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Abstract
The effects of grain orientation on transformation-induced plasticity in
multiphase steels are studied through three-dimensional finite element
simulations. The boundary value problems analysed concern a uniaxially-
loaded sample consisting of a grain of retained austenite surrounded by multiple
grains of ferrite. For the ferritic phase, a rate-dependent crystal plasticity
model is used that describes the elasto-plastic behaviour of body-centred cubic
crystalline structures under large deformations. In this model, the critical-
resolved shear stress for plastic slip consists of an evolving slip resistance
and a stress-dependent term that corresponds to the projection of the stress
tensor on a non-glide plane (i.e. a non-Schmid stress). For the austenitic
phase, the transformation model developed by Turteltaub and Suiker (2006
Int. J. Solids Struct. at press, 2005 J. Mech. Phys. Solids 53 1747–88)
is employed. This model simulates the displacive phase transformation of a
face-centred cubic austenite into a body-centred tetragonal martensite under
external mechanical loading. The effective transformation kinematics and the
effective anisotropic elastic stiffness components in the model are derived
from lower-scale information that follows from the crystallographic theory
of martensitic transformations. In the boundary value problems studied, the
mutual interaction between the transforming austenitic grain and the plastically
deforming ferritic matrix is computed for several grain orientations. From the
simulation results, specific combinations of austenitic and ferritic crystalline
orientations are identified that either increase or decrease the effective strength
of the material. This information is useful to further improve the mechanical
properties of multiphase carbon steels. In order to quantify the anisotropic
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aspects of the crystal plasticity model, the simulation results for the uniaxially-
loaded sample are compared with those obtained with an isotropic plasticity
model for the ferritic grains.

1. Introduction

Transformation-induced plasticity (TRIP) steels are a class of multiphase carbon steels that
possess both good strength and good ductility properties. A typical TRIP steel microstructure
consists of ferrite as the dominant phase, retained austenite (RA), bainite and occasionally small
fractions of thermal martensite. The stability of RA at room temperature is provided through a
controlled thermal processing route to carbon-enrich the austenite and the addition of alloying
elements such as silicon and aluminium to suppress cementite formation, as well as through the
constraining effect of the surrounding phases [3, 4]. When subjected to mechanical loading,
the RA may transform into martensite, which is a relatively hard phase that generally increases
the overall strength of the TRIP steel. The shape and volume changes that characterize this
transformation are typically accommodated by plastic deformations in the surrounding phases
(mainly ferrite) and are associated with good macroscopic strength–ductility combinations.
However, further improvement in the mechanical properties of these multiphase carbon steels
is necessary in order to retain a competitive position in relation to high-quality non-ferrous
alloys or other high-performance steel grades.

Over the past 15 years, several constitutive models were developed for the analysis of
the TRIP effect in metals [2, 5–12]. However, in most of these models the elasto-plastic
deformation induced by the transformation is simplified through an isotropic model. The
assumption of an isotropic elasto-plastic behaviour is in general inaccurate at the scale of
observation where the interaction of individual single-crystal grains is considered. The use
of a continuum crystal plasticity theory, which takes into account anisotropic effects related
to the crystallographic lattice orientation of the grains, is therefore more appropriate. The
present paper aims at elucidating the influence of the orientation of ferritic and austenitic
grains on the TRIP effect in multiphase carbon steels. For this purpose, three-dimensional
finite element analyses are carried out on uniaxially-loaded samples comprising a grain of
RA surrounded by either one or multiple grains of ferrite. The anisotropic elasto-plastic
behaviour of the ferrite grains is simulated through a crystal plasticity model and the anisotropic
transformation behaviour in the RA grains is simulated via the martensitic transformation
model of Turteltaub and Suiker [1, 2]. The combination of these models enables us to study
the role of microstructural texture on the overall response of TRIP steel samples and thus
provides a design tool for optimizing the mechanical properties of these materials.

A rate-dependent kinetic formulation is adopted in the crystal plasticity model, which
quantifies the relation between the rate of plastic slip and the energetically conjugated driving
force. The driving force for plastic slip is equal to the classical Schmid stress (or resolved
shear stress), which corresponds to the shear stress component acting on the actual slip
plane and along the slip direction. The kinetic law also includes the critical-resolved shear
stress necessary for activating slip, which is determined by the evolving slip resistance at the
actual slip plane and a ‘non-Schmid stress’ contribution associated with a non-glide plane.
The evolution of the slip resistance is defined by a phenomenological hardening law, which
comprises the mechanisms of self-hardening and cross-hardening. The non-Schmid stress
accounts for the fact that the core of screw dislocations in body-centred cubic (BCC) metals
spreads into three {110} planes intersecting along the 〈111〉 slip directions [13].
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The microstructural basis of the martensitic phase transformation model of Turteltaub and
Suiker [1, 2] stems from the crystallographic theory of martensitic transformations originally
developed by Wechsler et al [14] and further refined by Ball and James [15]. The face-
centred cubic (FCC) austenite transforms into one or several of the possible 24 transformation
systems, where a transformation system is characterized as a special arrangement of twinned
body-centred tetragonal (BCT) martensite with a specific orientation. Lower-scale information
related to the geometry and orientation of the martensitic transformation systems is used to
construct the effective anisotropic elasticity tensor at the grain level.

The paper is organized as follows: the crystal plasticity model for BCC ferrite is outlined
in section 2. Subsequently, we discuss the kinematic assumptions, the driving force for plastic
deformation, the constitutive model, the kinetic relation and the evolution of the slip resistance.
In a similar fashion, the martensitic transformation model of Turteltaub and Suiker [1, 2] is
summarized in section 3. In section 4, we discuss the numerical simulations of several TRIP
microstructures subjected to uniaxial tension. Finally, some concluding remarks are given in
section 5.

