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Abstract

Background: The formation of acetate by fast-growing Escherichia coli (E. coli) is a commonly observed phenomenon,

often referred to as overflow metabolism. Among various studies that have been carried over decades, a recent work

(Basan, M. et al. Nature 528, 99–104, 2015) suggested and validated that it is the differential proteomic efficiencies in

energy biogenesis between fermentation and respiration that lead to the production of acetate at rapid growth

conditions, as the consequence of optimally allocating the limited proteomic resource. In the current work, we attempt

to incorporate this newly developed proteome allocation theory into flux balance analysis (FBA) to capture

quantitatively the extent of overflow metabolism in different E. coli strains.

Results: A concise constraint was introduced into a FBA-based model with three proteomic cost parameters

to represent constrained allocation of proteome over two energy (respiration and fermentation) pathways and

biomass synthesis. Linear relationships were shown to exist between the three proteomic cost parameters. Tests with

three different strains revealed that the proteomic cost of fermentation was consistently lower than that of respiration.

A slow-growing strain appeared to have a higher proteomic cost for biomass synthesis than fast-growing strains.

Different assumed levels of carbon flowing into pentose phosphate pathway affected the absolute value of model

parameters, but had no qualitative impact on the comparative proteomic costs. For the prediction of biomass yield,

significant errors that occurred for one of the tested strains (ML308) were rectified by adjusting the cellular energy

demand according to literature data.

Conclusions: With the aid of a concise proteome allocation constraint, our FBA-based model is able to quantitatively

predict the onset and extent of the overflow metabolism in various E. coli strains. Such prediction is enabled by three

linearly-correlated (as opposed to uniquely determinable) proteomic cost parameters. The linear relationships between

these parameters, when determined using data from cell culturing experiments, render biologically meaningful

comparative proteomic costs between fermentation and respiration pathways and between the biomass synthesis

sectors of slow- and fast-growing species. Simultaneous prediction of acetate production and biomass yield in the

overflow region requires the use of reliable cellular energy demand data.
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Background
The formation of acidic by-products, predominantly

acetate, when Escherichia coli (E. coli) grows under

aerobic-glucose conditions is a commonly observed

phenomenon, which has been extensively studied over

decades [1–5]. Lee reviewed 19 studies of recombinant

E. coli where acetate was accumulated in fed-batch sys-

tems [6]. It has been reported that the portion of glucose

converted into acetate can be as high as 15% [7], repre-

senting a seemingly huge waste of feedstock. The accu-

mulation of acetate in the culture medium appears to be

a major limiting factor for achieving high cell density

[8], which is particularly severe in the growth of recom-

binant strains [9]. Acetate also impairs the microbial

production of recombinant proteins [1] and drug precur-

sors [9]. These complications of acetate in bioreactors

thus call for elucidation of acetate-pertinent metabolic

processes. A similar phenomenon has been observed in

tumour cells (Warburg effect) [10–12]. The associated

mathematical models for explaining the Warburg effect

have recently been reviewed [13].

Traditionally, the aerobic formation of acetate has

been referred to as overflow metabolism: the excess glu-

cose saturates or inhibits the tricarboxylic acid (TCA)

cycle, which subsequently forces the cell to modulate the

redundant carbon to the acetate pathway [3, 14]. How-

ever, the study by Molenaar et al. suggested that the

overflow metabolism as shown in the growth phenotype

is probably a result of the global allocation of cellular re-

sources, where the enzyme efficiency and the pathway

yield were both taken into account to obtain the optimal

growth strategies subject to different growth conditions

[15]. Later in 2015, Basan et al. proposed and validated

that the overflow metabolism in E. coli originates from

the global physiological proteome allocation for rapid

growth [16]. In particular, the proteomic efficiency of en-

ergy biogenesis through aerobic fermentation was found

to be higher than that of respiration; this difference in

proteomic efficiency between fermentation and respir-

ation appears to play a central role in dictating the de-

gree of overflow metabolism in E. coli.

Given the importance of the overflow metabolism, sev-

eral phenomenological models were developed to depict

this effect [5, 8, 17, 18], where the prediction of acetate

excretion was dictated by a combination of (i) the con-

straints on oxygen and carbon supply and (ii) cellular

mass and energy balance. Later, models that adopt con-

ventional regulatory mechanisms of acetate metabolism

[14], such as oxygen limitation, carbon source availability

and tight regulation of cofactor pools were evaluated

[19], with an attempt to explain the metabolic shifts

from a fully aerobic mode to the aerobic acetate fermen-

tation (overflow). More recently, constraint-based

metabolic models [20] were established to analyse the

optimal cellular growth strategy, incorporating principles

of (i) limitation in the cellular resource on the maximal

attainable growth rate, such as the maximum cytoplas-

mic density adopted by FBAwMC [21, 22] and the finite

amount of resource to be allocated between metabolic

network and ribosomes, as applied in RBA [23–25], (ii)

metabolic regulation based on enzyme kinetic informa-

tion, such as mechanistically detailed descriptions of

gene expression and the synthesis of functional macro-

molecules used in ME-Model [26] and (iii) membrane

occupancy-derived competition between glucose trans-

porters and respiration chain (an extension of

ME-Model) [27]. The major target of these models is to

predict the maximum cellular growth rate. Predictions

were validated quantitatively by the experimental data,

while the overflow metabolism in fast-growing phase

was mostly captured in a qualitative way. In addition, it

was pointed out [16, 28] that cell volumes were empiric-

ally found to vary widely with virtually constant densities

across different growth conditions [29], which suggests

that the cytoplasmic density-based constraint might not

be fully justified.

Inspired by a recent experimental work studying the

proteomic cost of the core metabolic pathways of E. coli

[16], a model named constrained allocation flux balance

analysis (CAFBA) [28] managed to predict the rates of

acetate production in the overflow metabolism for differ-

ent E. coli strains, with good quantitative agreement with

experimental data. However, the proteomic costs

adopted in CAFBA were applied to individual metabolic

reactions, without focusing on the exploration of the

critical role played by specific metabolic modules such

as energy biogenesis pathways.

In this work, we attempt to depict the overflow metab-

olism in various E. coli strains with quantitative accur-

acy, i.e. predicting aerobic steady-state rates of acetate

production at different growth rates and validating the

model with experimental data in literature. In particular,

we adopt a concise proteome allocation constraint as

identified by Basan et al. [16], referred to as the Prote-

ome Allocation Theory (PAT) in this work. The PAT

suggests that the choice of energy biogenesis pathways

under different growth conditions results from the dis-

crepancy of proteomic efficiencies between fermentation

and respiration. E.coli cells tend to use the more

protein-efficient fermentation pathway to generate en-

ergy in order to accommodate the high proteomic de-

mand in biosynthesis under rapid growth. The key

concepts of PAT are fully embedded and realised in our

model. With a parsimonious, PAT-based metabolic

model capable of accurately capturing the overflow me-

tabolism, we further analyse the interdependency be-

tween pathway-level proteomic cost parameters, the

disparity in these parameters between different E. coli
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strains, and the impact of cellular energy demand on the

accuracy of the co-prediction of the overflow metabol-

ism and the biomass yield on substrate.

