
 

 

 

University of East London Institutional Repository: http://roar.uel.ac.uk  
 
This paper is made available online in accordance with publisher policies. Please 
scroll down to view the document itself. Please refer to the repository record for this 
item and our policy information available from the repository home page for further 
information. 
 
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

 
Author(s): Marriott, Martin John 
Article Title: Modelling of water demand in distribution networks 
Year of publication: 2007 

Citation: Marriott, M.J., (2007) ‘Modelling of water demand in distribution networks’, 
Urban Water Journal, 4 (4) 283-286 

Link to published version: http://dx.doi.org/10.1080/15730620701464240 

DOI: 10.1080/15730620701464240 

 

Publisher statement:  
http://www.tandf.co.uk/journals/copyright.asp  
 
 



This is the author’s version of the work.  It is posted here by permission of Taylor 

& Francis for personal use, not for redistribution.  The definitive version was 

published in Urban Water Journal, Volume 4 Issue 4, December 2007, 283-286. 

(http://dx.doi.org/10.1080/15730620701464240) 

 

Modelling of water demand in distribution networks 

M.J.Marriott 

School of Computing and Technology 

University of East London 

Docklands Campus, University Way, London E16 2RD, UK 

Tel: +44 208 223 6261 

E-mail: m.j.marriott@uel.ac.uk 

 

Abstract 

The allocation of water demand to nodes is compared with uniformly 

distributed demand along a pipeline, and it is shown that the nodal 

approach produces an upper bound or unsafe solution for pressures in 

the distribution network.  Although the differences are likely to be minor 

for computer models with many nodes, the simplest examples show 

differences of up to 25% in head loss between the two approaches.  

Terminology and concepts from structural engineering are useful in this 

comparison.  The results are particularly significant to simplified models 

using independently derived values of pipe friction factor. 

 
Keywords:  water distribution, Darcy-Weisbach head loss, pipe network 

analysis. 



1. Introduction 

When water distribution networks are modelled by computer or by 

hand calculation, it is usual to group the demand and to apply this at 

nodes, rather than to model every individual house connection along 

each pipeline.  Often to simplify the model, the number of nodes is 

kept low, so the pattern of demand in the model can represent a 

significant approximation to the real situation.  Twort et al. (2000) 

outline the benefits of manual analysis using a ‘skeleton layout’ for 

preliminary planning.  They remind readers that ‘the accuracy of any 

computer model is not greater than the accuracy with which nodal 

demands can be estimated’.   The Haestad publication (Walski et al. 

2001) refers to the grouping of water demand at nodes as being a 

possible source of error, but which produces relatively minor 

differences between computer predictions and actual performance. 

 

 The effect of the approximation of allocating demand to nodes is 

considered and discussed below, using concepts from structural 

engineering which are likely to be part of the general civil engineering 

training of many water engineers.  These will first be outlined.   

 

 

2. Structural engineering concepts 

A topic studied in structural engineering is the plastic analysis of 

frames, with the upper bound (‘unsafe’) and lower bound (‘safe’) 

theorems.  Heyman (1974) explains that all three conditions of 



equilibrium, mechanism and yield are necessary and sufficient to 

determine the true collapse load factor for a frame.  When only two 

out of the three conditions are satisfied, the solution may be either an 

upper bound or a lower bound to the true solution, as summarised in 

Table 1.  Clearly an upper bound solution for the collapse load is an 

unsafe estimate since this overestimates the true load capacity of the 

frame.   

 

Texts such as Williams and Todd (2000) explain that elastic design 

methods are based on the safe or lower bound theorem, but that 

plastic analysis principally makes use of the unsafe theorem.  In the 

latter approach, various possible mechanisms are formulated, all 

representing upper bounds to the true collapse load, and the 

mechanism giving the lowest load factor is deduced to be the critical 

case.  It may then be checked whether this satisfies all three 

conditions and is the true collapse load, or whether in fact the true 

collapse mechanism has been overlooked.  So there is an awareness 

here of whether a calculated result is an upper or lower bound to the 

actual solution. 

 

The initial study of structural engineering also involves considering 

the effects of point loads and uniformly distributed loads on beams.  

Plenty of examples are contained in introductory texts such as Smith 

(2001).  Clearly the representation of loads in this way involves the 

idealisation of actual loading cases. 



 

3. Application to hydraulic modelling 

The concept of uniformly distributed loads, and of upper bound 

solutions, that are familiar in structural engineering, may prove to be 

useful ideas when considering a water distribution network.  Demand 

may be considered as uniformly distributed along pipelines, for 

comparison with results obtained from point demands applied at 

nodes.  The various ways of idealising the system to apply nodal 

demands may be compared, and it will be shown that these represent 

upper bound or unsafe estimates in relation to the true solution.      

Consider a pipeline AB as part of a network.  The demand may be 

taken to be uniformly distributed between A and B, along the length L 

of the pipeline.  In an urban situation this would closely represent the 

reality of many house connections along the length of a distribution 

main.   