As a general scheme of notation, scalars are written as lightface italic letters, vectors as
boldface lowercase letters (e.g. a, b), second-order tensors as boldface capital letters (e.g. A,
B) and fourth-order tensors as blackboard bold capital letters (e.g. A, B). The action of a
second-order tensor upon a vector is denoted as A b and the action of a fourth-order tensor
upon a second-order tensor is designated as A B. Composition of two second-order tensors
is denoted as A B. The tensor product between two vectors is denoted as a ⊗ b. All inner
products are indicated by a single dot in between tensorial quantities of the same order (e.g. a·b,
A · B). Latin superindices in parentheses are used for slip systems while Greek superindices
in parentheses refer to transformation systems. Additional notations will be introduced where
required.

2. Crystal plasticity model for BCC ferrite

A basic feature of rate-independent crystal plasticity models relies on the assumption that
gliding along an individual slip system is determined by the classical Schmid’s law, in which
the Schmid stress (or resolved shear stress) is equated with the evolving slip resistance of
the slip system. Although this assumption is reasonable for close-packed crystals such as in
FCC metals, it cannot be directly applied to BCC crystals. Atomistic simulations on BCC
crystals performed by Duesbery and Vitek [16] have shown that plastic deformations of BCC
metals are governed by the movement of 1/2〈111〉 screw dislocations with cores spreading
into three {110} planes intersecting along the 〈111〉 slip directions. The non-planar spreading
of the dislocation core causes the slip along an individual plane of the {110} class to become
dependent on shear stresses acting on another {110} plane of the [111] zone, called a ‘non-glide
plane’. The stresses acting on the non-glide plane, called non-Schmid stresses, can be included
in a crystal plasticity modelling framework through a modification of the classical Schmid’s
law, as proposed by Bassani et al [17]. Although the non-glide stress model was originally
derived from atomistic simulations of BCC molybdenum and tantalum, it is assumed in the
present work that the plastic slip in BCC ferrite can be described by a similar mechanism. This
assumption is reasonable since the ferritic lattice shares the same generic features with the
lattices of molybdenum and tantalum, namely the asymmetry of slips in the twinning and anti-
twinning directions [18]. A validation of this assumption would require atomistic simulations
of BCC ferrite; however, these fall outside the scope of the present work.

Plastic slip in BCC crystals operates through the propagation of screw dislocations along
the 〈111〉 directions. Because of a lack of close-packed planes in a BCC crystalline structure,



620 D D Tjahjanto et al

Current

Intermediate

Reference

o

m

m

m

n

n

n

x y
z

y = Fp x z = Fe y

z = F x

Figure 1. Schematic representation of the decomposition of deformation gradient F into a plastic
part Fp and an elastic part Fe. The vectors m and n are, respectively, the slip direction and slip
plane normal in the reference and intermediate configurations, while vectors m̂ and n̂ are the
corresponding vectors in the current configuration.

there is no clear consensus among researchers on which planes slip occurs. Experimental
observations often indicate slip traces along {110}, {211} and {321} planes, as well as along
non-crystallographic planes. However, high resolution micrographs show that in BCC crystals
slip on {321} and higher index planes appears in small wavy patterns, which can be interpreted
as slip composed of alternating glide contributions along lower index planes [19, 20]. Recent
atomistic simulations by Bassani et al [17] indicate that slip along {211} planes can be
constructed of equal segments of slip along alternating {110} planes. Accordingly, in the
present work we follow the approach of Vitek, Bassani and co-workers by including the non-
Schmid stresses in the crystal plasticity formulation for the BCC ferrite and taking the family
of {110} planes as the only system along which slip potentially operates.

2.1. Kinematics

Based on the theory of a large deformations, the total deformation gradient F is decomposed
as [21–23]

F = FeFp, (1)

where Fe describes the elastic distortion of the lattice and Fp represents the deformation
related to cumulative plastic slips. It is assumed that the plastic deformation gradient Fp does
not change the lattice structure and that the elastic material properties remain unaltered during a
deformation process. As shown in figure 1, the decomposition of the total deformation gradient
F can be schematized through the introduction of an undeformed reference configuration, a
stress-free intermediate configuration and a current configuration. The velocity gradient in the
current configuration, L̂, can be written as the sum of the elastic part L̂e and the plastic part
L̂p, i.e.

L̂ = ḞF−1 = ḞeF−1
e + FeḞpF−1

p F−1
e := L̂e + L̂p, (2)

where equation (1) has been invoked to construct the material time derivative of the deformation
gradient Ḟ. The plastic part of the velocity gradient L̂p is determined by the cumulative slip
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rates on all possible slip systems i as

L̂p := FeḞpF−1
p F−1

e =
N∑

i=1

γ̇ (i)m̂(i) ⊗ n̂(i)
, (3)

where γ̇ (i) is the slip rate, m̂(i) and n̂(i) are the slip direction and the normal to the slip plane
in the current configuration (also see figure 1) and N is the total number of slip systems. In
the intermediate configuration (and also in the reference configuration), we define the slip
direction and the normal to the slip plane for a slip system i as m(i) and n(i), respectively. The
relations between m(i) and m̂(i) and between n(i) and n̂(i) are given by

m(i) = F−1
e m̂(i)

, (4)

n(i) = FT
e n̂(i)

, (5)

with the superscript T indicating the transpose. In BCC crystals, plastic slip is assumed to
occur by simple shear; hence m(i) and n(i) are perpendicular to each other. From equations
(3)–(5), the plastic velocity gradient in the intermediate configuration Lp can be derived as [24]

Lp := ḞpF−1
p =

N∑
i=1

γ̇ (i)m(i) ⊗ n(i). (6)

Note that in view of (6) and since m(i)·n(i) = 0, d(det Fp)/dt = 0; hence the plastic deformation
is isochoric, i.e. det Fp(t) = 1 ∀t if det Fp(0) = 1.