Methods

Formulation of the PAT constraint

Following Basan et al. [16], the fractions of three prote-

ome sectors in the entire proteome (i.e. the total protein

content) of the cell sum to unity:

ϕ f þ ϕr þ ϕBM ¼ 1 ð1Þ

where ϕf and ϕr are the fractions of the fermentation-

and respiration-affiliated enzymes, respectively, which

enable the fluxes for energy generation; ϕBM represents

the fraction of the remaining part of the proteome enab-

ling other cellular activities, broadly referred to as the

sector of biomass synthesis [16, 28].

More specifically, ϕf represents the mass abundance of

the enzymes that carry fermentation fluxes involved in

glycolysis (glucose to acetyl-CoA), oxidative phosphoryl-

ation and acetate synthesis pathways (phosphotransace-

tylase and acetate kinase). ϕr comprises all the enzymes

that catalyse the respiration-associated reactions in gly-

colysis, tricarboxylic acid (TCA) cycle and oxidative

phosphorylation system. Same as in Basan et al. [16], in

this work we adopt the linear dependences assumed in

Hui et al. [30] to relate ϕf and ϕr with the fermentation

and respiration fluxes respectively,

ϕ f ¼ w f v f ð2aÞ

ϕr ¼ wrvr ð2bÞ

where vf (vr) is the fermentation (respiration) pathway

flux, which in this work is represented by the enzymatic

reaction “acetate kinase ACKr” (“2-oxogluterate de-

hydrogenase AKGDH”); wf (wr) is the pathway-level

proteomic cost, denoting the proteome fraction required

per unit fermentation (respiration) flux.

On the biomass synthesis sector, ϕBM corresponds to

the remaining part of proteome that is not covered by

the fermentation and respiration sectors, including ribo-

somal proteins and anabolic enzymes (the major part,

referred to as biomass synthesis), catabolic enzymes and

cellular maintenance proteins. Motivated by the ob-

served linear dependency between growth rate and

proteome fraction for biomass synthesis [30–32], the fol-

lowing linear relationship is assumed:

ϕBM ¼ ϕ0 þ bλ ð3Þ

where bλ is the growth rate-associated component with

λ being the specific growth rate and the constant b

quantifying the proteome fraction required per unit

growth rate. In Basan et al. [16], ϕ0 was considered as a

growth rate independent constant.

Combining Eqs. (1)–(3), we have

w f v f þ wrvr þ bλ ¼ 1−ϕ0 ð4Þ

Equation (4) implies that the sum of the three prote-

omic cost terms on the left-hand side remains constant.

However, when the growth rate (and hence the fermen-

tation and respiration fluxes) becomes very low, it is dif-

ficult to envisage numerically how this sum could still

remain at a constant level. In fact, in Basan et al. [16]

(see its Supplementary Information), it was acknowl-

edged that at growth rates lower than that correspond-

ing to the onset of the overflow phenomenon, the

proteome sectors would no longer be constrained by the

equality indicated by Eq. (4). This suggests that across

the entire range of possible growth rates, ϕ0 is unlikely a

growth rate independent constant: it may remain at a

constant (and minimum) level in the overflow region

where the proteomic resource is stretched, but become

growth-rate dependent (and larger) at lower growth

rates outside the overflow region, i.e. ϕ0, min ≤ ϕ0 ≤ 1,

where ϕ0, min is a true constant. Defining ϕmax ≡ 1 − ϕ0,

min, Eq. (4) then becomes

w f v f þ wrvr þ bλ ¼ 1−ϕ0≤1−ϕ0; min ≡ ϕmax ð5Þ

In Vazquez and Oltvai (2016) [33], ϕ0 was also inter-

preted as a variable instead of a constant, with a (non--

zero) minimum value. For simplicity, both sides of Eq.

(5) is divided by ϕmax, leading to the final form of the

proteome constraint adopted in this work, referred to as

PAT constraint from this point on:

w�
f v f þ w�

r vr þ b�λ≤1 ð6Þ

where w�
f ≡ w f =ϕmax , w

�
r ≡wr=ϕmax and b∗ ≡ b/ϕmax. w

�
f ,

w�
r and b∗ are referred to as the proteomic cost

parameters.

Predicting the acetate flux

Flux balance analysis (FBA) [20] is used to determine

the optimal flux distribution under different growth con-

dition, with a set of constraints:

maxfobj, subject to

ið Þ Sv ¼ 0
iið Þ vL≤v≤vU

iiið Þ w�
f v f þ w�

r vr þ b�λ≤1
ð7Þ

where fobj is the assumed cellular objective. We specified

minimizing substrate uptake as the objective function

because in this study the commonly used objective

‘growth rate’ was used as the model input (with acetate

production as the model output). S is the stoichiometric
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matrix defined by the metabolic model; v is a column

vector comprising the reactions/fluxes described in the

metabolic network; vL and vU represent the lower and

upper limits of the reactions, respectively. The inequality

constraint (iii) is same as Eq. (6) introduced earlier.

The prediction of the extent of overflow metabolism

(rate of acetate production) requires of the parameter

values of w�
f , w

�
r and b∗ in the third constraint (PAT con-

straint) of Eq. (7). We show in the next section that

these three parameters cannot be uniquely determined

by the experimentally measured growth rate-acetate pro-

duction profile alone. A set of values for these parame-

ters was randomly chosen from mathematically

equivalent sets (see Additional file 1: Table S1). The

PAT-based FBA was run at different growth rates under

aerobic-glucose conditions. FBA was carried out using

the core E. coli metabolic model [34], referred to as the

core model in the rest of the paper. The optimal flux

distribution was solved via COBRA toolbox [35] in

MATLAB (R2016a). LP solution was determined by

Gurobi 6.0. Detailed model descriptions such as uptake

bounds and flux regulations are given in Additional file 2,

sections 1 and 2.

Interdependency of proteomic cost parameters

A linear relationship was previously shown to hold be-

tween the fermentation (or respiration) flux and steady

state growth rates in the overflow region [16]:

v f ¼ k f λþ v f ;0 ð8Þ

vr ¼ krλþ vr;0 ð9Þ

where, as introduced earlier, vf is the fermentation flux

(referred to as “acetate line” in [16]); vr is the respiration

flux. kf (kr) and vf, 0 (vr, 0) are constants representing the

slope and intercept of the fermentation (respiration) line.

