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SUMMARY

The characteristically aggregated frequency distribution of macroparasites in their hosts is a key feature of host—parasite
population biology. We begin with a brief review of the theoretical literature concerning parasite aggregation. Though this
work has illustrated much about both the sources and impact of parasite aggregation, there is still no definitive analysis
of both these aspects.We then go on to illustrate the use of one approach to this problem - the construction of Moment
Closure Equations (MCEs), which can be used to represent both the mean and second moments (variances and covariances)
of the distribution of different parasite stages and phenomenological measures of host immunity. We apply these models
to one of the best documented interactions involving free-living animal hosts - the interaction between trichostrongylid
nematodes and ruminants. The analysis compares patterns of variability in experimental infections of Teladorsagia
circumcincta in sheep with the equivalent wildlife situation - the epidemiology of T. circumcincta in a feral population of
Soay sheep on St Kilda, Outer Hebrides. We focus on the relationship between mean parasite load and aggregation
(inversely measured by the negative binomial parameter, k) for cohorts of hosts. The analysis and empirical data indicate
that k tracks the increase and subsequent decline in the mean burden with host age. We discuss this result in terms of the
degree of heterogeneity in the impact of host immunity or parasite-induced mortality required to shorten the tail of the
parasite distribution (and therefore increase k) in older animals. The model is also used to analyse the relationship between
estimated worm and egg counts (since only the latter are often available for wildlife hosts). Finally, we use these results
to review directions for future work on the nature and impact of parasite aggregation.

Key words: Wildlife diseases, parasite, aggregation, Teladorsagia circumcincta, sheep, St Kilda, model, negative binomial
distribution, moment closure equations, egg counts, immunity.

INTRODUCTION

Macroparasite abundance is measured ultimately by
the statistical distribution of parasites between hosts.
Parasites are characteristically aggregated in their
hosts and, as reviewed by Shaw & Dobson (1995,
this volume), this pattern can generally be described
empirically by the negative binomial distribution.
Theoretical models have shown that the observed
patchiness in parasite abundance can have important
consequences for host-parasite population dynamics
(Anderson & May, 1978a, b; Roberts, Smith &
Grenfell, 1995). However, current models cannot
capture both the origins of parasite aggregation and
its ecological impact (Grenfell, Dietz & Roberts,
1995).

In this paper,- we use models and analyses of
epidemiological data to explain the generation of
macroparasite aggregation patterns in natural host
populations. The main case study explores the
epidemiology of gastrointestinal nematode parasites
in wild ruminant populations, where there is a mass
of comparative data from domestic ruminants
(Coyne & Smith, 1994). We focus in particular on
patterns of parasitism in an especially well-

documented feral population of Soay sheep on the
island group of St Kilda (Gulland, 1992; Gulland &
Fox, 1992). In this system (as in many wildlife and
human helminth infections) only counts of repro-
ductive stages (in the St Kilda system, via faecal egg
counts) are available. We therefore also use the
models to assess how variability spreads through the
parasite life-cycle, from infective larvae, through
adult worms, to egg production.

The rest of the introduction gives a brief review of
previous models for parasite aggregation. We then
introduce a new model and review observed patterns
of parasitism in domestic sheep on St Kilda. A
combination of models and data is then used to
interpret general patterns of parasite aggregation.

Modelling parasite aggregation

Previous studies can be divided into 3 broad
categories.

Ecological consequences of parasite aggregation.

These have been explored mainly by using the
negative binomial distribution as a phenomeno-
logical model. The resulting formulations have been
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highly successful in exploring the potential impact

of parasites on the stability of natural populations

(Crofton, 1971; Anderson & May, 1978a, b, 1991;

Dietz, 1982; Grenfell, 1988, 1992; Hudson &

Dobson, 1995). The crucial issue here is the balance

between parasite-induced mortality, and reproduc-

tive limitations due to parasitism (which act, respec-

tively, to stabilize and destabilize host dynamics

(Anderson & May, 1978 a, b; Roberts et al. 1995)).

Essentially, increasing parasite aggregation enhances

the stabilizing effects of parasite-induced host mor-

tality (Anderson & May, 1978a, b).

Causes of parasite aggregation. The above strategy

does not focus on the mechanisms generating

observed aggregation patterns. The second approach

attacks this problem using explicit stochastic models

of the demographic processes which generate para-

site distributions (Hadeler & Dietz, 1983;

Kretzschmar, 1989; Kretzschmar & Adler, 1993).

The general age- and time-specific case is too

intractable to generate biologically useful results

relevant to parasite dynamics (Grenfell et al. 1995).

However, simulation of special cases (Anderson &

Gordon, 1982; Anderson & Medley, 1985 a), and

analytical approximations (Adler & Kretzschmar,

1992; Kretzschmar & Adler, 1993), can yield useful

insights.