2.2. Schmid stress and constitutive formulation

The stress power per unit volume in the reference configuration is given by P · Ḟ, where P is the
first Piola–Kirchhoff stress in the reference configuration and Ḟ is the material time derivative
of the total deformation gradient. Combining the time derivative of decomposition (1) and the
flow rule (6) leads to

P · Ḟ = (PFT
p ) · Ḟe +

N∑
i=1

τ (i)γ̇ (i), (7)

with the resolved shear stress (or Schmid stress) τ (i) of slip system i given by

τ (i) = (FT
e PFT

p ) · (m(i) ⊗ n(i)). (8)

The term PFT
p appearing in (7) is the first Piola–Kirchhoff stress in the intermediate

configuration, which is energetically conjugated to the elastic deformation gradient Fe. The
constitutive relation of the model is formulated in the intermediate configuration, in accordance
with

S = C
F Ee, (9)

where S is the second Piola–Kirchhoff stress in the intermediate configuration, C
F is a fourth-

order elasticity tensor and Ee is the elastic Green-Lagrange strain, given by

Ee = 1

2
(FT

e Fe − I), (10)

with I the second-order identity tensor. The fourth-order elasticity tensor C
F in (9) contains

the stiffness components of the BCC ferrite, which, in a commonly used 6 × 6 matrix form,
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read

[CF]F =




κF
1 κF

2 κF
2

κF
2 κF

1 κF
2

κF
2 κF

2 κF
1

κF
3

κF
3

κF
3




F

, (11)

where κF
1 = (CF

1111)F = (CF
2222)F = (CF

3333)F, κF
2 = (CF

1122)F = (CF
1133)F = (CF

2233)F, and
κF

3 = (CF
1212)F = (CF

1313)F = (CF
2323)F. In the above representation, the subindex F indicates

that the stiffness components of C
F are referred to the BCC ferrite lattice basis.

The second Piola–Kirchhoff stress tensor in the intermediate configuration S, which
appears in (9), is related to the first Piola–Kirchhoff stress in the reference configuration P
via

S = F−1
e PFT

p , (12)

where it has been implicitly assumed that det Fp = 1. Combining equations (12) and (8) turns
the expression for the Schmid stress into

τ (i) = (FT
e FeS) · (m(i) ⊗ n(i)). (13)

2.3. Kinetic relation

The evolution of the plastic slip is described by a rate-dependent kinetic relation. The specific
form for the kinetic relation follows a power law [25, 26]:

γ̇ (i) =




γ̇0

[(
τ (i)

τ
(i)
cr

)1/m

− 1

]
ifτ (i) � τ

(i)
cr ,

0 otherwise,

(14)

where γ̇0 is the reference slip rate and m is a parameter that sets the rate-sensitivity of the
model. Note that in (14) γ̇ (i) is always positive, which means that in (6) the positive and
negative senses of slip are accounted for separately. Equation (14) illustrates that plastic slip
occurs if the Schmid stress τ (i) on a specific slip system i exceeds the critical resolved shear
stress τ

(i)
cr . In accordance with the model of Vitek et al [27] for BCC crystals, the critical-

resolved shear stress is composed of the slip resistance s(i) and the non-Schmid stress τ
(i)
∗ ,

τ (i)
cr = s(i) − a(i)

∗ τ (i)
∗ , (15)

where the non-Schmid stress τ
(i)
∗ is given by

τ (i)
∗ = (FT

e FeS) · (m(i) ⊗ n(i)
∗ ). (16)

The non-Schmid stress is represented by the shear stress parallel to the slip direction m(i),
but acting upon a different plane of the {110} family called the non-glide plane. For each slip
system, the choice of the corresponding non-glide plane follows from the results of the atomistic
simulations presented in Bassani et al [17]. The normal to the non-glide plane is indicated
by n(i)

∗ . For simplicity, the contributions of non-Schmid stresses acting perpendicular to the
slip direction m(i) are not accounted for in the present study. The parameter a

(i)
∗ determines

the net contribution of the non-Schmid stress τ
(i)
∗ to the critical-resolved shear stress. Note the

similarity between the expression for the non-Schmid stress (equation (16)) and the expression
for the Schmid stress (equation (13)). As the above model shows, the non-Schmid stress effect
can be straightforwardly incorporated in the evolution of plastic slip by substituting equation
(15) into (14).
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2.4. Evolution of slip resistance (hardening law)

The hardening law used in the crystal plasticity formulation is that proposed by Peirce et al
[28]. In this model the evolution of the slip resistance s(i) of an individual slip system i is
governed by the following equation:

ṡ(i) =
N∑

j=1

H(i,j)γ̇ (j), (17)

where H(i,j) is the hardening matrix, which includes the self-hardening and cross-hardening
moduli. The components of the hardening matrix H(i,j) in (17) can be concisely written as

H(i,j) = [q + (1 − q)δ(i,j)]h(j), (18)

with q the latent hardening ratio, which reflects the ratio between cross-hardening and self-
hardening, h(j) the self-hardening rate (or single-slip hardening rate) of slip system j and δ(i,j)

the Kronecker delta symbol, given by

δ(i,j) =
{

1 if i = j,

0 if i �= j.
(19)

For simplicity, the initial value of the slip resistance s(i) is taken equal for all slip systems,
i.e. s(i) = s0 when γ (i) = 0. The single-slip hardening parameter h(j) in (18) is computed by
adopting the model of Brown et al [29],

h(j) = h0

(
1 − s(j)

s∞

)w

, (20)

where h0, s∞ and w are the initial single-slip hardening, the hardening saturation value and
the hardening-rate exponent, respectively.

3. Martensitic transformation model for FCC austenite

The martensitic transformation of austenitic grains is simulated using the transformation
model of Turteltaub and Suiker [1, 2]. In this model, microstructural information is
accounted for at the grain level through combining the crystallographic theory of martensitic
transformations [14, 15] with averaging techniques of the Voigt type. Accordingly, the
transformation model includes (i) the crystallographic information from the lattice scale and
the influence of volumetric changes during a transformation, (ii) the orientation effect of the
24 possible martensitic transformation systems with respect to the local stress field, (iii) the
influence of carbon concentration on the lattice geometries of austenite and martensite and
(iv) the effect of stiffness difference between austenite and martensite on the transformation
evolution. The main ingredients of the transformation model of Turteltaub and Suiker [1, 2]
are summarized in the section below.