Substituting Eq. (8) and Eq. (9) into Eq. (6), with the

equal sign held for the overflow condition:

w�
f k f þ w�

r kr þ b�
� �

λ ¼ 1−w�
f v f ;0−w

�
r vr;0 ð10Þ

Equation (10) holds for any growth rate (λ) in the

overflow region, which requires

w�
f k f þ w�

r kr þ b� ¼ 0 ð11Þ

1−w�
f v f ;0−w

�
r vr;0 ¼ 0 ð12Þ

Equations (11) and (12) indicate that (i) there is a lin-

ear relationship between the fermentation and respir-

ation proteomic cost parameters w�
r and w�

f , and (ii) the

third growth-rate dependent proteomic cost parameter

b∗ is a linear combination of w�
r and w�

f , thus b
∗ also pos-

sesses a linear relationship with w�
f (or w

�
r ).

If experimental data exist that allow for both the fer-

mentation line and the respiration line to be plotted

(such as the steady state growth rate – acetate excretion

and growth rate – CO2 revolution data given in [16]),

their slopes and intercepts, appearing in Eqs. (11) and

(12), can be obtained. However, the three proteomic cost

parameters cannot be uniquely determined by the two

equations, although specific values of similar parameters

have previously been derived from measured cellular

protein compositions [16].

In this work, kf and vf, 0 were directly determined from

the experimentally measured growth rate-acetate excre-

tion profile (data sources are shown in Fig. 1). To our

knowledge, no directly experimental data were available

for the rate of intracellular respiration. Alternatively we

took the growth rate-acetate profile as the input of FBA

(setting the objective function to the minimisation of

glucose uptake) to estimate the respiration flux at each

data point, which was subsequently used to determine kr
and vr, 0. Flux variability analysis (FVA) was conducted

which confirmed that all the relevant fluxes used in the

model were uniquely determined. After obtaining kf (kr)

and vf, 0 (vr, 0), a set of values of w�
f , w

�
r and b∗ can be de-

termined by arbitrarily specifying the value for one of

the parameters. In this work, we took w�
f to be specified,

in a range of [0, 0.11] for MG1655 and [0, 0.07] for

ML308 and NCM3722. This thus allows us to present

the parameter estimation results in the form of w�
f -w

�
r

and w�
f -b

∗ plots. Simulation results presented in this

paper were obtained with a randomly chosen value of

w�
f within the ranges mentioned above and the corres-

pondingly determined values of w�
r and b∗. Note that dif-

ferent values chosen for w�
f yielded identical simulation

results (Additional file 2: Figures S9-S17).

Adjustment of cellular energy demand

We observed discrepancy in biomass yield between

model predictions and the experimental data, especially

for ML308 (Fig. 5), and hypothesised the reason being

the inaccuracy of cellular energy demand assumed by

the core model when applied to this particular species

growing under non-overflow and overflow conditions.

To test this hypothesis, we collected the growth data in

the overflow region for ML308 (Table 7 in [3]) and

found that the reported steady state ATP production

rate was lower than what the core model suggested.

Therefore, we decided to remodel the cellular energy

demand by subtracting the surplus portion, reducing it

to the strain-specific values reported in the literature

(Additional file 1: Table S3).

The original cellular energy demand embedded in the

core model is quantified by
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rATP;nominal ¼ ATPMþ σλþ vGLNS þ vPFK ð13Þ

where r
ATP, nominal

is the overall ATP consumption rate

(equivalent to the ATP production rate at steady state);

subscript “nominal” indicates the default specification of

the core model; v
GLNS

and v
PFK

are the fluxes of the en-

zymatic reactions glutamine synthetase and phospho-

fructokinase (one mole ATP is required per mole flux of

each reaction); (ATPM+ σλ) denotes the maintenance

energy required for non-metabolic processes, where

ATPM corresponds to the non-growth-associated main-

tenance (NGAM) and σ to the growth-associated main-

tenance (GAM) [36].

The adjusted cellular energy demand is formulated as

rATP;new ¼ rATP;nominal−S λð Þ ð14Þ

where S(λ) is the offset energy, i.e. the amount of energy

over-predicted by the core model. The mathematical

analysis of the growth data of ML308 suggested that in

the overflow region, the offset energy is linearly related

with the growth rate (R2 = 0.9998):

S λð Þ ¼ kλþ c ð15Þ

where k and c are constants. Substituting Eqs. (13) and

(15) into Eq. (14), we have

rATP;new ¼ ATPM−cð Þ þ σ−kð Þλþ vGLNS þ vPFK

ð16Þ

For simplicity, we define M ≡ATPM − c and N ≡ σ − k;

M and N are referred to as the (adjusted) maintenance

parameters. The adjustment of the cellular energy de-

mand in our FBA is achieved by manipulating the main-

tenance energy, more specifically, through the

maintenance parameters. Note that in the case where

growth energetic data is not available (i.e. for MG1655

and NCM3722), such adjustment was not possible,

therefore the default maintenance parameter values were

used (see Table 1).

Alternative pathways in central metabolism

The model constructed in this work considers only the

central metabolism of E. coli as detailed in the E. coli

Fig. 1 Model predictions of overflow metabolism for MG, NCM and ML at nominal energy demand. The extent of overflow metabolism is represented

by the acetate flux. Simulation results of the respiration flux are drawn to show the switch between fully-respiration and respiration-fermentation

mode. Comparison is made between model predictions and experimental data for the rates of acetate production. uPPP% was set to 35% according

to the flux measurement [41]. Other uPPP% values render similar results (see Additional file 1: Table S1 and Additional file 2, section 3). Experimental

data were obtained from different sources [3, 16, 41]. Data points from [16] were converted using 1mM A600nm
− 1 h− 1 = 2mmol gDW− 1 h− 1 according

to [28]. “-nom” refers to nominal, the default energy demand specified in the core model. ac – acetate flux, vr – respiration flux, simu – simulation

results, exp. – experimental data
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core model. The energy biogenesis pathways in the

model consist of glycolysis (the EMP pathway), the TCA

cycle, the acetate pathway (PTA-ACKA) and the ter-

minal oxidative phosphorylation system. However we

noted the existence of alternative pathways in the central

carbon metabolism, which include the Entner-Doudoraff

(ED) pathway, the pentose phosphate (PP) pathway and

the more recently explored PEP-glyoxylate cycle [37].

ED pathway

The ED pathway was found to be three to five-fold more

protein-efficient than the EMP pathway to achieve the

same glycolytic flux [38], which provides a clear ration-

ale for the utilisation of the ED pathway in a number of

bacteria, e.g. Sinorhizobium meliloti, Rhodobacter

sphaeroides, Zymomonas mobilis, and Paracoccus versu-

tus [39]. However, Flamholz et al. acknowledged that E.

coli, which is capable of using both the ED and the EMP

pathways, tends to use the latter. Flux measurements

also suggest that the usage of the ED pathway by E.coli

K-12 is minimal: only about 2% of glucose catabolism

proceeds by means of the ED pathway in batch cultures

[40] and about 6% in mini-scale chemostats [41]. Fur-

thermore, the activity of the ED pathway was detected

only under slow- to mild-growing conditions [40, 41].