Interpreting observed aggregation patterns. One of

the most successful approaches here has been to

analyse the change in aggregation that accompanies

observed patterns of parasite intensity with host age

(Anderson & Gordon, 1982; Anderson & Medley,

19856; Pacala & Dobson, 1988; Grenfell et al. 1990;

Anderson & May, 1991; Grenfell et al. 1995). The

main application of theory has been to interpret

changes in parasite aggregation in cross-sectional

age-structured data, though the approach is also

applicable to longitudinal parasite data from cohorts

of hosts (Grenfell et al. 1995). In essence, if

aggregation (inversely measured by the negative

binomial parameter, k) decreases with host age, this

is evidence of a density-dependent effect, such as

acquired immunity or parasite-induced host mor-

tality (Pacala & Dobson, 1988).

This work parallels an extensive development of

immuno-epidemiological theory (Anderson & Medley,

1985b; Quinnell & Keymer, 1990; Woolhouse,

1992), which examines the impact of acquired

immunity to helminth infections on age-prevalence

and intensity patterns. Most of the development of

this theory has been based on the negative binomial

assumption; however, recent work has emphasized

the stochastic implications of immunity (Woolhouse,

1992; Grenfell et al. 1995; Isham, 1995).

Synthesising these approaches would involve

producing a tractable model for host—macroparasite

dynamics which allows for both the origins and

effects of aggregation. This is a difficult technical

problem (Grenfell et al. 1995). Though refinements

to non age-structured models can generate useful

insights (Adler & Kretzschmar, 1992; Kretzschmar

& Adler, 1993), ideally we need to record parasite

dynamics though host age as well as time. The

resulting models should also track the development

of mean parasite burdens, as well as the second

moments (variances and covariances) of the dis-

tribution of different parasite stages, which de-

termine their level of aggregation. However, the

inclusion of second and higher moments in models

involving nonlinearities, such as host immunity or

parasite-induced host mortality, requires us to

achieve moment closure (Isham, 1995). Specifically,

we have to allow for the fact that equations for the

second moments have terms involving third

moments, and so on for the higher moments.

These effects can be modelled by using normal

approximations for the third and higher moments

(Whittle, 1957; Kurtz, 1971; Isham, 1991; Grenfell

et al. 1995)-see the Appendix for more details. In

principle, the resulting Moment Closure Equations

(MCEs) could be used to represent the full parasite

life-cycle in age-structured host populations. How-

ever, their behaviour is potentially very complex

and, first, we need to establish how observed

transmission patterns in natural host populations

generate the observed age-distribution of aggre-

gation, in both adult parasite and egg counts.

This is the aim of the present paper, which focuses

on two issues.

(a) How do age-specific parasite burden and degree of

aggregation co-vary ? Previous work has focused on

looking for decreases in aggregation (indicated by an

increase in the fitted negative binomial parameter, k)

with increasing host age (Anderson & Gordon, 1982;

Pacala & Dobson, 1988; Roberts et al. 1995). This

shortening of the upper tail of the parasite distri-

bution in older hosts provides evidence for density-

dependent effects, such as parasite-induced host

mortality or host immunity (Anderson & May, 1991;

Roberts et al. 1995). Recently, Grenfell et al. (1995)

used a MCE to show that, in homogeneous host

populations, the fitted value of k for the parasite load

tends to track the mean parasite load in the host

population, which plateaus or declines with host

age. By contrast, host heterogeneities, especially

differences in immunocompetence or host survival in

the face of parasitism, can cause k to increase in old

individuals, whilst the mean declines or remains

constant (Anderson & Gordon, 1982). Here, we

examine how the models relate to data on the

aggregation of parasites in cohorts of hosts, in

experimental or natural infections.

(b) Are egg counts reliable indicators of these

epidemiological patterns ? There is an extensive lite-

rature in this area (Smith, 1995), examining the use

and abuse of egg counts as an index of parasitism.
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Here, we use models to examine the relationship
between variability in worm and egg counts and the
effects of the latter of immunological limitations on
parasite egg production.

DATA SETS AND MODELS

Epidemiological data

General reviews of the epidemiology of tricho-
strongyid nematode—ruminant interactions are given
by Grenfell, Smith & Anderson (1987a, b) and
Coyne & Smith (1994). We focus on the interaction
between sheep and the trichostrongylid nematode
Teladorsagia circumincta - the main parasite species
on St Kilda (Gulland, 1992; Gulland & Fox, 1992).
The analysis of parasite variability is based on two
data sets.

Experimental infections. These are a rich source of
data on the infection dynamics of T. circumcincta and
other gastrointestinal parasites of ruminants
(Michel, 1970; Grenfell et al. 1987 a, b; Hong,
Michel & Lancaster, 1987; Smith & Galligan, 1988;
Coyne & Smith, 1994). The main division is between
experimental infections on a single occasion and
trickle infections, which simulate better the condi-
tions of infection in the field. Here, we concentrate
on a detailed series of trickle infection experiments,
performed by Hong et al. (1987) and previously
modelled by Smith (1989). The design involved
worm counts from replicated serial sacrifice of
groups infected at 3 different daily levels (250, 500
and 1000 infective larvae per day), with parallel egg
counts. The replication of counts (4 at each time
point) allows us to estimate crudely the change in
parasite aggregation, in addition to mean burdens.