3.1. Kinematics

Similar to the multiplicative decomposition (1), the total deformation gradient F in the
austenitic grain can be decomposed into an elastic deformation gradient Fe and a transformation
deformation gradient Ftr ,

F = FeFtr. (21)
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As demonstrated by Turteltaub and Suiker [1], an expression for the transformation deformation
gradient Ftr can be obtained through applying averaging techniques with respect to the
transformation deformation gradients of individual transformation systems α, leading to

Ftr = I +
M∑

α=1

ξ (α)b(α) ⊗ d(α), (22)

where ξ (α), b(α) and d(α) are the martensitic volume fraction, the shape strain vector and
the unit vector normal to the habit plane of a specific transformation system α, respectively,
I is the second-order identity tensor and M represents the total number of transformation
systems. The shape strain vector b(α) and the habit plane orientation d(α) are calculated from
the crystallographic theory of martensitic transformations [14,15]. For a transformation from
FCC austenite to BCT martensite, the total number of transformation systems M is equal to
24 (see, e.g. [30]).

From a modelling point of view, martensitic transformation systems require a similar
treatment as slip systems in a crystal plasticity model [12]. However, in contrast to the plastic
slips γ (i), the martensitic volume fractions ξ (α) are bounded by the following constraints:

0 � ξ (α) � 1, α = 1, . . . , M, (23)

0 �
M∑

α=1

ξ (α) � 1. (24)

The volume fraction of the untransformed RA ξ (0) can be computed as

ξ (0) = 1 −
M∑

α=1

ξ (α), (25)

and in view of (23) and (25), 0 � ξ (0) � 1.

3.2. Resolved stress for transformation and constitutive formulation

An expression for the stress power P · Ḟ can be obtained by invoking the time derivatives of
(21) and (22), which leads to

P · Ḟ = (PFT
tr ) · Ḟe +

M∑
α=1

τ (α)
m ξ̇ (α), (26)

where ξ̇ (α) is the rate of change in the martensitic volume fraction of transformation system α

and τ (α)
m is the corresponding resolved stress for transformation, given by

τ (α)
m = (FT

e P) · (b(α) ⊗ d(α)). (27)

The constitutive relation of the model is formulated in the intermediate configuration in
accordance with

S = CEe, (28)

where S is the second Piola–Kirchhoff stress in the intermediate configuration, defined as

S = J−1
tr F−1

e PFT
tr, (29)

where Jtr = det Ftr and the elastic Green-Lagrange strain Ee is given by equation (10). The
fourth-order elasticity tensor C of the austenite–martensite composite system has the form [1,2]

C = J−1
tr

{
ξ (0)

C
A + (1 + δT)

M∑
α=1

ξ (α)
C

(α)

}
, (30)
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where C
A and C

(α) are the elastic stiffness tensors for austenite and system α of martensite,
respectively, and δT is the volumetric change due to transformation,

δT := b(α) · d(α), ∀α = 1, . . . , M. (31)

Since during transformation the volume fractions ξ (0) and ξ (α) evolve, so does the elastic
stiffness tensor in (30). The components of the fourth-order elasticity tensor C

A with respect
to the austenite lattice basis can be displayed in a 6 × 6 matrix as follows:

[CA]A =




κA
1 κA

2 κA
2

κA
2 κA

1 κA
2

κA
2 κA

2 κA
1

κA
3

κA
3

κA
3




A

, (32)

where the elastic moduli of FCC austenite are given by κA
1 := (CA

1111)A = (CA
2222)A =

(CA
3333)A, κA

2 := (CA
1122)A = (CA

1133)A = (CA
2233)A and κA

3 := (CA
1212)A = (CA

1313)A =
(CA

2323)A.
A martensitic transformation system α emerges as a twinned structure of two (out of

three) BCT martensite variants (βi, βj ) with corresponding proportions (λ(α,i), λ(α,j)), where
i, j = {1, 2, 3} and i �= j . When assuming that the elastic deformations in the martensitic
variants are equal, the effective elastic stiffness tensor C

(α), which appears in (30), can be
written as

C
(α) = λ(α,β1)E

(β1) + λ(α,β2)E
(β2), (33)

with E
(βi ) the fourth-order elasticity tensor of BCT martensitic variant βi in transformation

system α. The components of the elasticity tensor E
(3) of martensitic variant 3 can be expressed

with respect to its own lattice basis as

[E(3)](α,3) =




κM
1 κM

2 κM
3

κM
2 κM

1 κM
3

κM
3 κM

3 κM
4

κM
5

κM
5

κM
6




(α,3)

, (34)

where the elastic moduli of martensitic variant 3 are κM
1 := (E

(3)
1111)(α,3) = (E

(3)
2222)(α,3),

κM
2 := (E

(3)
1122)(α,3), κM

3 = (E
(3)
1133)(α,3) = (E

(3)
2233)(α,3), κM

4 = (E
(3)
3333)(α,3), κM

5 := (E
(3)
1313)(α,3) =

(E
(3)
2323)(α,3) and κM

6 := (E
(3)
1212)(α,3). The components of the stiffness tensors of martensitic

variants 1 and 2 can be found from equation (34) by symmetry, as explained in Turteltaub and
Suiker [1]. Through rotations that map the BCT martensite lattice bases to the parent FCC
austenite lattice basis (which is used as a common basis for all martensitic transformation
systems α = 1, . . . , M), the components of the tensor C

(α) in (33) can be expressed relative
to the FCC austenite lattice basis. More details about the construction of the elasticity tensor
in (33) can be found in Turteltaub and Suiker [1, 2] and Suiker and Turteltaub [12].