To our knowledge, no activity of ED pathway in E. coli

has been reported under fast-growing scenarios.

PEP-glyoxylate cycle

As for the PEP-glyoxylate cycle, similar to the ED path-

way, its usage was identified to be significant only under

slow-growing conditions. Not even a trace activity of the

PEP-glyoxylate cycle was found in wild-type batch cul-

tures or more rapidly growing chemostats [37]. Further-

more, the flux comparison between the aceA-pckA

knockout strain and the sucC knockout strain [16] veri-

fies that compared to the TCA cycle, the alternative

PEP-glyoxylate cycle plays a less significant role in

glucose-limited fast-growing cultures of E. coli.

Based on above literature evidences, this work, focus-

ing on the overflow metabolism that occurs at

fast-growing cultures of E.coli with relatively sufficient

substrate availability, has taken the assumption that the

use of alternative ED pathway and PEP-glyoxylate cycle

is negligible compared to the glycolysis (i.e. EMP path-

way) and the TCA cycle.

PP pathway

The PP pathway, on the other hand, can function as a

significant alternative to the upper part of glycolysis for

carbon catabolism in E. coli. Previous studies showed

that the carbon flow through the PP pathway could

reach 20–35% of the total carbon intake and can vary

with different growth rates [40, 41] hence neither a con-

stant portion of carbon is diverted into PP pathway nor

this portion of carbon flux negligible. The uncertainty

embedded in the PP pathway flux motivates us to study

the impact of different portion of substrate carbon allo-

cated between the upper part of the EMP pathway and

the PP pathway on the proteomic cost parameters and

the model predictions. More details can be found in the

Additional file 2, section 3.

We define the PP pathway ratio (PPP%) as the portion

of substrate carbon directing to PP pathway to the total

carbon intake:

PPP% ¼
PGL

EX glc eð Þ
� 100% ð17Þ

where 6-phosphogluconolactonase (PGL) is chosen to

represent the PP pathway flux as it is a major and also

the beginning enzymatic reaction in the pentose phos-

phate shunt; EX_glc(e) is the exchange reaction denoting

glucose uptake rate. In our simulation, PPP% was

controlled by setting the upper bound of the portion of

carbon that is directed into the PP pathway, denoted as

uPPP%, with the aid of an auxiliary term

DM_PPP_RATIO:

uPPP%� EX glc eð Þ−PGL ¼ DM PPP RATIO≥0

ð18Þ

Results

E.coli MG1655, NCM3722 and ML308 have been se-

lected as the model strains in this work and are referred

to as MG, NCM and ML respectively from this point on.

In this section, the simulated acetate excretion pattern is

presented against experimental data to demonstrate the

accuracy of the model prediction. Subsequently we eluci-

date the linear interdependency of the proteomic cost

parameters. In particular, we reveal the similarities and

differences between the three E. coli strains. With re-

spect to the PP pathway ratio (PPP%), previous studies

on the slow-growth strain MG show that the portion of

carbon that goes into the PP pathway can be approxi-

mately 20% of the total carbon intake [40, 41]. In this

work, we set the upper bound of the carbon flowing into

PP pathway (uPPP%) to 25, 35 and 40% to investigate

the potential effect of the change in PPP% on proteomic

cost parameters and model prediction (more justification

is provided in Additional file 2, section 3). On cellular

Table 1 Values of the maintenance parameters

Strains M N Scope of applicability

MG-/NCM−/ML-nom 8.39a 59.81a Complete growth range

ML-new − 50.90b 93.34b Overflow region

adefault value specified in the E. coli core model
bestimated from the growth data (Table 7 in Holms 1996 [3])
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energy demand, we refer to the original energy demand

specified in the core model [34] as nominal energy de-

mand, and present first the set of results which were

generated on this basis. Subsequently, we show how an

adjusted energy demand (particularly applied to ML, re-

ferred to as ML-new) affects the patterns of the esti-

mated proteomic cost parameters and the accuracy of

biomass yield prediction.

Model prediction of overflow metabolism with nominal

energy demand

Here, the accuracy of the predicted acetate excretion

rate is compared with experimental data. Variation in

the proteomic cost parameters with the changed carbon

level diverted into the PP pathway is also presented.

Model prediction of acetate production

Figure 1 shows that model prediction of the pattern of

acetate excretion is in good agreement with the experi-

mental observations for three different E. coli strains. The

onset of the production of acetate is concomitant with the

drop in the respiratory flux, indicating a switch between

fully-respiration to respiration-fermentation mode. As the

growth rate further increases, the acetate flux becomes

dominant while the extent of respiration is gradually

diminishing. It is worth noting that zero acetate

production was commonly observed at low growth rates

of different strains [3, 16, 41, 42]; To emphasise the

(strain-specific) acetate production pattern, we only col-

lect the data with non-zero acetate production. For all the

strains, data involving growth rates lower than those pre-

sented in Fig. 1 are associated with non-detectable acetate

excretion, hence are not shown here.

Linear relationships between proteomic cost parameters

When the nominal energy demand is adopted (indicated

by “-nom”), the change of uPPP% leads to insignificant

changes to the w�
r−w

�
f line for each strain (Fig. 2). Between

different strains, MG and NCM share nearly identical

lines. The lines of ML-nom deviate from those of the

former two, but not significantly (although this closeness

will be altered with the adjusted energy demand, see Fig. 2

ML-new and the section below). In any case, w�
r is clearly

higher than the corresponding w�
f , implying that respir-

ation has a higher (lower) proteomic cost (efficiency) than

fermentation for energy production, which is consistent

with what was derived from protein abundances data for

comparable parameters in [16].

To inspect the insignificant disparity in the w�
r−w

�
f

lines when all strains use the nominal energy demand,

Eq. (12) is re-arranged to

Fig. 2 w�
r
−w�

f
relationship for MG, NCM and ML with nominal energy demand and for ML with new energy demand. “-nom” refers to nominal,

the default energy demand specified in the core model. “-new” refers to the adjusted energy demand. uPPP% was set to 25, 35 and 40% for

each strain
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w�
r ¼

v f ;0

vr;0
w�

f þ
1

vr;0
ð19Þ

The slope and intercept of the w�
r−w

�
f line are dictated

by
v f ;0

vr;0
and 1

vr;0
, respectively. vf, 0 can be determined dir-

ectly by the experimental measurement of acetate pro-

duction. vr, 0, on the other hand, is a result of the

combination of (measured) rates of acetate production

and the mass and energy balance structure of the meta-

bolic model.

