Modelling OWL ontologies with Graffoo

Riccardo Falco!, Aldo Gangemi??, Silvio Peroni':2,

David Shotton?, and Fabio Vitalil

! Department of Computer Science and Engineering, University of Bologna (Ttaly)
riccardo.falco@studio.unibo.it, silvio.peroni@unibo.it, fabio@cs.unibo.it
2 STLab-ISTC, Consiglio Nazionale delle Ricerche (Italy)
aldo.gangemi@cnr.it
3 Laboratoire d’Informatique de Paris Nord, Université Paris 13 (France)

* Oxford e-Research Centre, University of Oxford (UK)
david.shotton@oerc.ox.ac.uk

Abstract. In this paper we introduce Graffoo, i.e., a graphical notation
to develop OWL ontologies by means of yFEd, a free editor for diagrams.

Keywords: DiTTO, Graffoo, OWL, yEd, graphical notation

1 Introduction

In many contexts where the use of formal languages is needed (e.g., software
development, GUI implementation, ontology engineering), the adoption of an
appropriate graphical notation simplifies the design and property checking of a
system since it enables an overview of the system that is difficult to have using
textual syntaxes. Within the Semantic Web domain, this seems to be particularly
true when developing ontologies: graphical languages, among the others, seem to
support ontology modelling and understanding as well as the discussion between
all the involved actors (i.e., domain experts, knowledge engineers and final users).
Designing a graphical notation specific for OWL requires to consider what are
the appropriate requirements that such notation should address according to
different kinds of players coming from several academic and industrial contexts.
At various SW conferences and workshops, we started brainstorming informally
about the ideal features of a graphical notation for OWL ontologies, and we
identified the following requirements:

1. Oriented to OWL. The notation should address all the capabilities of OWL.
2. Graphical elements to make modelling and understanding easy. It should
facilitate users in dealing with modelling and understanding of ontologies.
3. Colours are a complementary aid, not a fundamental discriminant. Although
the use of different colours helps to reduce the cognitive effort of users [1] in
the aforementioned activities, each graphical element of the notation should
be clearly recognisable even when it is presented in a grey scale.

4. Invent the notation, not the editor. The effort of creators of a notation should
concern the development of the notation itself, since diagram applications
usually provide mechanisms to extend them with additional notations easily.

2 Falco et al.

Existing tools and notations developed to deal with modelling and under-
standing activities seem to be hardly appropriate to address all the aforemen-
tioned features — either because they do not address all OWL 2 capabilities [5],
or because they were developed to address modelling tasks (e.g., ontology editors
[3]) or understanding tasks (e.g., documentation generators [6]) but never both.

The aim of this demonstration is to show how to create OWL-aware ontology
diagrams by using Graffoo (Section 2), a graphical notation for OWL ontologies
that tries to address the aforementioned requirements. We accompany the discus-
sion of Graffoo with preliminary outcomes of a comparative user testing session,
and we briefly present the extension of DITTO [2] (i.e., an online service that
converts diagrams into OWL ontologies) we developed to convert Graffoo dia-
grams into proper OWL sources in Manchester Syntax. Finally, in Section 3, we
conclude the paper sketching out some future works.

2 A graphical framework for OWL ontologies

The Graphical Framework For OWL Ontologies, a.k.a. Graffoo®, is a graphical
notation that addresses all the requirements introduced in Section 1. All the
graphical elements of Graffoo, summarised in Fig. 1, have been developed using
the standard library of yEd, i.e., a free diagram editor running on Windows,
Mac and Linux. The Graffoo graphical elements are available online and can be
loaded as a proper section in the yEd palette, as shown in Fig. 2. To add the
Graffoo graphical elements to yEd one needs to download the Graffoo .graphml
file”, and then to import it as a palette — by selecting that file in the window
that appears clicking on “Edit / Manage Palette / Import Section” in the yEd
tool bar, and then by adding and including it in the available palettes.
Graphical elements. All the ontological entities (i.e., ontologies, classes,
properties, datatypes, and individuals) can be defined either as an IRI sur-
rounded by angular brackets (e.g., <http://xmlns.com/foaf/0.1/Person>) or
as a CURIE with a prefiz (e.g., foaf:Person). All the prefixes can be de-
fined within a particular box (entitled “Prefixes”) as a list of prefix-IRI pairs
(e.g., foaf: <http://xmlns.com/foaf/0.1/>). In Graffoo there are two differ-
ent kinds of graphical elements, i.e., blocks (or nodes) and arcs. Blocks are used
to define classes and class restrictions (yellow rectangles with solid and dot-
ted borders respectively), datatypes and datatype restrictions (green rhomboids
with solid and dotted borders respectively), individuals (pink circles with solid
black border), ontologies (boxes with light-blue heading and dotted black bor-
der), additional axioms in Manchester Syntax for all those constructs that are
not directly supported by a particular graphical element (light-blue and folded
boxes), and rules (boxes with light-grey heading and black dashed border). Arcs

5 Available at http://www.essepuntato.it/graffoo.
5 Available at http://www.yworks.com/en/products_yed_about.html.
" Available at http://www.essepuntato.it/graffoo/sources.