3.3. Transformation driving force

The expression for the driving force for transformation is derived from the procedure of
Coleman and Noll [31] that requires a formulation of the energy dissipation and subsequent
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application of the second law of thermodynamics. Through this procedure the rate of change
in the martensitic volume fraction ξ̇ (α) is identified as a flux and the driving force f (α) as the
corresponding affinity. The driving force for transformation has the following form [1]:

f (α) = Jtr(FT
e FeSF−T

tr ) · (b(α) ⊗ d(α)) +
1

2
[(CA − (1 + δT)C(α))Ee] · Ee

− χ

l0
(1 − 2ξ (α)) + f

(α)

th , (35)

where χ is the surface energy per unit area of the austenite-twinned martensite interfaces and
l0 is a length scale parameter reflecting the volume-to-surface ratio of a martensitic platelet.
Furthermore, f (α)

th is the thermal contribution to the driving force. For the isothermal boundary
value problems considered in this study, the thermal driving force f

(α)

th is constant.

3.4. Kinetic relation

The evolution of the martensitic volume fraction during transformation is defined through a rate-
dependent kinetic relation that takes explicitly into account a non-zero transformation barrier.
Accordingly, a transformation system α becomes active when the corresponding driving force
f (α) exceeds the critical driving force f

(α)
cr . In the present study, the rate-dependent kinetic

relation proposed by Turteltaub and Suiker [1, 2] is adopted, i.e.

ξ̇ (α) =




ξ̇ (α)
max tanh

(
1

ν(α)

f (α) − f
(α)
cr

f
(α)
cr

)
if f (α) � f

(α)
cr ,

0 otherwise,

(36)

where ξ̇
(α)
max is the maximum transformation rate and ν(α) is a viscosity-like parameter. For

simplicity, the values of f
(α)
cr , ξ̇

(α)
max and ν(α) are assumed to be constant and are taken equal

for all transformation systems, i.e. f
(α)
cr = fcr, ξ̇

(α)
max = ξ̇max and ν(α) = ν. As shown in

Turteltaub and Suiker [1], the rate-dependent kinetic relation in (36) satisfies the second law
of thermodynamics and reduces to the rate-independent transformation criterion f (α) = f

(α)
cr

when ν(α) → 0, ξ̇ (α)
max → ∞ or if the loading rate becomes infinitely high, such that ξ̇ (α) → ∞.

4. Numerical simulations

The influence of the austenite and ferrite grain orientations on the effective response of a TRIP
steel sample is examined through three-dimensional finite element analyses. For this purpose,
the crystal plasticity model and the martensitic transformation model outlined in sections 2
and 3 are implemented as ‘user subroutines’ in the finite element program ABAQUS [32].
The numerical implementation of the martensitic transformation model follows an integration
scheme where the stress update is performed within the framework of finite deformations and
is based on a fully implicit backward Euler algorithm [12]. In addition, the consistent tangent
operator is computed through a numerical differentiation method, which avoids the analytical
evaluation of the relatively complex derivatives that depend on the specific transformation
systems activated. The transformation systems activated during deformation are determined
through a robust search algorithm, as explained in detail in Suiker and Turteltaub [12]. For
the crystal plasticity model, a numerical implementation similar to that proposed by Cuitiño
and Ortiz [25] has been adopted, together with improvements taken from the numerical
implementation of the phase transformation model [12]. In fact, the numerical implementations
of the crystal plasticity model and the phase transformation model show certain similarities
that stem from the analogy between slip systems and transformation systems.
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Figure 2. Geometry and boundary conditions of a TRIP steel microstructure consisting of a single
grain of RA embedded in a matrix of six ferritic grains.

4.1. Geometry and boundary conditions

The TRIP steel sample analysed numerically consist of a 3L × 3L × 3L cube containing a
grain of RA embedded in a ferrite-based matrix (see figure 2). The grain of RA is modelled as
a polyhedron composed of two half-pyramids. Each half-pyramid has a 2L × 2L rectangular
base and a concentric L × L rectangular top. The height of the half-pyramids is 0.75L. Since
typical grains of RA have a characteristic length of about 2 µm [3], we take L = 1 µm. The
initial volume of the RA grain is approximately equal to 15% of the overall sample volume.
The ferrite-based matrix is divided into six sub-domains, where each sub-domain represents
the partial geometry of a single grain of ferrite. The cutting planes of the sub-domains are
defined by connecting the external edges of the cube to the corresponding edges of the austenite
inclusion. The global basis is defined in terms of unit vectors { f1, f2, f3} (see figure 2).

The material is initially stress-free and subsequently subjected to a uniaxial tensile loading.
As illustrated in figure 2, this loading corresponds to the following boundary conditions: (i) the
normal displacement and the tangential tractions on the external faces of grains 1, 4 and 6 are
set to zero, (ii) the uniaxial tensile loading is applied in the f1-direction by imposing a normal
displacement u1 = (0.3L)(t/T ) and zero tangential tractions on the external face of grain
2, which, at a nominal straining rate of 10−3 s−1, eventually leads to a maximum nominal
axial strain of 10% for a total analysis time T = 100 s and (iii) the two remaining faces are
traction-free. The simulations are carried out at an ambient temperature of 300 K.

In order to study the effects of grain orientation on the overall response of the TRIP steel
sample, the orientations of the grains are varied in accordance with the values listed in table 1.
All orientations are given in terms of the so-called 323 Euler rotations that map the global basis
to a local lattice basis, which is either the lattice basis of the austenite or the lattice basis of the
ferrite. For the sake of clarity, certain orientations are also referred to using the Miller indices
of the global vector f1 in the corresponding lattice basis. More specifically, the orientations
(0◦, 0◦, 0◦) and (45◦, 35.26◦, 0◦) correspond to the [100] and [111] orientations, respectively,
where a subindex A or a subindex F is added to the orientations to designate the reference to
the austenite and ferrite lattice bases (see table 1).

