOV) Model in Tape Casting of Ceramics 

 

M. Jabbari 1,a, J. Spangenberg b, J. H. Hattel a 

 

a- Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby, Denmark. 

b- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540, USA. 

 

Abstract 

In this paper, the migration of secondary particles in a non-Newtonian ceramic slurry in the tape 

casting process is investigated with the purpose of understanding the particle distribution patterns 

along the casting direction. The Ostwald-de Waele power law model for the non-Newtonian flow 

behavior is assumed in the simulation of the ceramic slurry flow. A local variation of the viscosity 

(LVOV) model as a function of the particle volume fraction is introduced and taken into account in 

the advection and the settling of the particles in the flow field. The results show that using the LVOV 

model changes the particle distribution pattern from being a constant distribution to a semi-

layered one. The presence of such layered structure is highly affecting the subsequent sintering 

process, which in turn causes an anisotropic shrinkage behavior of the dried tapes. It is also found 

that increasing the substrate velocity (casting speed) leads to a more uniform distribution of the 

particles inside the ceramic slurry, in which case the shear induced particle migration is dominating 

over the gravity induced one. 

Keywords: particle migration, viscosity, non-Newtonian, tape casting, fluid flow 

1. Introduction 

Particle migration in fluids is found in many industrial applications such as transport and refining 

petroleum, paper manufacturing, environmental waste treatment and ceramic processing. The 

motion of small particles, drops, and bubbles in a viscous fluid at low Reynolds number is one of the 

oldest classes of problems in theoretical fluid mechanics [1]. A series of investigations conducted in 

literature have described the behavior of rigid and deformable particles suspended in very low 

Reynolds Newtonian liquids undergoing Couette and Poiseuille flow [2,3]. Although some of the 

work made in this area is based on the flow equations for a non-Newtonian fluid [1,4,5], most of the 

investigations are based on experimental findings [2,3,6]. 

                                                             
1 Corresponding author: Tel.: +45-45254734; fax: +45-45930190; E-mail address: mjab@mek.dtu.dk 

(Masoud Jabbari). 
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Being mainly used in the electronics industry as a forming method of ceramics, tape casting is 

growing in production of numerous multilayer applications and electronic substrates, like e.g. 

capacitors, piezoelectric actuators, gas sensors, etc., where high quality and low geometry 

tolerances are required [7,8]. In the tape casting process, the ceramic slurry is mostly categorized 

as a non-Newtonian fluid with relatively high viscosity [8-11]. A summary of work published 

regarding the rheological classification of non-Newtonian fluids and the existence of 

analytical/numerical models with focus on tape casting has been given previously by the authors 

[8]. 

The ceramic slurry used in the tape casting process contains different ingredients, i.e. solvent, 

dispersant, binder, plasticizer and deflocculant, each of them having a specific influence on the final 

properties of the part [12,13]. The presence of these secondary phases inside the ceramic slurry 

results in the packing structure, which can be tracked in the final tapes after the sintering process 

[14,15]. The art of making dense ceramics has been practiced and developed for decades. The 

ability to produce porous ceramics with specific pore size and porosity is less well documented. 

Recently, efforts have been directed towards the development of ceramic filter systems in which 

the microstructure is tailored to the application [16,17]. Moreover, the field of porous ceramics is 

growing in different areas with different applications like membranes, flue gas purification, 

piezoelectric materials and solid oxide fuel cell (SOFC) anode substrates [17-20]. The main concern 

in the aforementioned products is to have a relatively homogenous distribution of position of the 

pores together with a uniform size distribution. This issue emphasizes the importance of the 

particle (i.e. binders or pore-formers) migration inside the ceramic slurry during the tape casting 

process. 

The migration of the particles inside the ceramic slurry is the main topic of the present work and 

this will be addressed with a numerical model in the following. The model is based on a general 

fluid flow model capable of tracking the interface of the ceramic slurry and implemented in the 

commercial CFD package ANSYS Fluent, and validated with experimental results for the tape 

casting process [21]. The flow of the slurry is described as a non-Newtonian fluid with the Ostwald-

de Waele power law. In the present work, the model is further developed and subsequently used to 

analyze the particle distribution patterns. Focus is put on the effect of a variation in the particle 

distribution on the rheological behavior as well as the settling velocity for the particles and this is 

analyzed using a new developed model called “local variation of the viscosity” (LVOV) proposed by 

the authors. The LVOV model is implemented and linked to the program in the CFD code as a user 

subroutine. 

2. Particle Migration Induced by the Flow Field 

In general, the particles in a non-homogeneous shear flow will migrate from regions of higher shear 

rate to regions of lower shear rate [22]. The migration takes place at particle Reynolds numbers 

small enough (
410~ 

) to preclude the importance of inertia effects. Phillips et al. [22] developed 

the modified version of the model proposed by Leighton and Acrivos [23] of the complex diffusion 

process associated with shear induced particle migration. They showed that the viscosity     

of concentrated suspensions at Peclet number of 1Pe  can be approximated by 
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          (1) 

where c  is the relative viscosity, c  is the solvent viscosity,   is the volume fraction of 

particles, and m  is the volume fraction at which c  tends to infinity, which was reported [22] 

to be equal to 0.68 with volume fractions in the range 5.001.0  . The change in the viscosity 

versus the volume fraction based on equation (1) is illustrated in Figure 1a. 