For a specific strain, vf, 0 only depends on the pattern

of acetate excretion, not affected by assumed level of

uPPP%. Therefore, the impact of uPPP% on the w�
r−w

�
f

line is through affecting the value of vr, 0, which turns

out to be rather moderate. Between different strains, the

ratio of vf, 0 and vr, 0 and the value of vr, 0 are nearly

identical between MG and NCM, regardless of the level

of uPPP% adopted, resulting in the very much over-

lapped pattern of the w�
r−w

�
f relationship between MG

and NCM. For ML, the value of the slope is slightly

smaller than MG and NCM, while the intercept is about

25% larger (as shown in Additional file 1: Table S2).

Figure 2 also suggests that the proteomic cost (effi-

ciency) of respiration pathways for ML is higher (lower)

than that for MG and NCM, regardless the modification

in the energy demand.

Compared to the w�
r−w

�
f relationship, that of b�−w�

f

appears to be affected by the level of uPPP% more visibly

(Fig. 3). Between different species, the difference is also

more pronounced, and closeness is present between the

two rapid-growth strains NCM and ML (as presented in

Additional file 2: Figure S1).

For a specific strain, the increase of uPPP% gradually

moves the b�−w�
f line to the right (yellow arrow, Fig. 3),

corresponding to an increase in b∗ (blue arrow, Fig. 3).

This trend can be explained by inspecting a

re-arrangement of Eq. (11):

b� ¼ kr
v f ;0

vr;0
−k f

� �

w�
f þ

kr

vr;0
ð20Þ

Equation (20) suggests that the shift of the b�−w�
f line

results from the change in the respiratory flux (note the

intercept, kr
vr;0

). In E. coli, the PP pathway and the TCA

cycle are two major sources for the production of

NADPH [40]. At a given growth rate, the amount of

NADPH needed for cell growth is fixed based on the

mass and energy balance. As uPPP% increases, more

carbon is predicted to enter the PP pathway. In the

Fig. 3 b
�
−w�

f
relationship for MG, NCM and ML strains with nominal energy demand. “-nom” refers to nominal, the default energy demand

specified in the core model. uPPP% was set to 25 35 and 40% for each strain. The blue arrow shows the increase in b
∗ with the increase of

uPPP% at fixed w�
f
; the yellow arrow shows the right-shifting trend of the b

�
−w�

f
line with the increase of uPPP%
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model simulation, an increase in the amount of NADPH

produced via PP pathway would force a drop of the flux

into the TCA cycle in order to maintain the constant

total production rate of NADPH. The reduction in the

TCA flux in turn manifests in a lower vr. In the overflow

region, Eq. (6) is bounded by the equal sign. As shown

earlier, the level of uPPP% has a negligible impact (when

nominal energy demand is adopted) on the w�
r−w

�
f line.

Also recall that the relation between the rate of acetate

excretion and steady state growth rate is fixed by the ex-

perimentally measured growth data. With all the other

quantities (w�
f , vf, w

�
r and λ) fixed in Eq. (6), the drop in

vr due to the increase in uPPP% will necessarily be ac-

companied by an increase in b∗.

Between different strains, b∗ varies significantly. In par-

ticular, b∗ for MG is remarkably larger than that of NCM

and ML (as presented in Additional file 2: Figure S1).

This disparity can again be explained by Eq. (6). For a

certain value of w�
f , w

�
r is rather similar among different

strains (with nominal energy demand) as shown by Fig.

2. In the overflow region, the respiration flux vr of MG

is much smaller than the others (see Fig. 1), which thus

leads to a lower value of the w�
r vr term for MG than

NCM and ML. As the value of the w�
f v f term (for any

selected value of w�
r ) is similar between these strains,

due to their similarity in the relationship between w�
r

and w�
f , the value of the remaining term on the left-hand

side of Eq. (6), b∗λ, must be higher for MG than for the

other two strains. On the other hand, in the overflow re-

gion and at a same acetate excretion rate vf, the growth

rate of MG has been shown to be much lower than that

of NCM and ML. Now, a higher value of b∗λ coupled

with a lower value of λ will undoubtedly lead to a higher

value of b∗for MG, compared to the other two strains.

The above mathematical explanation in fact coincides

with the known biological fact that the inverse of b∗ is

proportional to the rate of protein synthesis [31]: the

slower the rate of protein synthesis, the higher the value

of b∗. Thus for the slow-growing strain MG, it is ex-

pected to have a higher value of b∗compared to the

fast-growing strains NCM and ML.

Predicted evolution of PP pathway flux

The results presented above show rather moderate im-

pact of the upper limit of PP pathway ratio (uPPP%) on

the linear interdependency of the proteomic cost param-

eters. With an interest in the FBA solution of the flux

distribution in PP pathway (at different growth rates),

simulation results were recorded for three strains with

uPPP%set to 35%; other uPPP% levels displayed a similar

trend (as presented in Additional file 2: Figures S4 and

S5). Flux variability analysis (FVA) [43] was performed

to confirm that the trend of PPP% presented here was

unique.

In general, PPP% gradually increases with the growth

rate. Two turning points can be observed, which divide

the whole curve into three distinct phases (Fig. 4a). A

close inspection of the model simulation revealed that

the variation of the predicted PP pathway ratio was

co-related particularly with three fluxes, namely NAD

transhydrogenase (NADTRHD), transketolase (TKT2)

and NADP transhydrogenase (THD2).

In phase I, only NADTRHD is active, with zero fluxes

for both TKT2 and THD2. The enzymatic reaction

NADTRHD functions to convert NADPH into NADH.

Thus in phase I, it is likely that the amount of NADPH

produced exceeds the required amount for biosynthesis;

NADTRHD is thus activated to consume the surplus

NADPH.

In phase II, an on/off swap occurs between

NADTRHD and TKT2 while THD2 still remains silent.

We infer that in this phase, NADPH produced satisfies

the demand, but the amount of carbon flowing into the

PP pathway surpasses the rate of the carbon withdrawal

(for the synthesis of biomass precursors). Therefore,

TKT2 is activated to direct the extra amount of

four-carbon and five-carbon compounds back to the

glycolysis.

In phase III, THD2 is finally switched on and becomes

significantly active in the high-growth-rates region.

TKT2 increases progressively while NADTRHD remains

silent. It is presumed that in this phase, as the growth

rate becomes higher, more NADPH is required for bio-

mass synthesis. NADP transhydrogenases (THD2) is ac-

tivated to produce NADPH needed in rapid growth. The

surplus carbon flux in the PP pathway, which might re-

sult from the high glucose uptake rate at a high growth

rate, is directed back to glycolysis via TKT2.

It would be desirable to verify the theoretical predic-

tion of the evolution of PPP% with experimental mea-

surements, which unfortunately have not been widely

reported in the literature. Nevertheless, Fig. 4b shows a

comparison with one set of experimental observations

available [42], which suggests a good degree of qualita-

tive similarity.