Naturally-regulated hosts : St Kilda parasite counts.

St Kilda is a small group of islands west of the Outer
Hebrides in north-west Scotland. Soay sheep have
occupied the archipelago for at least 2000 years and
the study population has lived on Hirta, the largest
of the islands, since 1932. The sheep are entirely
unmanaged and have no regular predators or compet-
itors. However, they do harbour a significant
parasite community, which has been implicated in
the severe population 'crashes' that occur every 3-4
years (Grenfell et al. 1992; Gulland, 1992; Gulland
& Fox, 1992). The helminth parasites of the sheep
have been intensively monitored since August 1988
(Gulland, 1992; Gulland & Fox, 1992). This entails
both the regular collection of fresh faecal samples
from ear-tagged sheep for the estimation of faecal
egg counts and an assessment of the adult worm
burdens of sheep dying naturally during population
crashes.

For comparative purposes, we also analyse data on
the aggregation pattern of egg counts from field

infections of domestic sheep, presented by Stear et

al. (1995).

The model

Coyne & Smith (1994) give a general review of
models for trichostrongylid parasites of ruminants.
These formulations follow the standard pattern for
directly transmitted macroparasites (Anderson &
May, 1991). Hosts ingest infective larvae, which pass
through larval stages in the gut mucosa, then emerge
and develop into adults. Adult female worms
produce eggs, which are voided in the host
faeces, then develop into infective larvae on the
pasture, completing the cycle. Early in the infection
of young animals, the infection dynamics are ap-
proximately linear (Grenfell et al. 19876), though
immunity subsequently develops with the host's
accumulated experience of larval intake. Immunity
can limit any combination of larval establishment,
adult parasite survival, or parasite reproductive rate,
depending on the species of parasite (Coyne &
Smith, 1994); immunity to T. circumcincta acts on all
these processes (Smith & Galligan, 1988).

Previous models have generally been framed in
terms of the dynamics of mean parasite burden
(Coyne & Smith, 1994). Here, we adapt a general
MCE for the immuno-epidemiology of these para-
sites, proposed by Grenfell et al. (1995). This allows
us to track the degree of parasite aggregation as a
function of host age, as well as of the mean burden.
Full details of the model are given in the Appendix.
The main features of the model are as follows (see
Fig. 1 for a flow diagram and definitions of
parameters).

(i) Variability in infection rate is modelled expli-
citly by using a compound Poisson process. Thus
we assume that, for any individual host, encounters
with parasite transmission stages occur in an in-
homogeneous Poisson process (i.e. the rate, <f>(a),

depends on the age a of the individual host). During
an encounter, the number of parasites input, C, is a
random variable with mean mc and variance cr2

c.

By taking mc = 1 and a% = 0, this model for
the infection process reduces to an ordinary (in-
homogeneous) Poisson process. The model tracks
infection variability through larval (L), adult (M)
and egg (E) parasite stages. Additional variability
due to differences between hosts can then be
modelled by replicating the model equations with
varying parameters (see below). The constant back-
ground per capita death rates of larvae and adults are
denoted by fiL and /iM per unit time respectively.
Larvae develop into adults at rate y.

(ii) Parasite reproduction and the calculation of egg

counts: adult parasites are assumed to reproduce at
an average rate A per unit time (we ignore sex in this
first version of the model). We wish to model egg
counts per gram of faeces, rather than total egg
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(b) DEFINITION

Loss rates:

a

d

Duration of immunological memory
Life expectancy of larvae in the host

Life expectancy of adult worms
'Loss rate' of eggs from faeces (see text)
Life expectancy of hosts without parasites
Additional death rate of hosts induced by 1 adult parasite
Additional death rate of larvae due to 1 unit of infection experience
Additional death rate of adult parasites due to 1 unit of infection experience
Additional loss rate of eggs due to 1 unit of infection experience

Infection and development rates:

<p(a) Encounter rate with infective larvae constant with age
mc, OQ Mean and variance of larvae ingested per encounter
y Development rate larvae
v Rate of increase of immunity level due to larvae
A. Egg production rate per adult parasite

Fig. 1. (a) Schematic diagram of the model infection process, (b) Definitions of model parameters.

production. In principle, this would involve in-

tegrating the net egg production rate over a short

time interval, corresponding to the production of 1 g

of faeces. However, we can model this more simply

by assuming that the 'loss rate' of eggs, ftE, reflects

the expulsion of eggs from faeces, as well as their

death rate in the absence of immunity. Soay sheep

produce on the order of 1 kg of faeces per day

(K. Wilson, unpublished data), so that a gram of

faeces will be expelled on a much shorter timescale

(0-001 days on average) than other processes in the

model. The 'loss rate' of eggs, fiE, is therefore

dominated by the expulsion of eggs in faeces (which

is much larger than any of the other loss rates).

Given this assumption (i.e. that /.iE x 1000/day), we

can use £ as a crude index of eggs available to be

counted per gram of faeces.