In addition to the shear effects the migration of particles inside a fluid is influenced by gravity. This 

effect in essence results from the competition between the difference in density of the mixture 

components that forces them to separate and the viscous drag of the flowing suspending fluid that 

slows down the phenomenon, leading to an advection governed flow. A comprehensive review of 

the shear induced as well as the gravity induced migration of the particles inside a non-Newtonian 

fluid has been reported by Spangenberg et al. [24,25]. They showed that for a spherical, solid 

particle inside a fluid the settling velocity, sV , is equal to ss agV  182 , where a  is the 

diameter of the particle,   is the density difference between the particle and the surrounding 

material, and s  is the viscosity of the suspending material. However, the nature of the fluid used 

in their research (concrete) and the process dimensions were considerably different from the ones 

in this research. Moreover, the rheological behavior used by Spangenberg et al. [24,25] is also 

different from the one considered in the present work, i.e. they used Bingham plasticity whereas 

the Ostwald-de Waele power law is used here. 

Although, the settling velocity ( sV ) has been taken into account for the migration of the particles, in 

the work by Spangenberg et al. [24,25] the impact of the particles and the volume fraction was not 

mentioned in their simulations. Buscall et al. [26] showed that the rate of settling, V , for a dilute 

suspension of particles, which is not grossly aggregated can be expressed by an equation of the 

form 






k

sV

V








 1           (2) 

in which   is the volume fraction of the particles,   is the volume fraction when the particles 

approach the close packing region, and k  is a constant. Buscall et al. [26] also showed that for 

polymeric and ceramic fluids the values for   and k  would be 0.58 and 5.4, respectively. The 

variation of the settling rates versus the volume fraction is illustrated in Figure 1b. In the present 

study both equations (1) and (2) are used in the developed local variation of the viscosity (LVOV) 

model as a function of the particle volume fraction. 
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Figure 1: The influence of the particle volume fraction on (a) the viscosity based on equation (1) 

and (b) the settling rate of the particles based on equation (2). 

 

 

3. Mathematical model 

Advances in computational fluid mechanics have provided the basis for further insight into the 

dynamics of multiphase flows. Thus, today several commercial software packages are able to model 

this type of flow. Currently there are two approaches for the numerical calculation of multiphase 

flows which are available in ANSYS FLUENT [27]: the Euler-Lagrange approach and Euler-Euler 

approach. The mixture model which is of the latter type was used in the present study, because it 

has better accuracy for the slurry flow of ceramics [27]. Moreover, a second-order time integration 

scheme is available together with the Mixture (and Eulerian) multiphase models, which is not the 

case for the conventional VOF Explicit Scheme. 

The mixture model is a simplified multiphase model that can be used in different ways. It can be 

used to model multiphase flows where the phases move at different velocities, but assuming local 

equilibrium over short spatial length scales. Moreover, it can be used to model homogeneous 

multiphase flow with very strong coupling and phases moving at the same velocity and lastly, the 

mixture model is recommended to use for flows with high viscosity and non-Newtonian viscosity 

[27]. The mixture model solves the continuity equation, the momentum equation and the energy 

equation for the mixture, and the volume fraction equation for the secondary phases, as well as 

algebraic expressions for the relative velocities (if the phases are moving at different velocities). 

 

3.1 Continuity equation 

The continuity equation for the mixture is 

    0



mmm v
t

          (3) 

where mv


 is the mass-averaged velocity 

m

n

k

kkk

m

v
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 1




          (4) 

and m  is the mixture density 
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k

kkm

1

            (5) 
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in which k  is the volume fraction of phase k . 

 

3.2 Momentum equation 

The momentum equation for the mixture can be obtained by combining the individual momentum 

equations for all phases leading to 

       










 



n

k

kdrkdrkkm

T

mmmmmmmm vvFgvvpvvv
t 1

,,

  (6) 

where n  is the number of phases, F


 is the contribution from external forces, and m  is the 

viscosity of the mixture given by: 





n

k

kkm

1

            (7) 

and kdrv ,


 is the drift velocity for the secondary phase k : 

mkkdr vvv


,  
          (8) 

which in the case of two fluids will be zero. The drift velocity only becomes active when one of the 

phases is in particle form. 

 

3.3 Constitutive model 

We now consider the viscous stress tensor   as well as the strain rate tensor  . The latter is given 

as: 

  vv


           (9) 

where v


 is the velocity vector, v


  is the velocity-gradient tensor and the superscript   denotes 

its transpose. The magnitudes of   and  , denoted respectively by   and  , are defined by 

 :
2

1

2

1
     and     :

2

1

2

1
        (10) 

where   stands for the second invariant of a tensor. For the Newtonian behavior of a fluid the 

constitutive behavior is described by 

              (11) 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

6 

 

in which   is the dynamic viscosity of the fluid. Most of the ceramics and polymeric fluids show 

non-Newtonian behavior with different rheological constitutive models [7-11]. However, the one 

which is relevant and was used in the current work is the Ostwald-de Waele power law 

n
m             (12) 

where m  and n  are the consistency of the fluid and deviation from a Newtonian fluid, respectively 

and both are constants for a specific slurry. This leads to the standard expression for the effective 

viscosity 

1 n
m             (13) 

It should be noted that the effective viscosity is updated using the LVOV model (equation (1)). 

 

3.4 Advection of the particles 

The model used to simulate the migration of the particles is based on the work made by 

Spangenberg et al. [24,25] together with further development of updating the settling velocity 

based on the LVOV model. The particle migration, which is calculated through an advection and 

settling procedure, is given by 

  0



V
t


          (14) 

where V  is the settling velocity vector which is updated in the LVOV model with equation (2). It 

should be noted that having particles of very small size, results in reducing the variation in the 

settling velocity. 

 

3.5 Boundary conditions 

A 2D schematic illustration of the tape casting process with the reservoir is shown in Figure 2. The 

dimensions are chosen relevant to a typical machine design of a tape caster [8-10]. The domain was 

discretized with a relatively fine mesh ( mdzdydx 1.0 ). In order to reduce the 

computational domain (and hence the computational time), the reservoir region was neglected by 

creating a user defined function (UDF) code written in C programming language and linked to the 

CFD code. This UDF was treated as a time-dependent pressure gradient boundary condition at the “Inlet Boundary” (see Figure 2), as originally proposed by Zhang et al. [28], and applied every time 

step [10]. 