Modelling OWL ontologies with Graffoo

Generic entity

Typed entities

Graffoo legend

any entity
(if referring to a choice of
particular kinds of typed
entities, it will be specified

a class

a class restriction

/ a datatype /

* a datatype restriction

an ontology

any item within this box is
defined within the ontology

‘ object entity ‘

range
(class or class restriction)

range
(datatype or datatype restriction)

range entity ‘

Any other OWL 2 axiom, expressed in Manchester Syntax
and referring either to the entity linked through a dashed line
or to the adjacent object property, data property or annotation

S

o Property (either object, data or annotation property) >
the Manchester Syntax axioms refer to

error:hasError(?x,"A list item cannot be followed by itself")

SWRL

between brackets) "value"Adatatype agf\;s:la;rxe
Assertion ‘ subject entity } predicate ‘
Obiject i _...object property facility A
property omall object property
declaration (class or class restriction)
(or facility)
Data .) data property facility ~
property domain 1 data propert
declaration (class or class restriction) T Y
(or facility)
. ‘annotation property facility
deﬂ;:gﬁgx ‘ domain entity |-\7annotation property %
(or facility)
Additional
owL ‘ an entity }» ————————
axioms
property.
Prefixes EreiIxes
and : 7%,7%) -
SWRL rules co: http://purl.org/co/ co:followedBy(x 7x) ->
Fig. 1. The full set of graphical elements of Graffoo.
yed.graphm! - yEd
BUED

0 0 O[T overview

© O O] Neighborhood

‘I‘N..‘l e

0 0 0 =] Structure View

miPp. |Es.

Search [Text 3
" foaf:Agent

~ foaf:Document

i

DEo~ Qe HEefn -

4

L=}

000 3 Palette

foaf:Person

T~

foaf:givenName) ieati
foaf-familyName foaf:publications

rdfs:Literal

I<

is subclass of foaf:Agent

foaf:Document

Graffoo

E ===

- —» - > >
—= redicatctPropropertyaPropeopertyf
e e Mo o

—
000

>

|7 Properties View

v General
Number of Nodes 4
Number of Edges 3
v Data
Description

are used to define assertions (black lines ending with a solid arrow®), annota-
tion properties (orange lines beginning with backslash and ending with a dashed
arrow), data properties (green lines beginning with an empty circle and ending
with an empty arrow), and object properties (blue lines beginning with a solid

8 All the assertions defining typical OWL axioms, such as sub-class axioms, equiv-
alent axioms, etc., can be expressed by natural language names in Graffoo (e.g.,
by using “is subclass of” instead of “rdfs:subClassOf”, “is equivalent to” instead of

Fig. 2. The Graffoo palette in yEd.

“owl:equivalentClass” and “owl:equivalentProperty”, etc.).

4 Falco et al.

circle and ending with a solid arrow). In addition to these graphical elements,
there is a particular kind of graphical element (named property facilities, i.e., arcs
having dotted border and referring to data, object and annotation properties),
that were studied to decrease the cognitive effort of users when understanding
an ontology. For instance, they allow one to say explicitly that a certain prop-
erty can be used in the context of two classes without declaring them as domain
and range. The full specification of Graffoo graphical elements is available at
http://www.essepuntato.it/graffoo/specification/current.html.
Usability. As a preliminary study, we performed a comparative user testing
session so as to gather some evidences on the usability of Graffoo when modelling
OWL ontologies. We asked eleven PhD students in Computer Science and Law
(with no expertise in ontologies and Semantic Web technologies) to use four
different tools — i.e., the Manchester Syntax, Protégé, E/R as introduced in [2],
and Graffoo — for modelling small OWL ontologies (with 5-15 entities). All the
four tools were appropriately introduced to PhD students during six lectures of
two hours each and, at the end of the last lecture, we asked them to answer
a questionary containing ten likert questions according to the System Usability
Scale (SUS)? — sub-scales of pure Usability and pure Learnability were considered
as well [4]. As shown in Table 1, the SUS score for Graffoo was the highest (58.9,
in a 0-100 range), meaning that it was perceived more usable than the others —
even if none of the differences between SUS scores was statistically significant.