{Hi) Nonlinear effects: immunity and parasite-
induced host mortality: immunity is assumed to
accumulate with the host's previous experience of
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larval intake (Coyne & Smith, 1994). We make the
simplest assumption, mathematically, that previous
experience of infection accumulates with the larval
burden (L) at rate v, and decays at rate /i, (so that
\/fi, is the average 'memory' of previous infection
(Grenfell et al. 1995)). Since the simulations de-
scribed below consider infection in young animals,
we take fi, = 0 (i.e. no fading of immune memory;
(Smith & Galligan, 1988)). Previous experience of
infection (/) is assumed to increase the mortality of
larvae by a rate /?j/ and the mortality of adults by /?2/,
where /?t and /?2 are parameters. Immune regulation
of egg production is controlled by a third parameter,
8: egg production is reduced at rate SI. Parasite-
induced host mortality is taken to be proportional to
the adult burden, with rate parameter a per adult
worm. Host mortality then, of course, kills both
larvae and adults. Hosts die in the absence of
parasites at rate fiH (which we take to be zero in most
of the simulations presented below).

(iv) Parasite variables. The model tracks parasite
abundance and average immunological experience as
a function of host age (a), in terms of the first
moment (mean). Means are denoted by mA(a), where
A = I, L, M, E for the respective variables. The
variability of the system is represented by the second
moments, for example cr2

L(a) is the variance of larval
counts and cMB{a) is the covariance of adult burden
and egg counts.

The Appendix derives a set of ordinary differential
equations to describe the dynamics of these variables
as a function of host age. We then assess parasite
aggregation by the moment estimate of the negative
binomial parameter, k. For example, k for adult
parasites is given by kM(a) = mM(a)2/(a2

M(a)-mM(a)).

Though the underlying distribution will not, in
general, be exactly negative binomial, kM(a) gives us
a basis for comparison of the model with measures of
parasite aggregation from field data. The covariances
also allow us to assess correlations between parasite
variables, as described below.

RESULTS AND DISCUSSION

Experimental infections

Mean worm and egg counts. Figs. 2 and 3 show the
observed temporal pattern of worm and egg counts
respectively from the trickle infection experiments
reported by Hong et al. (1987). We use the MCE
approach to examine the relationship between mean
adult worm and egg counts and the corresponding
levels of parasite aggregation. The first step is to fit
the model to the observed mean worm and egg
counts.

Mean patterns of parasitism. Fig. 2 displays a least
squares fit of the model to total worm count for the
3 infection levels, estimating the larval and adult
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Fig. 2. Total worm burden in lambs infected daily with
(a) 250, (b) 500 and (c) 1000 infective larvae of
T. circumcincta (Hong et al. 1987). Symbols are observed
burdens and the curves are from numerical simulation
of the model described in the text. The model was fitted
to the observed counts by nonlinear least squares,
estimating the immunity parameters: /31 = 015 (95%
limits 0132, 017); fit = 0045 (95% limits 0032, 006).
Other parameters of the model were taken from Smith
& Galligan (1988), as follows (rates are all per day):
v=\,/iM = 002, y = 01, a = 0, (j> = 1. Following Smith &
Galligan (1988), we assume that 75% of larvae succeed
in establishing in the abomasum.
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Fig. 3. Egg counts from the same experiment as Fig. 2 (Hong et al. 1987). (a)-(c) total eggs per gram faeces; (d)-(0
eggs per gram faeces per adult worm. Curves show a least squares fit of the model, as described in the text,
estimating the parasite reproductive parameters: A = 1795/day (95% limits 161, 196-2), S = 2-97/day (95% limits
2-53, 346). Other model parameters are as in Fig. 2.

immunity parameters, /?x and /?2 (other model
parameters were taken from Smith (1989)-see
legend to Fig. 3). The dose of infective larvae in this
class of infection experiments is generally found to
be approximately Poisson-distributed (Anderson &
Michel, 1977). We allow for this by assuming a daily
infection rate {<$) and setting the dose per encounter,
C, to unity (i.e. mc = 1; a% = 0). We also assume a
homogeneous host population, so that model para-
meters do not vary between hosts.

Like similar deterministic formulations (Smith,
1989), the MCE approach captures the dynamics of

mean burden relatively well - burdens rise initially,
then decline as larval and adult immunity increase
the loss rate of parasites. In order to represent the
equivalent observed pattern of egg counts, we also
need to estimate the reproductive immunity par-
ameter, 8. Fig. 3 shows the resulting least squares fit
between observed and expected egg counts. Though
the model captures the overall decline in egg counts
(Fig. 3 a-c), it tends to underestimate the decline in
egg counts in older hosts. This implies that there
may be a more nonlinear increase in limitations on
egg production than indicated by 8 in our simple



Parasite aggregation patterns

180

160

S141

3 4
Age (months)

Fig. 4. Estimated negative binomial parameter, kM, for adult counts from Hong et al. (1987) (circles). The curves
show various model fits, as described in the text (other parameters as in Fig. 2). Dotted line, 2 groups with a 50 %
difference in the infection parameter (0). Solid line, 2 groups with 25% difference in the immunity parameter, /?2;
dashed line, 10% difference in /£,.

model. The observed decline in worm reproductive
rate probably reflects the stunting of worms in later
cohorts during the infections (Coyne & Smith, 1994).