W

gH

dx

dp 0
            (15) 
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where   is density, g  is body acceleration due to gravity, 0H  is the initial height of the slurry in 

the reservoir, and W  is the width of the doctor blade region. This expression was later on modified 

by the authors [8,10] to include varying slurry height as well as two doctor blades [11]. A fixed 

velocity in the x -direction ( 0v ) is implemented on the substrate as the velocity of the peeling belt 

with no slip condition. A zero gradient is assumed for all flow properties as the outlet boundary 

condition. 

 

 

Figure 2: 2D schematic illustration of the tape casting process. 

 

 

4. Results and discussion 

When dealing with the flow of a non-Newtonian fluid, the rheological behavior becomes very 

important. Characterization of the rheology of a specific fluid is mostly done by experimental 

evaluation under different shear rates. The ceramic slurry considered in this work, is the same as 

the one previously studied by the authors [8-10], namely La0.85Sr0.15MnO3 (LSM) which is a common 

fluid used in producing thin substrates for fuel cells applications. Results from rheology 

experiments [8-10,21] showed that the LSM slurry follows the Ostwald-de Waele power law fluid 

behavior as shown in Figure 3. 

 

 

Figure 3: Rheological behavior of the fluid (LSM) used in the current study based on the experiment 

from [8-10,21]. 

 

 

where the constant m  is equal to 3.31
n

smPa   and the constant n  is equal to 0.90, quite close to 

the Newtonian fluid value of 1. The dimensions for the machine configuration shown in Figure 2 are 

also taken from previous works conducted by the authors [8-10,21], in which the doctor blade 

height is equal to mmh 4.0 . The density of the ceramic slurry is mlgc 2  [8-10], and for the 

particles inside the slurry it is equal to mlgp 10  ( 5 cp  ). The particle size ( a ) is 

assumed to be m1.0 , and moreover the initial particle load (the volume fraction of the particles in 

the inlet boundary) inside the slurry is assumed to be 0.35. 
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The particle distribution inside the ceramic slurry is shown in Figure 4 for two sets of simulations, 

with and without applying the LVOV model. As seen, the results are totally different from the 

constant distribution to the spatially varying one. Using the LVOV model, it is seen that there are 

some parts inside the ceramic in which the concentration of the particles is higher compared to 

other parts, creating the resulting packing structure [14]. This will now be discussed in the view of 

the actual velocity distribution and corresponding shear rates for both cases in the doctor blade 

region. As illustrated in Figure 5(a) and (b), there are two high shear rate zones when using the 

LVOV model. These zones cause a ceramic slurry flow with higher concentrations of particles. The 

high shear rate zones below the doctor blade (just before the exit) will drive the particles inside the 

flow in the horizontal direction ( x ). Moreover, due to relatively high shear rates at the bottom 

boundary, particles tend to swirl and create some regions with high concentrations (see the right 

hand side of Figure 4(b)). The high concentration region which was the first to be carried out by the 

peeling belt will be pushed forward by the flow coming from behind. This means that in the real life 

process, one should cut off the aforementioned region due to its highly non-uniform distribution of 

particles. However, even the flow behind shows a somewhat layered structure (left hand side of 

Figure 4(b)) resulting in a heterogeneous particle distribution. This confirms the existence of a non-

uniform distribution (or packing) of the particle in tape casting of ceramics, which was also found 

experimentally by Chantaramee et al. [14]. 

 

 

 

Figure 4: Distribution of the volume fraction for the particles inside the ceramic slurry, (a) without 

applying, and (b) with applying the proposed LVOV model. 

 

 

Figure 5: (a) The velocity profile, and (b) the shear rate distribution in the doctor blade region. 

 

 

The velocity of the substrate (the casting speed, 0v ) is now increased in order to evaluate the 

influence of increasing the shear rates in the LVOV model. Comparing the results from Figure 6 with 

Figure 4(b) it is immediately noticed that the thickness of the tape is more or less halved, which 

was also expected. Moreover, it is seen that the region with the concentration of particles still exists 

(right hand side of Figure 6). As mentioned earlier this region will be moved by the material flowing 

from behind, and that part of the tape can be cut off at the end of process. However, the pattern of 

the produced layered structure in the case with the higher velocity (Figure 6) is different from the 

one with lower velocities tending to have more horizontal layers. Looking at the velocity and the 
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shear rate distribution below the doctor blade, Figure 7(a) and (b), shows that increasing the 

substrate velocity will increase the shear rates and also the regions with the high shear rate zones. 

The presence of these zones will promote the migration of the particles inside the ceramic slurry. 

Moreover, the higher the shear rates in the slurry, the less the gravity induced particle migration. 

This leads to less settlement of the particles inside the fluid. 

 

 

Figure 6: Distribution of the volume fraction for the particles inside the ceramic slurry with an 

increased (doubled) substrate velocity. 

 

 

Figure 7: (a) The velocity profile, and (b) the shear rate distribution in the doctor blade region. 