For simplicity, consider that the flow at node B is zero, and the 

incoming flow rate at A is equal to Q, as shown in Fig.1.  The 

uniformly distributed demand is therefore Q/L where L is the length of 

the pipeline AB.  Frictional head losses will be evaluated using the 

Darcy-Weisbach friction formula, in the form  

2

52

22

f KQ
Dg

LQ8

gD2

LV
h =

π

λ
=

λ
=       (1) 

where g (m/s2) is the acceleration due to gravity, D (m) is the internal 

pipe diameter, L (m) is the length of pipeline with flow at a mean 

velocity of V (m/s) and a volumetric flow rate Q (m3/s), and K (s2/m5) is 



pipeline resistance, all with S.I. units as shown in brackets.  The 

dimensionless pipe friction factor λ will be considered to be constant 

with flow rate, as in the rough turbulent region, but results may also be 

derived using alternative formulae such as Hazen-Williams for the 

transitional turbulent region. 

For the situation in Fig. 1, with a flow rate varying linearly from Q at 

node A down to zero at node B, the total head loss hfAB between A 

and B is evaluated as follows: 
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This value hfAB in equation (3) will be taken to represent the true value. 

Consider now the demand grouped at nodes A and B, as shown in 

Fig. 2.  The head loss hf1 may be calculated for this idealisation as 

follows: 

 
4

KQ

Dg

LQ2

2

Q

Dg

L8
h

2

52

22

521f =
π

λ
=









π

λ
=      (4) 

So treating the pipeline AB as one length with the demand allocated 

equally to the end nodes, it is found by comparing equations (3) and 

(4) that the calculated head loss hf1 is related to the true value by 

fAB1f h
4

3
h = , and that the head loss is therefore underestimated by 

one quarter in this approximation. 



If the pipeline AB is divided into two lengths, as shown in Fig.3, 

with the demand divided in two, and then split between the nodes as 

shown, the calculated head loss hf2 is as follows: 
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So in this case the head loss is underestimated by one sixteenth of 

the true value. 

A general expression may be deduced for such a pipeline split in 

this way into n lengths, that the head loss hfn is an underestimate by 

1/(2n)2 of the head loss that results from uniformly distributed demand. 

 

4. Loop example 

 Similar analysis may be applied to loops that form parts of pipe 

networks.  A simple symmetrical example shown in Fig.4 comprises a 

square WXYZ with sides of pipework length L and resistance K.  With 

demand allocated equally to the four nodes W, X, Y and Z as shown, 

the head loss from the supply point at node W to the farthest node Y 

is given by: 
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This example may be seen to be similar to the pipeline of Figure 3.  If 

the demand is considered to be uniformly distributed around the 

square, the resulting head loss obtained may be deduced from 

equation (3) as: 
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Comparison of equations (6) and (7) shows that the nodal approach in 

(6) underestimates the head loss by one sixteenth, when compared 

with the uniformly distributed result. 

 

 

5. Discussion of implications   

Usually the objective of calculating head losses, is to ensure that 

at least a certain minimum acceptable pressure is provided to 

consumers, as one of the level of service criteria.  Therefore it may be 

seen that the underestimation of head loss resulting from the various 

approximations allocating demand to nodes, will result in 

overestimates or upper bound solutions for the available pressure 

heads.  

Dividing the network into a greater number of pipe lengths and 

nodes will reduce the inaccuracy, which is seen above to be inversely 

related to the square of the number of lengths into which the pipeline 

is divided. 

The maximum error shown in the above calculations amounts to 

one quarter or 25% of the head loss for uniformly distributed demand.  

Such possible errors should be noticed when a very simplified model 

is used, perhaps to provide an overview of a complex situation. 

The above comments apply particularly where the pipe friction 

values have been obtained independently of the model.  If the pipe 



friction values in the model have been obtained by calibrating the 

model against measured values of flow and pressure, then the above 

effect will have been accounted for in the deduced friction values. 

 

6. Conclusions 

Concepts of uniformly distributed loads and upper bound solutions 

from structural engineering have been used in pipe network analysis 

to compare head losses resulting from various idealised situations. 

It has been demonstrated that idealisations of pipe networks that 

place the demand at nodes are in effect upper bound or ‘unsafe’ 

solutions when used to estimate the minimum pressures available to 

consumers. 

The maximum error demonstrated in head loss for a single pipe is 

an underestimate by 25%, compared with uniformly distributed 

demand. 

 Possible errors of this type arise when running very simplified 

models, and will be reduced by increasing the number of nodes in the 

model. 

It is noted that the above comments apply where pipe friction 

factors have been independently derived, and not adjusted as part of 

the model calibration.  
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Table 1.  Structural design of frames by plastic analysis 
 

Condition Upper bound theorem 
(unsafe) 

Lower bound theorem 
(safe) 

Equilibrium Satisfied Satisfied 
Mechanism Satisfied Not satisfied 
Yield Not satisfied Satisfied 

 
 



 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Uniformly distributed demand along pipeline 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Demand grouped at nodes with pipeline as one length 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Demand grouped at nodes with pipeline divided into two 
equal lengths 
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Fig. 4.  Simple loop example with demand allocated equally to nodes 
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