Patterns of variability in worm counts. We can assess
the observed degree of aggregation in worm burden,
using the replication of counts at each time point.
The observed burdens show a progressive increase
in aggregation with time, illustrated by a plot of the
moment estimate of kM for adult worms (Fig. 4).
Early in the infections, the kM values for all infection
levels are high (> 40, indicating consistency with a
Poisson distribution); kM then declines sharply (and
in a similar manner for the 3 infection levels).

By contrast, the homogeneous model with C = 1
generates a distribution for worm burden that is
approximately Poisson - the variance is almost equal
to the mean and the moment estimate of kM is
uniformly high and much greater than that observed
after host age 2 months. This result is not surprising,
since Poisson input tends to generate a Poisson
distribution of burden in this broad class of parasite
model (Pacala & Dobson, 1988; Isham, 1995).

The relatively high aggregation of the observed
counts indicates that the model is missing a signi-
ficant source of heterogeneity. Since models and
data are both consistent with a Poisson distribution
for the early infections, it seems likely that the extra
variation is due to heterogeneity between hosts,
rather than greater heterogeneity in the infection

process. Differences between hosts could be some
combination of:

(a) Linear effects, for example density-independent
variations in establishment of infection between
hosts (Smith, 1989). To test this extreme with the
model, we assumed that half the hosts had a 50%
higher infection rate, <f>, and calculated kM from the
weighted variance of the two groups (again assuming
that C = 1). Fig. 4 shows the results. The model kM

value is relatively low at the start of the infection,
reflecting the heterogeneity in infection rate. It then
increases rapidly, as a greater level of immunity in
the higher infection group causes the two sets of
worm burdens to converge. This is the opposite of the
observed aggregation pattern.

(b) Nonlinear effects, in particular, differences in
immunocompetence between hosts. To investigate
this, we assumed that the two groups of hosts were
identical, except that the adult immunity level, /?2,
was higher in one group. Fig. 4 shows the effects of
10 and 25 % differences in /?2. Both generate patterns
qualitatively similar to the observations — a high
initial kM which declines sharply with time. At the
start of the infection immunity levels in the model
are low, so that the two groups of hosts are very
similar and the adult kM reflects a Poisson distri-
bution. Increasing immunity then affects one group
more than the other, causing the two populations to
diverge and increasing the level of aggregation.

Overall, the results in Fig. 4 are consistent with
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the impact of immunological heterogeneity on levels
of parasite aggregation. This conclusion is supported
by observed clinical and parasitological hetero-
geneities in some sheep during the experiment (Hong
et al. 1987).

Egg count variability. Surprisingly, simulated egg
counts have the same degree of aggregation (as
measured by kE) as worm counts. The effect can be
explored by considering the asymptotic equilibrium
of the model, in the absence of immunity and
parasite-induced host mortality (p = a = 0; see Ap-
pendix and Grenfell et al. (1995)). For this special
case, we can write (assuming that the egg loss rate JLIE

is much larger than other parasite loss rates)

m = AmM//iB, a-2
E = mE + mFcrMF/mE = AmM

It follows (see Appendix) that crE « (me/mM)2 a2
M and

therefore that the coefficient of variation of E, C V e

obeys:

cv| = 0-y^,2« </ /4 = CVL.

In other words, the coefficient of variation (and
therefore also k, since k « 1/CV2 when the mean is
large) is similar for adult worms and egg counts —
how much variability this represents then depends
on the size of the mean burden. These results ignore
the relative sampling efficiency for eggs and worms
— allowing for this, we would expect observed egg
counts to be more variable than worms counts.
However, they do indicate (as we observed for the St
Kilda system) that the coefficient of variation (and
therefore estimated k) for worm and egg counts
should be of roughly the same magnitude.

Relationship between worm and egg counts: Apart
from assessing levels of variability, the model also
allows us to calculate the correlation between
parasitological variables. In terms of analysing field
data, the most important of these is the relationship
between worm and egg counts. Fig. 5 analyses the
expected correlation of worm and egg counts from
the trickle infection model and, in particular, the
effects of immunity against egg production. Fig. 5a
shows the fitted mean egg count curve for the highest
infection level, compared to the curve without
reproductive limitations on the parasites (i.e. S = 0).
The equivalent correlation coefficients between
worm and egg counts are shown in Fig. 5 b. For
S = 0, the correlation essentially tracks the mean egg
and worm counts, increasing and then declining over
the period of the experiment. This happens because,
at low mean egg and worm counts, the variances are
relatively higher than the covariance, which lowers
the correlation. When parasite reproductive limi-
tation {8 > 0) is superimposed on this, the same
qualitative picture holds. However, as the degree of
host immunity increases, this reduces the correlation
disproportionately as compared to S = 0 — in other

2 4 6
Age (months)