 

 

As mentioned earlier, the region with the highest concentration of the particles (right hand side of 

the Figure 4 and 6) is being carried by the flow behind. It is of course interesting to see the particle 

distribution at the point of time at which steady state conditions are reached. To do so, two sensors 

are implemented in the flow domain with a reasonable distance (here 10 and 20 cm  from the 

doctor blade exit) to check the variation of the volume fraction with distance. Two different 

substrate velocities of smmv 67.31   and smmvv 34.72 12   as well as two different density 

ratios of 1.0  and 10  are investigated. It was found that, after some reasonable time in the 

simulation, the particle distribution inside the ceramic slurry at a certain distance from the doctor 

blade exit is not changing anymore. The particle volume fraction inside the ceramic slurry in the 

steady state condition is illustrated in Figure 8(a) and (b). As mentioned earlier, it should be noted 

that the tape thickness decreases with an increase in the substrate velocity [8-11,21], and therefore the comparison is made by dividing the “Y” position along the tape thickness with the tape 
thickness itself (corresponding to normalizing with the current tape thickness). Again, it is seen 

that for the case with the lower shear rates (slower speed), particles tend to settle more in the 

bottom resulting in a higher concentration. This confirms that, using higher velocities for casting 

increases the dominance of the shear induced particle migration, creating a relatively uniform 

distribution of the particles. However, with lower casting speed the particles have enough time to 

settle in the bottom of the tape forming two different layers containing different particle 

distributions. Based on this, one can also conclude that changing any of the process parameters, i.e. 

the doctor blade height or the slurry height in the reservoir, in a way that leads to higher shear 

rates in the flow domain, can lead to a similar result. As reported in previous work by the authors 

[8-11,21], decreasing the doctor blade height as well as the slurry height in the reservoir will 

increase the shear driven flow in the tape casting process. 
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Seen from Figure 8(a) and (b), it can moreover be concluded that for higher density ratio ( 10 ) 

the gravity shows its dominance by making the particles settle at the bottom of the tape. However, 

for lower values of   the shear induced particle migration becomes dominant hence producing two 

regions with almost uniform distribution of the particles (one in the top and one at the bottom), 

whereas in the mid-zone the volume fraction is changing considerably. Comparing Figure 8(a) and 

(b), one can see that in the region closer to the doctor blade exit ( cmd 10 ) all of the investigated 

cases are showing more or less the same behavior. This trend stays somewhat the same for the 

distances further from the doctor blade region ( cmd 20 ), however not for the cases with the high 

value of the density ratio ( 10 ). This means that the particles with higher density are moved by 

the shear forces in the beginning of the process more than the gravity forces. However, gravity 

forces show their influence mostly in the regions further from doctor blade region. 

 

 

Figure 8: Distribution of the volume fraction in the thickness of the produced tapes at two different 

distances of doctor blade exit, (a) cmd 10 , and (b) cmd 20 , at the point in time when steady 

state has been reached at cmd 10  and cmd 20 . 

 

 

5. Conclusions 

We have shown in this paper that applying the developed local variation of the viscosity (LVOV) 

model presents an improvement in predicting the distribution of particles inside a ceramic slurry 

while tape casting as compared to not using such a model. The results showed that there is a non-

uniform distribution of the particles, and that this is affected by the shear induced migration. These 

anisotropic structures are very important to investigate and subsequently control since they highly 

affect the following sintering process of the tapes. 

Based on the modelling findings, we have moreover suggested that in order to create a layered 

structure with a relatively uniform distribution of the particles, the shear induced migration should 

be increased. This can be done by increasing the substrate velocity (casting speed), or even by 

decreasing the doctor blade height as well as the slurry height in the reservoir. 
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Abstract

In this study, the evaporation of water from a ceramic-water mixture is investigated with the

purpose of understanding the drying rate in the drying process of thin sheets produced by the tape

casting process. The rate of mass loss in the drying process is a key factor which often is of interest,

as it affects the final properties of the tapes. The 1D heat conduction equation is solved numerically

to obtain the temperature field in a ceramic sheet. The change in the concentration of the water

content is then used as the driving force for diffusive mass transport of the water. Mass-averaged

thermal properties are assumed for the ceramic-water mixture in the initial stage, and as the water

evaporates, the thermal properties of the solid ceramic become more dominant since the fraction of

water approaches zero. The developed model is used to simulate a simple test for the drying process.

The drying rate is simply calculated by examining the water content in each time step. It is found that

the mass loss due to the evaporation is increasing close to linearly with the drying time corresponding to

an almost constant drying rate. However, the rate starts to decrease after some time in the simulation.

Keywords: Evaporation, drying rate, heat conduction, Fick’s law, ceramics
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Nomenclature

α Thermal diffusivity [m2/s]

αceramic Thermal diffusivity of ceramic [m2/s]

αmix Thermal diffusivity of mixture [m2/s]

αwater Thermal diffusivity of water [m2/s]

δ Tape thickness [µm]

Q̇ heat generation [W/m3]

φ Concentration of water [mol/m3]

ρ Density [kg/m3]

σ Stefan-Boltzmann constant [W/m2K4]

ε Surface emissivity

A Area [m2]

cp Specific heat [J/kgK]

D Diffusion coefficient [m2/s]

fwater Fraction of water

h Convective heat transfer coefficient [W/m2K]

k Thermal conductivity [W/mK]

N Number of control volumes

q Diffusive heat flux [W ]

Qa Activation energy for diffusion [J/mol]

R Gas constant [J/molK]

Rcond
th Conductive thermal resistance [K/W ]

Rconv
th Convective thermal resistance [K/W ]

Rrad
th Radiative thermal resistance [K/W ]

T Temperature [◦C]

T∞ Cooling temperature [◦C]

1 Introduction to tape casting

Being mainly used in the electronics industry, tape casting as a forming method of ceramics is grow-

ing in production of numerous multilayer applications and electronic substrates, like e.g. capacitors,

piezoelectric actuators, gas sensors, etc., where high quality and low geometry tolerances are required

[1, 2]. In the tape casting process, the ceramic slurry is mostly categorized as a non-Newtonian fluid with

relatively high viscosity [1–5]. A summary of work published regarding the rheological classification of

non-Newtonian fluids and the existence of analytical/numerical models with focus on tape casting have

been given previously by the authors [2, 5].