Cases 1, 2, 4 and 5 in table 1 represent a RA grain embedded in a single crystal ferritic
matrix while cases 3 and 6 reflect a RA grain embedded in a multi-crystal ferritic matrix. The
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Table 1. Selected orientations of the RA grain and ferrite grains, given in terms of 323 Euler angles.
The Euler angles are defined with respect to the global basis { f1, f2, f3}.
Case RA grain Ferrite grains

1 f1 = [100]A or 1, 2, 3, 4, 5 and 6: f1 = [100]F or
(0◦, 0◦, 0◦) (0◦, 0◦, 0◦)

2 f1 = [100]A or 1, 2, 3, 4, 5 and 6: f1 = [111]F or
(0◦, 0◦, 0◦) (45◦, 35.26◦, 0◦)

3 f1 = [100]A or 1: (0◦, 0◦, 0◦) 2: (45◦, 0◦, 0◦) 3: (45◦, 35.26◦, 0◦)
(0◦, 0◦, 0◦) 4: (22.5◦, 0◦, 0◦) 5: (22.5◦, 17.63◦, 0◦) 6: (45◦, 17.63◦, 0◦)

4 f1 = [111]A or 1, 2, 3, 4, 5 and 6: f1 = [100]F or
(45◦, 35.26◦, 0◦) (0◦, 0◦, 0◦)

5 f1 = [111]A or 1, 2, 3, 4, 5 and 6: f1 = [111]F or
(45◦, 35.26◦, 0◦) (45◦, 35.26◦, 0◦)

6 f1 = [111]A or 1: (0◦, 0◦, 0◦) 2: (45◦, 0◦, 0◦) 3: (45◦, 35.26◦, 0◦)
(45◦, 35.26◦, 0◦) 4: (22.5◦, 0◦, 0◦) 5: (22.5◦, 17.63◦, 0◦) 6: (45◦, 17.63◦, 0◦)

Table 2. Material parameters of the crystal plasticity model for ferrite.

Elastic moduli κF
1 = 233.5 GPa, κF

2 = 135.5 GPa
κF

3 = 118 GPa (equation (11))

Non-Schmid stress weight parameter a
(i)
∗ = a∗ = 0.12 (equation (15))

Kinetic law m = 0.01, γ̇0 = 10−3 s−1 (equation (14))
Initial slip resistance s0 = 100 MPa
Hardening law s∞ = 400 MPa, h0 = 8.2 GPa, w = 2.8

q = 1 (equations (18) and (20))

Euler angles of the grain orientations in the multi-crystalline ferritic matrix are chosen such
that they are evenly distributed in the orientation space. Accordingly, the ferritic grains 1, 2
and 3 are given the [100]F, [110]F, and [111]F orientations, respectively. The Euler angles of
ferritic grain 4 are equal to the average values of the Euler angles of ferritic grains 1 and 2,
whereas the Euler angles of grains 5 and 6 are equal to the average values of the Euler angles
of grains 1 and 3 and grains 2 and 3, respectively.

4.2. Model parameters

The parameters used in the crystal plasticity model are summarized in table 2. The elastic
moduli for the BCC ferrite are based on the results of x-ray diffraction measurements reported
by Liu et al [33]. For simplicity, it is assumed that the values of the weight parameters a

(i)
∗

are the same for all slip systems, i.e. a
(i)
∗ = a∗. The weight parameter a∗ is calibrated from

the data of uniaxial tensile tests on single-crystal ferrite samples obtained by Franciosi [20],
which clearly show an orientation dependence of the initial critical resolved shear stress for
plastic slip. The calibration procedure applied is taken from Bassani et al [17], which uses
the asymmetric responses in the twinning and anti-twinning directions to determine a∗.

The parameters used for the kinetic law are chosen such that rate effects remain small
under quasi-static loading conditions; that is, the response of the rate-dependent model is close
to that of a rate-independent crystal plasticity model. The purpose of introducing a small
rate-dependence is to avoid numerical singularity problems typically encountered for rate-
independent crystal plasticity models [26]. The initial slip resistance s0 and the parameters h0,
w and q used in the hardening law are calibrated from experimental uniaxial stress–strain data
of a dual phase poly-crystalline sample consisting mostly of ferrite, as reported by Jacques et al
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Table 3. Slip directions m(i) slip plane normals n(i), and non-glide plane normals n(i)
∗ used in the

BCC ferrite model. The vectors are formulated with respect to the ferrite lattice basis.

i m(i) n(i) n(i)
∗ i m(i) n(i) n(i)

∗

1 [111] (011̄) (1̄10) 2 [1̄1̄1̄] (011̄) (101̄)

3 [111] (1̄01) (01̄1) 4 [1̄1̄1̄] (1̄01) (1̄10)

5 [111] (11̄0) (101̄) 6 [1̄1̄1̄] (11̄0) (01̄1)

7 [1̄11] (01̄1) (101) 8 [11̄1̄] (01̄1) (1̄1̄0)

9 [1̄11] (1̄01̄) (1̄1̄0) 10 [11̄1̄] (1̄01̄) (011̄)

11 [1̄11] (110) (011̄) 12 [11̄1̄] (110) (101)

13 [1̄1̄1] (101) (011) 14 [111̄] (101) (11̄0)

15 [1̄1̄1] (01̄1̄) (11̄0) 16 [111̄] (01̄1̄) (1̄01̄)

17 [1̄1̄1] (1̄10) (1̄01̄) 18 [111̄] (1̄10) (011)

19 [11̄1] (101̄) (110) 20 [1̄11̄] (101̄) (01̄1̄)

21 [11̄1] (011) (1̄01) 22 [1̄11̄] (011) (110)

23 [11̄1] (1̄1̄0) (01̄1̄) 24 [1̄11̄] (1̄1̄0) (1̄01)

Table 4. Material parameters for the martensitic transformation model.