Fig. 5. Relationship between worm and egg counts from
the model described in Fig. 2. (a) Egg counts as a
function of host age: solid line, no immunological
limitations on parasite reproduction ($ = 0); dotted line,
S = 297. (b) Correlation between worm and egg counts
as a function of host age; line styles as above — the
dashed line is from a simulation identical to the dotted
line, except that the infection rate (C) is aggregated,
with mc = 1, a% = 5. (c) Regression coefficient of egg
counts against worm counts, for the cases in (a).

words, host immunity acts to reduce the correlation
between egg and worm counts. These results are
based on a Poisson infection process (C = 1). Further
simulations (for example, the dashed line, docu-
mented further in Fig. 4) show that aggregated
infection rates ( C > 1) increase the correlation be-
tween worm and egg counts, as compared to the
Poisson case. Essentially this happens because, in
the aggregated input case, pulses of high infection
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Fig. 6. Relationship between mean and degree of aggregation in faecal strongyle egg count and aggregation in female
Soay sheep on St Kilda, as measured by the moment estimate of the index k of the negative binomial distribution.
Different symbols refer to different age-classes, see key. (a) approximately bimonthly egg counts made between
August 1993 and June 1994, when 'lambs' were 4-13 months old, 'yearlings' 16-25 months old and 'adults' at least
28 months old; (b) yearly egg counts made each August between 1988 and 1993, when 'lambs' were approximately 4
months old, 'yearlings' 16 months old and 'adults' at least 28 months old.

rate in some individuals will be passed through the
parasite life-cycle from larvae, through adults to
eggs.

Finally, Fig. 5 c shows the estimated regression
coefficient between worms and egg counts. As
expected, this is constant for 8 = 0. By contrast,
immunity causes the slope to decrease after an early
transient over the infection, as the effective per
capita reproductive rate of worms decreases.

Field infections

The overall epidemiological pattern of tricho-
strongylid infections in St Kilda sheep is similar to
that in mainland hill sheep (Gulland, 1992; Gulland
& Fox, 1992). Egg counts peak in the summer in
lambs and at times of stress or immunosuppression
in older animals. A subsequent paper will consider
models of these patterns - here we examine the
relationship between the mean and degree of ag-
gregation of egg counts. Fig. 6 illustrates the
relationship between kE and the mean for faecal egg
counts for female Soay sheep on St Kilda at 2
temporal scales: 8 monthly or bimonthly counts
made between August 1993 and June 1994 and 7
yearly counts made in August each year between
1988 and 1994. Regardless of whether one looks at
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made before the death of the sheep (mean number of
days before death + s.D. = 166+14-3). Pearson's
correlations: all sheep, r = 0-425 (p < 0002); female
lambs, r = 0-629 (p < 00003).
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Fig. 9. Simulated (a) worm burden and (b) faecal egg count as a function of host age. The model is as in Fig. 2,
except that the infection process has an aggregated distribution (0 = 500/day, mc = 500, <r\ = mc + m2

c).

variation within or between years (Fig. 6a, b,
respectively), kE tracks the mean egg count.
Although there is some evidence for kE plateauing at
high mean egg counts (Fig. 6a), this is far from clear.

On St Kilda, the strongyle worm burdens of sheep
dying naturally during the 1991/2 crash were
positively correlated with their last faecal egg count
before death (Fig. 7). For all sheep combined the
correlation coefficient was 0-425 (n = 75, p < 0-002)
and for female lambs (the most numerous class of
animals for which we have data) it was 0-629 (n = 38,
p < 001), though there are other complexities in the
within the range of worm-egg correlations shown in
Fig. 5.

For comparison, Fig. 8 shows the relationship

between egg count mean and the moment estimate of
kE for T. circumcincta infections in domestic sheep
(Stear et al. 1995). Again kB roughly tracks the mean
(Pearson correlation between mean and k, r = 0-846,
p < 0-01), though there are other complexities in the
detailed pattern (Stear et al. 1995). Stear et al. (1995)
measured the dynamics of aggregation using egg
counts. It would be interesting for further field
studies to measure the temporal dynamics of worm
burden aggregation, as well as the correlation between
worm and egg counts.

Model interpretation of field patterns

By contrast with experimental infections, where we
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curve, <j> = 200). The horizontal and vertical lines show the average levels of aggregation observed on St Kilda:
vertical (dotted) line - average kc; horizontal (dashed) line - average kM from post-morten worm counts) for St K.
(b) Estimated change in overall index kM when one of 2 initial populations dies of parasitism. Population 1 has mean
burden 10000 worms and ksl = 5, while population 2 has the same kM and a variable (larger) mean than population 1.
the curve shows the increase in overall kM (calculated from the weighted mean and variance of the 2 populations)
when population 2 dies from parasitism, as a function of the difference between the means of the 2 populations.
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can assume a Poisson process for the infections, the
infection rate in the field is likely to be highly
variable (Pacala & Dobson, 1988). For example, field
surveys on St Kilda indicate that pasture counts of
infective larvae are aggregated, with a moment
estimate of kL of around unity. Following Grenfell et

al. (1995), we can include this in the model by
allowing C to be variable and defining kc =

m%l(cr%-mc). Fig. 9 shows the simulated dynamics of
mean adult parasite worm counts, and kM for adult
parasites, assuming that kc = 1. As with the em-
pirical picture, the mean tracks kM.