Tape casting consists of three major sub-processes which are (see Figure 1):

1. Tape casting of an aqueous (fluid) ceramic slurry in a doctor blade configuration

2. Drying of the green tape

3. Additional processing (which is often a sintering process).

Mostly the first and third stages have been investigated numerically [1–6] whereas the second has

remained almost unexplored numerically. The sintering of the tape casted parts has been investigated in

literature using continuum modelling [6]. The drying stage and the characterization of it in the form of

final shrinkage is often measured experimentally, simply by the weight difference of the green and dried

2



Heater

(1) (2) (3)

Figure 1: Schematic of the tape casting process with the three sub-processes: (1) tape casting of the

ceramic slurry, (2) drying of the tape, and (3) extra processing.

tapes, without really noticing that the drying is one of the most important steps in the tape casting

process. As the solvent is removed from the green sheet (or layer) via evaporation, the tape undergoes a

transformation from its initial fluid-like state to a solid-like, composite layer. This leads to changes in the

rheological behavior (mostly viscosity) of the ceramic slurry, and this is related to the amount of solvent

(water in this study) evaporated during drying [7].

With many additives, and typically multiple solvents, drying of the tape as well as the behavior of the

tape during the drying process can vary greatly from slip to slip. The tape casting process is somewhat

unique among ceramic processes in the sense that a one-side drying process exists. After the slip is

spread into a thin layer, all of the solvent is removed from a single side of the cast. Two things work

together to cause the one-sided drying; a thin, essentially two-dimensional shape with no real height, and

an impermeable carrier on the bottom. This single-sided drying is the cause of some very interesting

phenomena within the tape matrix. Ideally, the chemical composition of the tape (primarily the solvent

concentration) should stay uniform throughout the tape during the entire drying process. This, however,

simply cannot occur, since all of the solvent must migrate to the top surface of the tape to evaporate.

Hence, the two major mechanisms controlling the drying in the tape-cast layer are: (1) the rate of solvent

evaporation from the surface of the cast and (2) the rate of solvent diffusion through the tape to the

drying (top) surface. Of these two mechanisms, diffusion through the tape tends to be the rate-limiting

factor [8].

The two aforementioned mechanisms can be adjusted by various means. The volatility of the solvent

at the tape surface can be adjusted by adapting the types of solvent used, the concentration of solvent

vapor in the local atmosphere, the local air temperature, and the solvent temperature. The diffusion

rate through the tape layers can be adjusted by changing the binder concentration, altering particle size,

adjusting the wet film temperature, and keeping an open pathway to the surface. Some of these control

techniques, such as particle size and binder content, need to be addressed during the preparation of the

slip and factored into the initial slip recipe. Other parameters like air temperature, slip temperature, and

local vapor concentration are controlled by the drying equipment separate from the casting slip.

As the solvent on the top surface of the cast layer takes energy from the air and from the rest of

the slip, it starts to evaporate into the surrounding atmosphere. The rate of evaporation is governed
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by the energy available to the solvent, the volatility of the solvent species, the vapor concentration of

the local atmosphere, and the saturation concentration of the local atmosphere, which depends upon the

gases in the atmosphere, the solvent species, and the temperature. Since evaporation requires an input

of energy, raising the temperature of the solvent will speed the surface evaporation process by providing

an excess of energy. Raising the air temperature will not only provide the energy for evaporation (heat of

vaporization), but will also increase the saturation concentration of the atmosphere. Air heating greatly

increases the surface evaporation rate, and that is why many tape casting machines are equipped with

an air heating option to speed up the surface evaporation of the tape. In this study, only the raise of

energy (by the temperature field) is considered for the drying process and the influences of saturation are

neglected.

Diffusion of the solvent to the top surface of the tape is normally the rate limiting factor in drying.

The rate of evaporation of surface solvent is normally so much faster than the solvent motion to the

surface that a drying crust forms across the surface of the tape. Efforts to limit surface evaporation stem

from the desire to avoid this skin on the surface. Ideally, the solvent concentration should stay nearly

uniform throughout the tape during drying so that all parts of the tape dry at the same rate. This would

be accomplished by making the rate of diffusion equal to the rate of evaporation. The ideal case, however,

is unattainable. In practice, the drying conditions, tape structure, tape components, and solvent mixtures

are balanced to get as close to ideal conditions as the downstream manufacturing needs allow.

The hypothetical progression of solvent concentration during the drying process is illustrated in Figure

2 graphically. On the figure, y = 0 represents the carrier surface whereas y = 1 represents tape thickness

(the drying surface). It is assumed that at time equal to zero the concentration of the solvent is equal to

one, and the final concentration of the solvent at t = 1s is equal to C = 0.1. As mentioned, the ideal case

shows a uniform solvent concentration through the thickness of the tape throughout the drying process

(Figure 2(a)). In reality, the evaporation rate from the surface will always be faster than the motion

of solvent to the surface. Thus the best-case scenario displays a dry film on the top of the tape, yet a

diminishing amount of solvent at the slip/carrier interface (Figure 2(b)). This best-case scenario exists

when the rates of diffusion and evaporation are as close to equal as possible. The worst-case scenario is

realized when the rate of evaporation is much greater than the diffusion rate through the tape matrix. The

top surface of the tape, giving off solvent much more quickly than the diffusion mechanism can replace

it at the surface, forms an ever-thickening dry layer, while the solvent concentration at the slip/carrier

interface does not significantly decrease (Figure 2(c)).

The speed at which the solvent can move to the surface is always the slowest mechanism of drying.