Adjusting cellular energy demand improves the

prediction of biomass yield

Although combining the PAT constraint with the core

model succeeded in predicting the rates of acetate pro-

duction, the accuracy in biomass yield varied and was

especially unsatisfactory for ML strain (Fig. 5). A similar

deficiency in yield prediction was also reported in [28].

Focusing on the yield, two features can be observed: (i)

in the overflow region, for a fixed growth rate (associ-

ated with an acetate excretion rate) the biomass yield for
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ML is higher than MG and NCM; and (ii) the rate of the

drop in yield (i.e. the slope) of ML is sharper than the

other two strains.

Intuitively, feature (i) suggests that in ML, the amount

of energy required per unit mass of biomass formation

should be less than NCM or MG. Therefore we collected

the growth data of ML and remodelled the cellular en-

ergy demand (see Methods).

It is worth noting that for ML, the negative value of M

(Table 1) clearly indicates a constrained applicable range

of the maintenance parameters, i.e. valid only within the

overflow region. As growth rate decreases, if M stays un-

changed, the overall energy consumption (Eq. (16)) will

drop to a negative value, which is clearly not biologically

feasible. This then implies a certain degree of nonlinearity

in the global relationship between (total or maintenance)

a

b

Fig. 4 a Simulation results of PPP%, NADTRHD, TKT2 and THD2 against growth rates at nominal energy demand. b Comparison between predicted

trend of PPP% and experimental data. PP pathway ratio (PPP%) is divided by ten (0.1*PPP%) to unify the order of magnitude between different data

types. Experimental data were obtained from [41]. uPPP% was set to 35%. Simulation was based on MG1655. NADTRH – NAD transhydrogenase, TKT –

transketolase, THD2 – NADP transhydrogenase, simu – simulation results, exp. – experimental data
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energy requirement and growth rate. Such proposition

was previously referred to as “varied non-growth-asso-

ciated maintenance” [3]. Non-linearity in energy con-

sumption manifesting before and after the onset of the

overflow metabolism has also been observed and dis-

cussed in a recent work [44].

Model prediction of biomass yield with adjusted energy

demand

We first re-estimated the set of proteomic cost parame-

ters for ML with the adjusted energy demand (see Table

1 and Methods). Applying updated values of w�
f , w

�
r and

b∗ together with the adjusted maintenance energy, our

model is now able to effectively capture the unique trend

of biomass yield for ML, without any compromise in the

accuracy of predicting acetate excretion (Fig. 6). Simula-

tion results for ML with adjusted energy demand are re-

ferred to as “ML-new”.

It is worth noting that, our model also succeeds in

matching the elevated reduction in the yield of ML in

the overflow region as the growth rate increases. This

captured trend appears to originate from the low energy

demand of ML. Approximately, the yield reduction rate

can be considered as being proportional to the ratio of

the increase in the acetate excretion (ac2 − ac1) and the

increase in glucose uptake rate (glc2 − glc1), while the

growth rate rises from λ1 to λ2:

yield reduction rate∝
ac2−ac1

glc2−glc1
; for λ1→λ2 λ2 > λ1ð Þ

ð21Þ

NCM and ML exhibit similar acetate excretion rates,

hence a similar value in “ac2 − ac1”. However, the energy

demand per unit growth of ML is much lower than

NCM, which means that with a similar increase in acet-

ate production, the increase in substrate intake (i.e. glc2
− glc1) for ML will be lower than NCM to achieve a

given increment in the growth rate. According to Eq.

(21), the yield reduction rate of ML will thus be higher

than NCM.

Impact of the adjusted energy demand on w�
r
−w�

f
and b

�

−w�
f
relationships

To investigate the impact of the change in cellular en-

ergy demand on the linear relationships of w�
f , w

�
r and b∗

of ML-new, we recalculated constants kf, vf, 0, kr and vr, 0
at different uPPP% values (25, 35 and 40%) to update

the linear equations describing w�
r−w

�
f line and b�−w�

f

Fig. 5 Comparison of the biomass yield between model predictions with nominal energy demand and the experimental data. “-nom” refers to

nominal, the default energy demand specified in the core model. Biomass yield is calculated as gram biomass produced per gram substrate

consumed. uPPP% was set to 35% for all strains. Experimental data were obtained from the same sources [3, 16, 41] of the acetate data shown in

Fig. 1. simu – simulation results, exp. – experimental data
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(Eqs. (11) and (12)). The resulting w�
r−w

�
f lines for

ML-new are plotted in Fig. 2, together with the results

obtained earlier for MG/NCM/ML with nominal energy

demand.

The switch to the adjusted energy demand makes the

w�
r value for ML-new much higher than that of ML-nom,

the latter being rather close to those of the MG-nom and

NCM-nom. This implies that the adjustment of the energy

demand of ML leads to an enlarged gap in the proteomic

efficiency between respiration and fermentation.

The similarity among MG-/NCM−/ML-nom has

already been discussed in the previous section. Here we

mainly focus on the discrepancy with ML-new. We

found that both the slope and intercept of w�
r−w

�
f line

for ML-new are about three times larger than ML-nom

(as shown in Additional file 1: Table S4). The dramatic

changes in the slope and intercept of ML-new predom-

inantly result from the reduction in the respiratory flux

vr when applying the adjusted energy demand (see Fig. 7

and Additional file 2: Figure S3).

The link between the drop in vr and the increase in w�
r

has been discussed in the previous section. The results

presented herein indicate that it is the energy demand

that plays a major role in distinguishing the w�
r−w

�
f rela-

tionship between different strains, not the uPPP% or the

acetate excretion pattern.

Applying the adjusted energy demand also has an im-

pact on the relationship between b∗ and w�
f . As shown in

Fig. 8, the b�−w�
f lines are significantly right-shifted

when the model is changed from ML-nom to ML-new

(i.e. red lines are located in a much right area than yel-

low lines). Given the identical pattern of acetate excre-

tion between ML-nom and ML-new (as both predicted

the same set of experimental data), the amount of energy

produced through fermentation remains unchanged. For

ML-new, as the energy demand per unit of growth is

much lower than that of the nominal strain, the respira-

tory flux vr must decrease significantly to avoid energy

overproduction, as confirmed in Fig. 7. Although the

value of w�
r for ML-new is higher than that for ML-nom

(for a given value of w�
f , Fig. 2), the value of the product

w�
r vr for ML-new still becomes lower (as the increase in

w�
r is not able to compensate for the sharp drop in vr).

With no change in w�
f v f between ML-new and ML-nom

Fig. 6 Model prediction of acetate production and biomass yield for ML with adjusted energy demand compared with experimental data. “-new”

refers to the adjusted energy demand. Simulation was done with adjusted energy demand (Table 1, M,N for ML) and updated proteomic cost

parameters. Biomass yields are shown as ten times of the original value to unify the order of magnitude between different types of data. uPPP%

was set to 35%. Experimental data was obtained from Table 7 in [3]. ac – acetate flux, Yxs – biomass yield, simu – simulation results, exp. –

experimental data
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(for a given w�
f ), Eq. (6) again dictates b∗ to become

higher for ML-new than ML-nom, hence the

right-shifting of the b�−w�
f lines.