Austenite elastic moduli κA
1 = 268.5 GPa, κA

2 = 156 GPa
κA

3 = 136 GPa (equation (32))
Martensite elastic moduli κM

1 = 497 GPa, κM
2 = 405 GPa

κM
3 = 265 GPa, κM

4 = 617 GPa
κM

5 = 263 GPa, κM
6 = 287 GPa (equation (34))

Transformation volume dilatation δT = 0.0391 (equation (30))
Kinetic law ν = 0.17, ξ̇max = 3 × 10−3 s−1 (equation (36))
Critical transformation value fcr − fth = 5 MPa (equation (35))
Surface energy χ = 0.2 J · m−2, l0 = 0.05 µm (equation (35))

[3]. In the calibration procedure, the poly-crystalline response is simulated by combining the
present crystal plasticity model with a Taylor averaging procedure [34]. The slip directions,
the normal vectors of the slip planes and the normal vectors of the non-glide planes used in
the BCC crystal plasticity model are listed in table 3.

The parameters for the martensitic transformation model are presented in table 4. The
values in this table are representative of an austenite grain with a carbon concentration of
1.4 wt.%, for which the transformation product phase at room temperature is typically a
twinned, thin-plate martensite [35, 36]. Similarly to the kinetic law of the crystal plasticity
model, the parameters for the kinetic law of the transformation model are chosen to reflect
a ‘weak’ rate-dependent transformation behaviour under quasi-static loading conditions.
The effective critical transformation value, which, under isothermal conditions, may be
represented by the difference between the transformation threshold fcr and the (constant)
thermal contribution to the driving force fth, is taken as 5 MPa. The details of the calibration
procedure that leads to the parameter set in table 4 can be found in Turteltaub and Suiker [2].

4.3. Simulation results

For the graphical representation of the simulation results, we define the volume average of the
normal Cauchy stress T̄11 in the loading direction as

T̄11(t) := 1

|�t |
∫

�t

T11(z, t) dvz, (37)
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where T11 is the normal Cauchy stress in the loading direction (which is f1), �t is the
computational domain in the current configuration at time t and z is the position of a material
point in the current configuration (see figure 1). The strain measure used in the presentation
of the results is the logarithmic strain e, which is defined as

e := ln V, (38)

with V is the left stretch tensor obtained from a polar decomposition of the deformation gradient
F, i.e. F = VQ, where Q is the rigid body rotation. The average logarithmic strain in the loading
direction is computed as

ē11(t) := 1

|�0|
∫

�0

e11(x, t) dvx, (39)

where e11 is the normal logarithmic strain in the loading direction and �0 is the computational
domain in the reference configuration.

4.3.1. Influence of the RA orientation on the effective strength. In figure 3 the effective
stress–strain responses to uniaxial loading are plotted for various samples composed of an
austenitic grain embedded in a single-crystal ferritic matrix. In correspondence with table 1,
the orientations of the single-crystal ferrite are [100]F (figure 3(a)) and [111]F (figure 3(b)).
For comparison, both figures also contain the response of a cubic sample with the austenitic
grain being replaced by a ferritic grain with the same orientation as the surrounding ferritic
grains, indicated as ‘ferrite matrix only’. It can be noted that samples with an austenitic grain
oriented in the [100]A direction (cases 1 and 2) initially have a lower effective strength than
the ‘ferrite matrix only’. Accordingly, these samples may be characterized as ‘weak’. The
low effective strength of a sample with a [100]A-oriented grain is due to the capability of
the austenitic grain to accommodate the externally imposed deformation without a significant
increase in stress. This behaviour was also observed in the analyses reported by Turteltaub and
Suiker [1,2], which showed that a [100]A-oriented austenitic grain subjected to homogeneous
uniaxial loading conditions transforms at a relatively low stress value that remains virtually
constant during the transformation process (i.e. a stress plateau). Nonetheless, at the end of
the transformation process the stress typically increases, as can be seen in figures 3(a) and
(b). This increase in stress may be ascribed to two factors, namely (i) the exhaustion of the
available stress-free transformation strain to accommodate the imposed deformation and (ii)
the increase in stiffness due to a martensite-rich microstructure. The increase in stiffness is
related to the increase in hardness upon transformation of RA to martensite.

Figures 3(a) and (b) further show that the effective strength of a sample with a [111]A-
oriented austenitic grain (cases 4 and 5) is higher than the effective strength of a corresponding
sample with a [100]A-oriented austenitic grain (cases 1 and 2). The stronger behaviour
of the samples with a [111]A-oriented austenitic grain can be ascribed to the fact that the
transformation into martensite requires a higher stress at the grain level. Since a higher
transformation stress is typically associated with a lower transformation strain [1, 2], the
samples with a [111]A-oriented austenitic grain need less deformation to overcome the
transformation than the samples with a [100]A-oriented austenitic grain. In figures 3(a) and
(b) this is indicated by the fact that the stress increase at the end of the transformation process
for a sample with a [111]A-oriented austenitic grain occurs at a lower uniaxial strain than for a
corresponding sample with a [100]A-oriented austenitic grain. In general, the variation in the
overall responses of the samples due to differences in the austenite orientation is significant,
especially by considering the fact that the RA occupies only 15% of the total volume.

Comparing figures 3(a) and (b) illustrates that the single-crystal ferrite oriented in the
[111]F direction provides a higher sample strength than the ferrite oriented in the [100]F
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Figure 3. Average Cauchy stress T̄11 versus average logarithmic strain ē11. The austenite
orientation in the samples is varied while the ferrite orientation is kept constant, i.e. [100]F in
(a) and [111]F in (b).

direction. In fact, the stress required for initiating plastic slip in [111]F-oriented grains is
even higher than the stress required for initiating transformation in [111]A-oriented grains, as
a result of which the overall strength of the [111]A–[111]F sample (case 5) is initially lower
than the effective strength of the [111]F ‘ferrite matrix only’ (see figure 3(b)). Nevertheless,
after the formation of a substantial amount of martensite the [111]A–[111]F sample provides
the highest effective strength for all microstructures analysed.