The rate of motion through the body of the tape is limited mainly by the body itself. The pathway for

the solvent through the tape matrix is crowded with particles, binder, plasticizer, and dispersant. As

the drying process progresses, the tape shrinks, creating the dense, packed bed of particles which is the

goal of tape casting. This dense, packed bed, however, limits the escape paths for the solvent at the

slip/carrier interface. As a rule, liquids diffuse much more quickly through a liquid medium than through

any other medium [10]. At some point in the drying process, the binder at the top surface of the cast will

lose enough solvent to form a solid sheet or skin across the top of the tape. This is unavoidable since the

dry tape is simply a solid piece of this skin. The diffusion rate of the underlying solvent is much slower

through this skin than through the liquid matrix of the slip. This, once again, is why effort is made to

slow the surface evaporation rate to delay the formation of this low-diffusion-rate skin. The dried polymer
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Figure 2: Schematic illustration for distribution of solvent content for (a) ideal, (b) best obtainable, and

(c) worst cases [9].

effectively plugs up the inter-particulate spaces, creating a low-permeability layer across the top of the

tape and limiting the bulk drying rate. This is where a balance must somehow be established between

drying rate and tape porosity. Allowing some porosity in the tape will increase solvent diffusion to the

top surface by keeping an open pathway to the top surface. The addition of a slow-drying solvent can

also aid solvent migration speed by delaying skin formation and providing a liquid pathway from bottom

to top. This type of additive would properly be called a skin retarder and may actually be used as one of

the primary solvents in the slip.

Heating the tape body is the last general phenomenon which affects both drying mechanisms. This

not only increases solvent evaporation rate by heating the solvent, but also increases the diffusion speed

of solvent through the matrix, as the diffusion is a thermally controlled phenomenon. Heating the tape

matrix promotes liquid-like behavior and increases the diffusion rate of the solvent. Many practitioners

in the field find that the fastest way to dry a tape is to heat the bottom of the tape without heating the

air. Heating the bottom of the tape increases solvent mobility in the tape body, driving the solvent up

to the surface, while air heating tends to have a greater impact on the tape surface evaporation. In most

cases, the surface evaporation does not need help.

In general, modelling of the drying process deals with complex physics, e.g. heat transfer, mass transfer

(Darcy’s law and diffusion), and capillary forces (pressure), which are coupled together. The theory of

the drying is well discussed by Schere [8] for the sol-gel processing, where there is a polymer chain. On

the other hand, only experimental and analytical investigations [7, 11] have been conducted in literature

so far for the drying process of ceramic slurries. The current study is the first example of numerical

investigation for coupled heat and mass transfer for drying in tape casting of ceramics. The capillary

forces are neglected in this study and it is assumed that the mass transfer is governed only by diffusion

of the solvent. It should, moreover, be mentioned that as the solvent used in every slurry formulation

varies for every desired application, and the thermo-physical properties of each solvent are not available

in literature, the solvent in this study is assumed to be water, and hence the system simulated is the

mixture of ceramic and water. The first stage of drying where the solvent is evaporating from the tape

matrix is simulated numerically. The 1D heat conduction equation is solved numerically to obtain the

temperature field in a ceramic sheet. The change in the concentration of the water content is then used

as driving force for the diffusive mass transport of water (described by Fick’s second law also in 1D).
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2 Mathematical model

2.1 Simulation domain

The 1D simulation domain used in this study is illustrated schematically in Figure 3. As seen, a heater

with the length of Lheat and the temperature of Theat is located above the tape layer, and the tape (which

is a ceramic-water mixture) is passing beneath the heater with the velocity of vcast. This means that the

tape experiences the major part of the temperature load for a period of time equal to Lheat/vcast. The

domain is discretized into a number of control volumes (here N), in a way such that the air region is

assumed to be one single control volume. This leads to the space increments as follows

{

dx(1) = dgap air region

dx(2 : N) = δ
N−1 tape region

(1)

where δ is the tape thickness, and dgap is the distance between the heater and the top surface of the tape.

Lheat

vcast

dgap

δ

Theat

mixture

Diffusion

air

+

Conduction

Convection

Radiation

Conduction

Figure 3: Schematic illustration of the simulation domain.

The physics to be considered in this numerical study, is also shown in Figure 3 for each region, and

will be discussed in the following.

2.2 Thermal calculations

It is well-known that in the presence of a temperature gradient, energy conducts from the high temperature

region to the low one. Based on Fourier’s law the heat flow per unit area is proportional to the normal

temperature gradient, i.e.:

q = −kA
∂T

∂x
(2)

where q is the diffusive heat flux (W ), A is the area (m2), k is the thermal conductivity (W/mK), T is

temperature (K or ◦C), and x is length (m). Assuming a constant thermal conductivity, the integration

of Fourier’s law becomes

q = −
kA

x2 − x1
(T2 − T1) = −

△T

Rcond
th

where Rcond
th =

△x

kA
(3)
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in which Rcond
th is the conductive thermal resistance.

Based on Newton’s law of cooling the overall effect of convection can be expressed by:

q = −hA (T∞ − Ts) (4)

where h is the convective heat transfer coefficient (W/m2K), Ts and T∞ are the body surface temperature

and the cooling temperature, respectively. Comparing equations (3) and (4), the thermal convective

resistance becomes

Rconv
th =

1

hconvA
(5)

The third mode of heat transmission taking place is radiation, which is expressed with a special version

of Stefan-Boltzmann’s law

q = −Aεσ
(

T 4
2 − T 4

1

)

= −Aεσ
(

T 3
1 + T 2

1 T2 + T1T 2
2 + T 3

2

)

(T2 − T1) (6)

where σ is the Stefan-Boltzmann constant, and equals to 5.67 × 10−8 (W/m2K4). This equation assumes

a radiative heat exchange between two surfaces (with the same area, A), and accounts for the gray nature

of the surface (accounting for the emissivity, ε). Comparing equations (3) and (6), the thermal radiative

resistance can be found as

Rrad
th =

1

hradA
where hrad = εσ

(

T 3
1 + T 2

1 T2 + T1T 2
2 + T 3

2

)