In the case of ML-nom, it was shown earlier in Fig. 3

that the increase in uPPP% would lead to a reduction of

vr, which in turn would lead to an increase in b∗ or

right-shifting of the b�−w�
f line. Now for ML-new, an en-

larged gap between the b�−w�
f lines at different uPPP%

levels is observed compared to the case of ML-nom.

This implies that the effect of vr reduction due to the in-

crease in uPPP% is more pronounced with the adjusted

energy demand.

Discussion

Comparison with relevant models

In the study by Basan et al. [16], which has been the

basis of the PAT constraint formulated in our model,

the application of a constraint on proteome fractions

(similar to Eq. (4)) with parameters derived from

measured protein abundances was able to accurately

predict the patterns of acetate excretion for E. coli

under different growth conditions, when coupled with

a simple energy balance equation. In this work, we

have embedded the PAT into the core metabolic

model of E. coli, taking the advantage of the latter in

offering more rigorous modelling of intracellular mass

and energy balances. Furthermore, the constraint-

based metabolic model allows prediction of detailed

metabolic fluxes as opposed to merely acetate produc-

tion, which could provide more insights about meta-

bolic pathways in connection with the overflow

metabolism and pave the way for investigating acetate

excretion in junction with possible manipulations of

the metabolic network.

In addition, the respiratory flux in Basan’s work was

associated with the carbon dioxide produced in respir-

ation, termed JCO2, r, whose value was deduced by sub-

tracting the fermentation-dependent CO2 and the

growth-dependent CO2 from the total CO2 production.

As such, JCO2, r could not directly correspond to a spe-

cific flux in the metabolic network. In our model, the re-

spiratory flux directly refers to a specific flux within the

TCA cycle (AKGDH), which appears to be a convenient

choice when the PAT is embedded into FBA. Using a

constraint-based metabolic model that includes the TCA

cycle with a reasonable level of detail, the respiration

flux can be directly resolved via FBA, without the need

Fig. 7 Comparison of the predicted respiration and acetate fluxes between ML-new and ML-nom. “-nom” refers to nominal, the default energy

demand specified in the core model. “-new” refers to the adjusted energy demand. The predicted rates of acetate production for ML-nom and

ML-new are completely overlapped with each other. uPPP% was set to 35% for both strains. Data source of acetate excretion is shown in Fig. 1.

ac – acetate flux, vr – respiration flux, simu – simulation results, exp. – experimental data
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for multi-step calculation along with different levels of

assumptions and uncertainties.

Another important comparison we would like to make

is with the recently developed model – CAFBA. It was

mentioned in the Background section that unlike

CAFBA which considers the proteomic cost of every in-

dividual reaction in metabolic network, the PAT con-

straint in our model follows the treatment of Basan et

al.’s work and quantifies the proteomic costs at the path-

way level. This simplification allows the model to expli-

citly incorporate the differential proteomic efficiencies of

fermentation and respiration that are proven (in both

Basan et al. and this work) to govern the flux split be-

tween the two pathways. This simplicity comes at the

cost of the limited utility of our model: it is intended to

be used only for predicting the interplay between the ex-

cretion of acetate (or other fermentation products) and

the growth rate during overflow metabolism, not other

effects of stressed resource allocation.

The proteome allocation constraint in CAFBA in-

cludes a C-sector (via a term expressed as wcvc) repre-

senting the proteome requirement for uptaking carbon

source, which is not explicitly considered in this work.

We have ignored this sector as the carbon overflow oc-

curs only at the high growth rate region, where wc (prote-

omic cost of the C-sector) approaches zero at high

substrate uptake rates, as shown in CAFBA [28]. In this

region, the low value of wc makes the C-sector negligible

compared with other proteome sectors. At low growth

rate region, the value of wc becomes significant, however

no acetate is excreted in this region, where the equality

relationship in the PAT constraint in our work becomes

inactive so that the significance of the C-sector becomes

irrelevant.

As for the prediction of biomass yield, CAFBA noticed

the difficulty in predicting the biomass yield of ML308.

In this work, we have found that it is the cellular energy

demand that significantly affects the FBA prediction of

biomass yield. After replacing the default energy demand

with data reported specifically for ML308 strain, our

model was able to produce an accurate prediction.

Therefore, we consider that it is important to carry out

necessary adjustment to the cellular energy demand

when applying such a constraint-based modelling ap-

proach to specific strains.

Parameterisation of the proteome allocation constraint

The modelling approach proposed in this work can be

considered as “halfway” between the coarse-grained

proteome allocation model of Basan et al. [16] and the

FBA models that incorporate reaction-level resource al-

location constraints such as CAFBA [28] and FBAwMC

[21]. In CAFBA, the proteome constraint involves ~

1000 proteomic cost parameters (wi) for a genome-scale

Fig. 8 Comparison of the b
�
−w�

f
relationship between ML-nom and ML-new at different uPPP% levels. “-nom” refers to nominal, the default

energy demand specified in the core model. “-new” refers to the adjusted energy demand. uPPP% was set to 25, 35 and 40% for both strains
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model. Similarly in FBAwMC, a large number of crow-

ing coefficients need to be specified. In both cases, the

existence of numerous cost parameters originates from

associating the resource cost with individual reactions.

These parameters conceptually have a clear biological

meaning and in principle can be determined experimen-

tally by e.g. proteome measurements or extensive en-

zyme assays. However, in practice, it has appeared to be

difficult to reliably obtain precise values for all the pa-

rameters, especially for different strains growing at dif-

ferent growth rates or conditions. In fact, instead of

pursuing the exact values for all the individual parame-

ters, CAFBA focused on applying the average value of

the proteome fraction invested per unit flux, termed as

〈w〉, to capture the key flux pattern, along with evaluat-

ing the impact of possible heterogeneous values of the

proteome parameter wi on the model prediction. Simi-

larly, FBAwMC [21, 22] also appears to encounter a cer-

tain degree of “randomness” of its crowding coefficients

due to the unknown enzyme kinetics and/or turnover

numbers. Subsequently, molecular-crowding-based mod-

elling normally treats this “randomness” as noise, where

the crowding coefficients are chosen randomly from a

distribution of crowding coefficients [45] or the majority

of the crowding coefficients are estimated from a limited

number of known enzyme turn-over (kcat) values [11].