However, one significant discrepancy with the
field results is that kM in the models is much higher
(and therefore the variability is lower) than that
observed (compare Figs 6, 7 and 9). Fig. 10a explores
this further by plotting the asymptotic relationship
between the index kc for the infection process, and
the index kM for the adult parasites - see Grenfell et

al. (1995) for more details. T o achieve the observed
level of variability for both worms and eggs (k x 1,
for the St Kilda counts), requires an input variability
of kc 7n 0-2. In fact, as shown in Fig. 10a, the
observed variability of pasture counts of infective
larvae corresponds to an infection input value for kc

of around 1.

This implies that we need to allow for other
sources of variability. The obvious culprit here is
heterogeneity in the response of the host to infection,
as explored in Fig. 4. Such between-host hetero-
geneities are also likely to be primarily responsible
for situations when kM does not track the mean
burden (Anderson & Gordon, 1982; Grenfell et al.

1995). This is most important when the mean burden
plateaus or declines in older hosts, whereas kM

increases, due to parasite-induced host mortality or
immunity. In fact, even though there is strong
evidence for parasite-induced host mortality during
population crashes on St Kilda (Gulland, 1992;
Gulland & Fox, 1992), kM still tracks the mean over
these periods. This occurs even though egg counts in
survivors of a crash are significantly lower than those
of future victims for a considerable period before the
crash. Fig. 10b explores this effect, calculating the
overall weighted kM of two groups of hosts with
different mean counts, then simulating a crash by
eliminating the group with the higher mean. Fig.
10 b shows the resultant increase in kM as a function
of the initial difference between means. In general, a
relatively large difference in mean counts is required
to produce a significant increase in kM after the crash
(for example, in the figure, a 50 % difference in mean
produces a 2 0 % increase in kM). Since the observed
difference in mean egg counts is only about 20 %, we
may therefore not be able to register any increase in
kM resulting from the crash. The increase in egg
counts due to immunosuppression even of hosts that
survive the crash will also complicate this picture.

CONCLUSION

In this paper, we have used analyses of published
data, and epidemiological models, to examine the
relationship between the mean and degree of ag-
gregation of parasite load in trichostrongylid infec-
tions of experimental and wild sheep. The analysis
focused on the simplest case - patterns of parasite
aggregation in cohorts of hosts. However, even in
this simple epidemiological scenario, the Moment
Closure approach illustrates that nonlinearities, such
as immunity and parasite-induced host mortality,
can generate potentially complex interactions be-
tween the variance and covariances of parasite load
and immunity.

In principle, this approach can be extended to
produce an age-structured model of the full dy-
namics. However, modelling the dynamics of the
free-living stages, as well as allowing for immuno-
logical and other differences between hosts, would
produce a very complex formulation. Nevertheless,
we consider this a useful approach (compared to
studies based on stochastic simulation alone), be-
cause analytical results can be derived from special
cases of the MCE model.

As illustrated above, this analytical approach can
be used to generate simple, testable predictions
about the origins and properties of parasite ag-
gregation. We highlight two particular results. First,
the model allows us to trace patterns of variability
through the parasite life cycle. This leads to the
surprising result that (ignoring differential sampling
variance), we might expect similar coefficients of
variation (and therefore k values) for adult worm and
faecal egg counts. Though the result was derived
from a simplified linear model, ignoring immunity
and parasite-induced host mortality, it appears from
simulations to be robust when these nonlinear effects
are included. Essentially, the approximate invariance
of the coefficient of variation derives from the fact
that, over short time periods, the number of eggs
generated is the sum of M(a) Poisson variables,
where M(a) is the current worm burden. Clearly we
need to examine the evidence for this effect in other
host-parasite relationships. For example, the avail-
able evidence from the cat model for lymphatic
filariasis indicates that k for adult worms and
microfilariae are of similar size (Michael et al.,

unpublished).

The second benefit of the analytical approach is
that we can use the covariance structure of the model
to examine relationships between variables. Po-
tentially, this is particularly useful in human
immuno-epidemiological work, where the models
can be used to analyse observed correlations between
immunological and parasitological variables.

Finally, in terms of future quantitative epidemio-
logical work on macroparasite infections of wildlife
hosts, we suggest that the next priority is to develop
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models which track both the prevalence and intensity indicates that approximations based on the negative
of infection simultaneously. Modelling prevalence as binomial distribution show promise,
well as intensity would provide another variable for
comparison with field data. It would also reflect both
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than tracking parasite intensity alone. Again, this is Sciences, Cambridge (K.D., B.G., V.S.I.),

technically a difficult task, though preliminary work

APPENDIX

Model definition

In this paper, we are considering a single host that is born at time t = 0, so that time and host age are synonymous. We
assume that the host is exposed to a particular species of parasite at time instants modelled by a point process, and that
at each such instant a random number of larvae is ingested. The state of the host at age a (conditionally upon the survival
of the host to that age) is denned to be quadruple of variables {I(a), L(a), M(a), E(a)} where I(a) is a non-negative integer-
valued variable representing the host's immunity level and reflects the host's experience of past infections of the parasite,
and L(a) and M(a) are respectively the numbers of parasite larvae and mature parasites infecting the host. The variable
E(a) denotes the egg-load associated with the host.