(7)

The general heat conduction equation can be derived based on Fourier’s law together with the first

law of thermodynamics:

ρcp
∂T

∂t
= ∇ (k · ∇T ) + Q̇ (8)

where ρ is the density (kg/m3), cp is the specific heat (J/kgK), and Q̇ is the generated heat per unit time

per unit volume (W/m3). Assuming constant thermal conductivity, the 1D heat conduction equation

finally takes the form

∂T

∂t
= α

∂2T

∂x2
+ Q̇ (9)

where α is the thermal diffusivity equal to k/ρcp. In the present study the above equation is discretized

in the simulation domain via the finite volume method (FVM) in order to solve it numerically [12]. Mass-

averaged thermal properties are assumed for the ceramic-water mixture in the initial stage. However, as

the water evaporates the thermal properties of the solid ceramic become more dominant since the fraction

of water approaches zero. The mass-averaged thermal properties assumed for the ceramic-water mixture

then are as follows

αmix = fwaterαwater + (1 − fwater) αceramic (10)

where fwater is the fraction of water in each control volume.

An implicit scheme is used to find the new temperatures in each time step [12]

7



− HCon
i T t+△t

i−1 +
(

HCap
i + HCon

i + HCon
i+1

)

T t+△t
i − HCon

i+1 T t+△t
i+1 = HCap

i T t
i +

Q̇t+△t
gen,i

A
(11)

where T t+△t
i is the new temperature, T t

i, is the old temperature, and

HCap
i ≡

△xi(ρcp)i

△t
capacity function

HCon
i ≡

1
△xi−1

2ki−1

+
△xi
2ki

conductivity function
(12)

It should be noted that for node 2 (i = 2), the conductivity function is as follows

HCon
2 ≡

1
1

htot + △x2

2k2

(13)

where htot is the equivalent heat transfer coefficient for the total transfer in the air gap

htot =
1

Rcond
th

+ hconv + hrad (14)

where hconv is assumed to be 10 (W/mK), and hrad is given by equation (7). The coefficients in front

of the unknown temperatures on the left hand side of equation (11) are now termed a, b, and c, and the

right hand side is called d. thus for i = 2, ..., N − 1, we have

ai · T t+△t
i−1 + bi · T t+△t

i + ci · T t+△t
i+1 = di (15)

where

ai = −HCon
i

bi = HCap
i + HCon

i + HCon
i+1

ci = −HCon
i+1

di = HCap
i T t

i + Q̇t+△t
gen,i /A

(16)

The system of equations for the inner nodes, i = 2, ..., N − 1, as well as for node 1 and N as boundary

condition become a classical tri-diagonal systems of equations, i.e.:

node

1

2

...

N − 1

N



































b1 c1

a2 b2 c2

... ... ...

aN−1 bN−1 cN−1

aN bN



































·



































T1

T2

...

TN−1

TN



































=



































d1

d2

...

dN−1

dN



































(17)

The boundary conditions express that at node i = 1 the temperature of the heater is Theat, and at

i = N the heat flux is zero

i = 1 ⇒ b1 = 1 c1 = 0 d1 = Theat

i = N ⇒ aN = −1 bN = 1 dN = 0

(18)

The equation system is solved easily by Gaussian elimination.
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2.3 Diffusion

Fick’s second law, also known as the Diffusion Equation, states that the change of concentration in time

equals to the net influx by diffusion. This leads to an equation which is totally similar to the heat

conduction equation

∂φ

∂t
=

∂

∂x

(

D
∂φ

∂x

)

(19)

where φ is the concentration of water (mol/m3), and D is the diffusion coefficient (m2/s), which in general

is dependent on temperature in the present work. In order to solve equation (19), the same implicit scheme

is used as described in section 2.2.

The diffusivity is found to vary in most systems as an exponential function of temperature, hence it

is modeled by the Arrhenius relationship:

Dw = D0exp

(

−
Qa

RT

)

(20)

where Qa is the activation energy for diffusion, R is the gas constant, T is the absolute temperature,

and D0 is the pre-exponential “frequency factor” which is empirically determined. The activation energy

may be thought of as that energy required to produce the diffusive motion of one mole of atoms. A

large activation energy results in a relatively small diffusion coefficient. Taking the natural logarithm of

equation (20) yields

ln Dw = ln D0 −
Qa

R

(

1

T

)

(21)

or in terms of logarithms to the base 10

log Dw = log D0 −
Qa

2.3R

(

1

T

)

(22)

For this study such data are used through the fitted line from the experimental results published by

Holz et al. [13] (shown in Figure 4), as follows:

log Dw = 3 × 10−7
− 8 × 10−8

(

1

T

)

(23)

The mass-averaged diffusion coefficient is used for the ceramic-water mixture as follows

Dmix = fwaterDw + (1 − fwater)Dd (24)

where Dd is the diffusion coefficient in the dried control volumes which is assumed to be log Dd = −11,

and Dw is given by equation (23).

3 Results and discussion

All thermo-physical properties used in this study are summarized in Table 1. It should be noted that

both the thermal [12] and diffusion [10] models have been validated against proper analytical solutions.

The simulation domain considered for the present study is illustrated in Figure 3. The temperature of
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Holz et al. [11]
Fitted data

Figure 4: Fitted data used for the temperature-dependent diffusion coefficient of water.

the heater on the top region of the tape matrix is assumed to be 140◦C. The initial temperature of the

tape matrix and the air above it is assumed to be in the room temperature (20◦C). It should also be

mentioned that since the saturation of air is neglected in this study, choosing a different temperature for

air from the one for tape matrix does not make any sense.

Table 1: Thermo-physical material properties used in this study.