4.3.2. Influence of the ferrite orientation on the effective strength. In figure 4 the effective
stress–strain responses of various samples are depicted for a fixed orientation of the RA grain,
which is [100]A in figure 4(a) and [111]A in (b). The matrix composed of anisotropic ferritic
grains is either single-crystalline (cases 1,2,4 and 5) or multi-crystalline (cases 3 and 6). For
comparison, the responses for an isotropic ferritic matrix are also depicted, as obtained by
using an isotropic elasto-plasticity model for the ferritic matrix. The results of the latter
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Figure 4. Average Cauchy stress T̄11 versus average logarithmic strain ē11. The ferrite orientation
in the samples is varied while the austenite orientation is kept constant, i.e. [100]A in (a) and [111]A
in (b).

simulations were presented previously in Turteltaub and Suiker [2]. In correspondence with
the results in figure 3, a single-crystalline matrix of [111]F-oriented ferritic grains (cases
2 and 5 in figures 4(a) and (b), respectively) provides a relatively high effective strength.
Conversely, samples with a single-crystalline matrix of [100]F-oriented ferritic grains (cases
1 and 4 in figures 4(a) and (b), respectively) relate to a low effective strength. Note that the
[111]A − [111]F sample and the [100]A − [100]F sample, respectively, provide the highest and
lowest overall strengths. The samples with the ferrite grains oriented in multiple directions
(cases 3 and 6 in figures 4(a) and (b), respectively) have an effective strength that is in between
these two extremes. Since the multi-crystalline ferritic matrix to a certain extent approximates
a poly-crystalline matrix, the effective strengths for cases 3 and 6 are close to the strength of
a sample that has an isotropic ferritic matrix.

4.3.3. Influence of the grain orientation on the transformation rate. To study the effect of
grain orientation on the evolution of the austenitic volume fraction, we introduce the austenitic
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Figure 5. Average austenite volume fraction ξ̄A versus average logarithmic strain ē11. The ferrite
orientation in the samples is varied while the austenite orientation is kept constant, i.e. [100]A in
(a) and [111]A in (b).

volume fraction averaged over the sample, i.e.

ξ̄A(t) := 1

|�0|
∫

�0

ξ (0)(x, t) dvx, (40)

where

ξ (0)(x, t) =




1 −
M∑

α=1

ξ (α)(x, t) for x ∈ �A

0 for x ∈ �F

, (41)

with �A and �F the regions occupied in the reference configuration by the austenite grain and
the ferrite matrix, respectively.

The evolution of the average austenite volume fraction is presented in figure 5 for a fixed
orientation of the austenitic grain, which is [100]A in figure 5(a) and [111]A in (b). The cases
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presented in figures 5(a) and (b) correspond to those shown in figures 4(a) and (b), respectively.
The transformation evolution for samples with an isotropic ferritic matrix, which were reported
previously in Turteltaub and Suiker [2], is depicted for comparison. When comparing the
results from figures 5(a) and (b), we observe that, regardless of the orientation of the ferrite
grains, the martensitic transformation proceeds faster for samples with an austenitic grain
oriented in the [111]A direction than for samples with an austenitic grain oriented in the [100]A

direction. This result, which is in agreement with recent experimental observations in TRIP
steels [37,38], can be ascribed to the fact that austenitic grains oriented in the [111]A direction
experience a much higher stress than austenitic grains oriented in the [100]A direction [2].

The samples with the ferritic grains oriented in multiple directions show a similar evolution
of the austenitic volume fraction as the samples with an isotropic ferritic matrix. Hence,
this confirms the conclusion that the matrix of six ferritic grains with different, but evenly,
distributed orientations (cases 3 and 6, see table 1) already gives a good approximation of an
isotropic, poly-crystalline ferritic matrix. Further, combining the results for cases 3 and 6 in
figure 5 with those in figure 4 shows that a higher transformation rate increases the effective
hardening capacity of the samples. This phenomenon has also been observed experimentally by
Jacques et al [39], who studied the influence of the austenite transformation rate on the effective
hardening capacity of TRIP steel specimens subjected to uniaxial tension. Furthermore, they
observed that the transformation rate at the onset of the deformation process is relatively high
but decreases strongly with continued deformation (i.e., an exponentially decaying austenitic
transformation rate). This trend is confirmed by the simulation results shown in figure 5.

5. Concluding remarks

In the present work, the influence of the grain orientation on the effective response of TRIP
steel samples has been studied through three-dimensional finite element analyses. The TRIP
steel samples are composed of a single grain of RA embedded within six grains of ferrite.
Uniaxial tension simulations show that the orientations of the austenitic grain and the ferritic
grain may both have a strong effect on the overall strength of the sample. The combination
of austenite oriented in the [111]A direction and a single-crystal ferritic matrix oriented in
the [111]F direction gives the highest effective strength, while the lowest effective strength is
obtained from the combination of austenite oriented in the [100]A direction and a single-crystal
ferritic matrix oriented in the [100]F direction. The effective strengths of TRIP steel samples
with a ferritic matrix composed of grains with multiple orientations fall between those two
extremes.

The evolution of the austenitic volume fraction and its effect on the effective hardening
capacity are in good qualitative agreement with experimental observations. However, the
austenite has almost fully transformed into martensite at 10% strain for all configurations
studied, whereas experimental observations often indicate a remaining fraction of austenite at
this deformation level. It is suggested that this difference between simulations and experiments
is partly due to the absence of plasticity in the model for austenite. However, the incorporation
of the plasticity in the martensitic transformation model must await a later study. Furthermore,
in the present model, the carbon concentration is assumed to be uniform in the grain of RA,
whereas in real materials a range of carbon concentration is to be expected. Finally, the
prediction of full transformation at 10% strain may be also attributed to the absence of a harder
bainitic phase in the matrix and the adoption of relatively simple grain geometries in the model.
In spite of these simplifications, the results of the simulations show realistic trends and provide
insight that is useful for the design of TRIP steel microstructures with improved mechanical
characteristics.
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