In this work, we have intended to formulate a con-

straint with a greatly reduced number of proteomic cost

parameters, while still capturing the essence of con-

strained cellular resource allocation. This is achieved by

formulating the proteome allocation constraint at the

pathway (as opposed to reaction) level. The proposal is

the concise Eq. (6) ( w�
f v f þ w�

r v f þ b�λ≤1 ), involving

only three proteomic cost parameters (representing
proteomic efficiencies of fermentation, respiration and

biomass synthesis pathways). In principle, these parame-

ters can be obtained through the direct measurement of

protein abundances, following an approach similar to

that adopted by Basan et al.’s work [16]. However, in the

current study, we attempted to parameterise this con-

straint using widely available growth data from cell cul-

turing experiments, in particular growth rate and acetate

production rate. It should be noted that cell culturing

experiments often yield relatively simple data sets with

measurements of a few process variables. It is infeasible
to use such data sets to determine a large number of

proteomic cost parameters encountered in a proteome

constraint expressed at the individual reaction level.

Even with the pathway-level constraint adopted in

this work, our results show that cell growth and acet-

ate production measurements (alone) cannot uniquely

determine the three parameters, but two linear rela-

tionships between these parameters can be derived

(Eqs. (11) and (12)).

Furthermore, our model shows that it is the two linear

relationships (but not the absolute values) of the prote-

omic cost parameters that allow an accurate prediction

of the overflow metabolism. We thus speculate that for a

FBA-based model, the ability of capturing the overflow

behaviour is rendered by (i) an extra constraint repre-

senting the constrained proteomic resources and (ii) cer-

tain relations or relative magnitudes of the proteomic

cost parameters embedded in the proteome constraint.

In reality, the proteomic efficiencies of the metabolic

pathways may vary (within a certain range), at different

points in time or between cells in a population which

often exhibits heterogeneity [28]. However, as long as

the specific relations or relative magnitudes of these effi-

ciencies are maintained, one can expect that the over-

flow behaviour will emerge.

Applicability of the linear formulation of the proteomic

cost

As indicated in the earlier section, our formulation of

the proteomic cost (Eqs. (2a) and (2b)) reflects the ob-

served linear dependency between proteome fraction

and growth rate [30–32]. Combining this linear depend-

ency with the assumption that the flux processed by a

proteome sector i is proportional to the growth

rate-dependent component of the associated proteome

fraction [30], we have related ϕi linearly with the flux it

carries. A similar model is also adopted in CAFBA [28],

where the linear proteome-flux relation is derived on the

assumption that the substrate concentration is propor-

tional to the flux.

Note that our model is intended specifically for pre-

dicting the steady-state overflow metabolism in E. coli

under glucose-limited conditions. In some other circum-

stances, observations not conforming to this relatively

simple model have been reported. For example, Goel

and his co-workers found hardly any changes in protein

levels in anaerobic slow-growing Lactococcus lactis che-

mostats, when the cell shifted from a high yield meta-

bolic mode to a low yield metabolic mode with an

increased growth rate [46]. In this case, although the

metabolic shift in L. lactis is similar to the overflow me-

tabolism observed in E. coli, proteome allocation did not

seem to accompany the changes in metabolic fluxes. In a

study on yeast’s transient transcript, enzyme and metab-

olite responses under metabolic perturbation, it is re-

vealed that the reaction rates are jointly regulated by

enzyme capacity and metabolite concentration due to

the cell’s tendency in sacrificing the local metabolite

homeostasis to maintain fluxes and global metabolite

homeostasis upon enzyme perturbation [47]. Another

yeast-based study also suggests that changes in individ-

ual flux are predominantly regulated by the levels of me-

tabolites, not enzymes [48].
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The above-mentioned experimental observations sug-

gest that the linear proteome-flux relationship modelled

in this work might not be applicable to those circum-

stances. We hypothesise that this might be at least par-

tially due to the differences between E. coli (the target

organism of our model) and the organisms with which

those observations were made. Besides, our model has

been developed to describe the relationship between (i)

the observed steady-state global proteome configuration

and (ii) the growth rate or the corresponding flux, draw-

ing on evidences and hypothesises from several previous

studies [16, 28, 30, 32]. Such a model, being global and

coarse-grained, is not intended to represent delicate

regulatory mechanisms responsible for the transient

metabolic changes to maintain cellular homeostasis

under perturbations, and might not be suitable for re-

vealing the local regulatory insights on the key factors

dictating the individual reaction rates.

Conclusions

With three different E. coli strains, we have evaluated a

new model that integrates a previously proposed prote-

ome allocation theory (PAT) into the constraint-based

modelling approach – flux balance analysis (FBA), which

predicts the distribution of carbon fluxes between fer-

mentation and respiration due to the differential prote-

omic efficiencies of the two energy biogenesis pathways.

Using a simple proteome allocation constraint, our

model allows the accurate prediction of acetate produc-

tion at different steady state growth rates during over-

flow conditions (with sufficient oxygen and glucose).

The model involves three pathway-level proteomic cost

parameters linearly interrelated by two equations, which

is the consequence of (i) the assumed linear dependency

of proteomic costs and the growth rate and (ii) the ex-

perimentally observed linear correlation between the fer-

mentation or respiration flux and the growth rate. The

non-unique optimal values of the three parameters, or

the two linear relationships between them, could be ob-

tained by fitting the model to experimentally measured

acetate excretion rates at specific growth rates.

The linear relationships between the parameters were

shown to be affected, in varying degrees, by (i) the acet-

ate excretion pattern, (ii) the assumed upper limit of the

substrate carbon diverting into PP pathway and (iii) the

cellular energy demand. The proteomic cost of the fer-

mentation pathway was estimated always to a lower

value than that of the respiration pathway, i.e. w�
f < w�

r .

The proteomic cost of the biomass synthesis sector was

estimated to be higher in a slow-growing strain that ex-

cretes acetate at a lower growth rate, in comparison with

the other two fast-growing strains, i.e. b�MG > b�NCM=ML .

The estimated values of w�
f and b∗both meet qualitatively

the expectation from a biological point of view. Further-

more, the relationship between the proteomic efficien-

cies of fermentation and respiration, i.e. the w�
f −w

�
r line,

was shown to change between different strains most sig-

nificantly with the cellular energy demand rather than

with the pattern of acetate excretion. This w�
f −w

�
r rela-

tionship remained relatively stable when the upper

bound of the portion of substrate carbon flowing into

PP pathway (uPPP%) varied in the modelling studies. On

the other hand, the increase of uPPP% was shown to

lead to a visible increase in the estimated proteomic cost

of the biomass synthesis sector b∗, which mathematically

results from a reduction in the predicted respiration

flux.

Finally, and as a general point for constraint-based

models, cellular energy demand appeared to have a

major impact on the predicted biomass yield; tuning the

default energy demand with strain-specific data was

shown to be critical in making simultaneously accurate

predictions of biomass yield and overflow metabolism.

Overall, this work demonstrates the potential of com-

bining a detailed metabolic model with a coarse-grained,

pathway-level resource allocation constraint in produ-

cing quantitatively accurate predictions of the overflow

phenomenon in E coli; similar modelling approaches

that feature this type of combination may prove suitable

also for other applications.
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