Table 1. SUS (mean) scores of all the notations/tools involved.

Tool SUS Learnability Usability
Manchester Syntax ~ 45.9 (s.d. 15.9) 45.4 (s.d. 21.1) 46.0 (s.d. 16.0)
Protégé 50.9 (s.d. 15.5) 45.4 (s.d. 20.4) 52.3 (s.d. 15.2)
E/R 504 (s.d. 17.6) 511 (s.d. 22.7) 50.3 (s.d. 17.7)
Graffoo 58.9 (s.d. 16.0) 544 (s.d. 232) 59.1 (s.d. 15.3)

DiTTO extension. DiTTO [2] is a Web service available at http://www.es
sepuntato.it/ditto developed, originally, to transform E/R diagrams into
OWL ontologies according to three distinct conversion strategies. The core of
DIiTTO - i.e., a set XSLT 2.0 documents included in a Java Web Application
Archive (i.e., a WAR file) served as a Tomcat application — has been recently ex-
tended with additional XSLT documents that apply several rewriting templates
to the source file of the Graffoo diagram created through yEd, and return the
converted OWL ontology in Manchester Syntax. This extension allows one to
use some features available in yEd to simplify the work of ontology engineers. In
particular, it is possible to add annotations to ontological entities by using the
preference panel (as shown in Fig. 3), avoiding the use of the graphical element
for additional axioms to specify such annotations as common axioms.

9 All data are available at http://www.essepuntato.it/graffoo/preliminary-test.

Modelling OWL ontologies with Graffoo 5

= foaf:Person is subclass of~>ﬂ%

n
B
@ Edit Label i

Add Label oo
Convert to Label ;foaf'glvejnNam
|foaf:familyName

8 00 Properties

| General = Label Shape

foaf:givenNan

‘oaf:familyNar URL

< Cut 8X | Description |Person
_ (D Copy ®8C |] o
rdfs:Literal Copy to System Clipboard |/ rdfs:Literal The class identifying all people.

i
Ll Paste A

Paste Into Selected Group
[Delete |
W Raise Selection)
% Lower Selection L | Ok Apply Cancel
@ Go TO URL 8L . = 5 .
Grouping > \\
“» Add to Palette > | = foaf:Person is subclass of —
Properties... E 1 " Pm:"\
Display the properties of selected elements ! foaf:givenN

| foaf:familyN The class identifying all people.
i Y e

Fig. 3. The steps to add rdfs:label and rdfs:comment annotations to ontological entities.
A: right-click on the entity to access its properties; B: add label (first line) and comment
(following lines) as free text in the “Description” field of the “Data” panel. C: hover
the pointer on the entity to show the annotations.

3 Conclusions and future works

In this paper we have introduced Graffoo, a graphical notation to model OWL
ontologies. We have shown Graffoo graphical elements, we have described prelim-
inary outcomes of a user testing session, and we have presented an extension of
DiTTO for transforming Graffoo diagrams into OWL. We plan to extend Graf-
foo (and the related DiTTO extension) with a new compact syntax (in order to
create, for instance, subclass axioms involving class restrictions when declaring
properties), to generate Graffoo diagrams from OWL ontologies, and to perform
additional usability evaluations to confirm the results sketched out herein.

References

1. Chalmers, P. A. (2003). The role of cognitive theory in human—computer in-
terface. Computers in Human Behavior, 19(5): 593-607. DOI: 10.1016/S0747-
5632(02)00086-9

2. Gangemi, A., & Peroni, S. (2013). DiTTO: Diagrams Transformation inTo OWL.
In Proceedings of the ISWC 2013 Posters & Demonstrations Track. Retrieved from
http://ceur-ws.org/Vol-1035/iswc2013_demo_2.pdf

3. Garcfa-Barriocanal, E., Sicilia, M. A., & Sénchez-Alonso, S. (2005). Usability Eval-
uation of Ontology Editors. Knowledge Organization, 32(1): 1-9.

4. Lewis, J. R., & Sauro, J. (2009). The Factor Structure of the System Usability Scale.
In Proceedings of HCSE 2009: 94-103. DOI: 10.1007/978-3-642-02806-9_12

5. Negru, S., Haag, F., & Lohmann, S. (2013). Towards a Unified Visual Notation
for OWL Ontologies: Insights from a Comparative User Study. In Proceedings of
i-Semantics 2013: 73-80. DOI: 10.1145/2506182.2506192

6. Peroni, S., Shotton, D., & Vitali, F. (2013). Tools for the Automatic Generation of
Ontology Documentation: A Task-Based Evaluation. International Journal on Se-
mantic Web and Information Systems, 9(1): 21-44. DOI: 10.4018/jswis.2013010102