Water Ceramic Ceramic-water mixture

k (W/mK) 0.6 2.4 mass-averaged

ρ (kg/m3) 997.1 1900 mass-averaged

cp(J/kgK) 4187 2000 mass-averaged

Levap
H (kJ/kg) 2260 - -

log D equation (23) −11 mass-averaged

Results of simulations for three different tape thicknesses, δ = 400, 300, 200 µm with an initial water

content of 12%, are shown in Figure 5(a). The results show that for each tape there is a specific time

period in which the water content is not changing hence being equal to the initial value of water content

(12%). This region corresponds to the period in which the tapes are heating up, and it has the highest

value for the thickest tapes which of course is expected, see Figure 5(a).

As seen from the sub-plot of Figure 5(a) (which is also representative for thicknesses of 200 and 300

µm), there are two specific regions, (1) and (2), where the evaporation shows two principally different

behaviors. A similar example of such plots showing these two regions can be found in the work by

Kiennemann et al. [11], in which mass loss, shrinkage, Young’s modulus evolution and stress development

of aqueous (alumina+latex) tape cast suspensions were observed experimentally during drying. They also

reported that the mass loss shows a constant drying rate period, followed by a falling rate period. In

region (1) the total evaporation (mass loss) is increasing almost linearly by time. This region is called

the constant rate period (CRP), in which the rate of evaporation per unit area of the drying surface is

independent of time [8]. During the CRP, the liquid-vapor meniscus remains at the surface of the tape

layer, and evaporation occurs at a rate close to that of a free liquid surface (e.g., an open dish of liquid).

When evaporation starts, in the early stages, the temperature at the surface of the top layer drops

because of a loss of heat due to the latent heat of vaporization of the water. On the other hand, heat flows
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Figure 5: (a) Variation of water content due to evaporation, and (b) the temperature profiles for the top

control volume in the tape.

to the surface from the atmosphere thus quickly establishing thermal equilibrium where transfer of heat

to the surface balances the heat loss due to the latent heat of vaporization. However, when the amount

of mass loss increases, the heat loss due to the latent heat of vaporization of the water will also increase.

This reduces the evaporation rate, as a consequence of low migration of the water from the bottom layers

to the top ones due to diffusion (which is highly dependent on the temperature). This is the late stage in

the CRP, where the drying rate starts to decrease.

The top layers of the tape, which are already dried, will now act as a barrier for diffusion of the water

from bottom to top. This is reflected by region (2), which is known as the falling rate period (FRP).

Transport of liquid during drying can occur by flow if a pressure gradient exists in the liquid, and diffusion

if a concentration gradient exists. The first type is categorized as flow in porous media where the liquid

flow obeys Darcy’s law. This type of liquid transport, however, is neglected in this study due to the

low level of pressure gradient in the tapes. The latter type is the one considered in this study, which

is highly sensitive to temperature. As mentioned, the temperature drop reduces the diffusion coefficient

of the water, and consequently the drying rate is decreased drastically. It can, moreover, be seen from

Figure 5(a) and (b) that by deceasing the tape thickness (δ) the mass loss occurs in a shorter period of

time. This means that the drying rate is high in the tapes with smaller tape thickness, which can be

seen in Figure 6. As shown, the maximum mass loss happens in the tape with smaller thickness. This is

expected, as the smaller tape thickness gives the liquid ability to diffuse to the top surface more. Such

information can be used in thermo-mechanical simulation in order to predict the stress evolution during

drying.

Another interesting phenomenon in the drying process is to investigate the different drying modes, i.e.

fast, intermediate, and slow. Results of such investigations are shown in Figure 7 based on the variation

of the non-dimensional water concentration (C∗ = Cnew/C0) for the thickness of δ = 400µm. As seen,

when the drying is fast, the water in the upper region evaporates fast and makes a solid-like region in

almost the entire upper half of the tape. This creates a barrier for the diffusion of the bottom water and

makes the rest of the drying slow. In other words, when the drying mode is fast, the diffusion of the water

from bottom to the top surface is slow. This is similar to the worst case shown in Figure 2(c), which may

happen if extensive heating is used in the drying process. Moreover, it is seen that for the slow drying
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Figure 6: Amount of mass loss for three different tape thickness.

mode the evaporation of water from the top region is somewhat slow, though the drying (diffusion) from

the bottom region is faster. This case is also similar to the ideal case shown in Figure 2(a). The mode of

drying can hence be argued based on the competition between the evaporation rate from the top surface

and the diffusion of the water from bottom to the top. As mentioned before, in reality, the evaporation

rate from the top surface will always be much faster than the motion of solvent (water in this study) to

the surface.
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Figure 7: The results of numerical modelling for the different drying modes for the tape thickness of

δ = 400µm.

4 Conclusions

The evaporation of water from a ceramic-water mixture is investigated with the purpose of understanding

the drying rate in the drying process of thin sheets produced by the tape casting process. The 1D coupled

heat conduction and mass transport equations are solved numerically to obtain both the temperature

field and the diffusive mass transport of the water.

The results showed that initially, the mass loss due to the evaporation is increasing close to linearly

with the drying time corresponding to an almost constant drying rate. However, the rate starts to decrease

after some time in the simulation. This is in good agreement with experimental findings of the real life
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process where the drying is categorized into two stages: (1) a constant rate period (CRP), in which the

rate of evaporation per unit area of the drying surface is independent of time, and (2) a falling rate period

(FRP), in which the evaporation rate is reduced, as a consequence of low migration of the water from the

bottom layers to the top ones due to diffusion (which is highly dependent to the temperature).

The results, moreover, showed that based on the hegemony of the evaporation rate from the top

surface and the diffusion of the solvent from bottom to the top, the drying mode can vary from being fast

to slow. It is concluded that too extensive surface drying results in a slow diffusion rate from the bottom,

which in turn reduces the drying rate in general and hence is not favorable from a process viewpoint.
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