We assume that at birth the host is free of parasites (i.e. M(0) = 0) and over its lifetime is exposed to parasite larvae
at times that form a nonhomogeneous Poisson process of rate <fi(a). At an exposure instant, the host acquires a random
number C of larvae, independently from one exposure to another. Let C have probability generating function
h{z) :=Z™_ohcz

c. Without loss of generality we could take h0 = 0, but we shall not do so here because we shall often want
to assume a standard form for the distribution of C and it is convenient not to have to condition on C > 0. In this version
of the model, we make no attempt to model the dynamics of the host population.

Let each of the larvae, independently of the rest of the parasites, mature at a rate y. Assume that the immunity variable
increases by one unit at a rate, vL, proportional to the current larval load and decreases linearly, at rate /*,/. Assume that
the larval and mature parasites within the host die off independently at rates fi, + fij and /iM + /?27 per parasite, respectively,
where these death rates are affected by the current immunity level. Each mature parasite generates eggs at rate A, and each
egg, independently of the rest, dies at a rate fiE + SI depending on the current immunity level. Let fiH(a) be the death rate
of a host at age a in the absence of any parasite burden and assume that this rate is increased by an amount a for each
mature parasite present.

Additional independencies are assumed as appropriate between the components of the model, so that {I(a), L(a), M(a),

E(a)} is a Markov process. Thus, finally, for a host that has survived to age a, with I{a) = i, L(a) = I, M{a) = m,

E(a) = e, the possible transitions are:

to i, l + c, m, e at rate 4>{a)hc for c = 1,2,...,

to i+ 1, /, m, e at rate vl,

to i— 1, /, m, e at rate firi,

to i, /— 1, m + \, e at rate yl,

to i, /—I, m, e at rate (jih + flj.)l,

to i, I, m—\, e at rate (/iM + /12i)m,

to i, l,m,e + l at rate Am,

to i, I, m, e— 1 at rate (fiE + 8i) e,

that the host dies, at rate fiH(a) + am.

Note that, in a stochastic model, the interpretation of a transition rate is that, for example, if the system is in state
{ilme} at time a then the probability that, during the time increment (a,a + da) there is a transition to state {i l + c me}, is

Model equations

Let pilme{a) := P (host survives to age a and I(a) = i, L(a) = I, M{a) = m, E{a) = e). To obtain a differential equation for
pilme(a), we need to express the probability Pame(a + da) for the state of the system at time a + da in terms of the probabilities
the various states ({?'/' me'} say) that could have been occupied at time a, together with the probabilities of the necessary
transitions from {i'I'm e'} to {ilme}, for a small time-increment {a,a + da): that is,

il'l'm'e')

From above, the possible transition are

from i, l — c, m, e at rate (j>(a)hc for c = 1,2,...,

from t — 1 , /, m, e at rate vl,

from i+\, I, m, e at rate [ir(i+ 1),
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from i, I + 1, m — 1, e at rate y(l + 1),

from i, Z+ l , m, e at rate (jiL + Pxi){l + 1),

f r o m £, / , m + \ , e a t r a t e (/iM +ft2i)(m + l),

from i, /, ra, e—1 at rate Aw,
from i, /, m, e+\ at rate (/i£.4-5j)(e4-1),

S148

where, now, there is no chance of host death in (a, a + da) since the host survives to age a + da. We must also include the
possibility that, at time a, the host is already in state {ilme} and no transition out of this state occur in (a, a + da). The
probability of this event is

Thus, combining the above expressions, we can obtain an expansion for

in terms of the probabilities for the state of system at time a. Taking the limit as da^O we find

da ' L

+ Pxil + nMm + ft2im + Ant + /iFe + Sie] pt, m e(a)
i

+ ( / i A / 4- /? 2 0(^4~ 1)Pnm+ie{a)4~Aw/> f (me i(tf)
+ (fiE + Si)(e+l)pllme+1(a)

and the generating function

CO QO CO 00

P(a;x,y,z,w):= 2 £ 2 2 pilme{a)xiyizmw'
i-0 1-0 m-0 e-0

satisfies the differential equation

dP(a;x,y,z,w) dP(a;x,y,z,w)
xfiH(a) <p(a)ln(y) lj}i ( a , x , y , z , w ) + fil(\ x)

oa dx

, ,, .* ^dP(a:x,y,z,zv)
- M l -X)y-fl,(\ -y)+y(y-2)} >*'

dydP(a; x,y,z, w)

" ' dz

,. 8P{a\x,y,z,w) d^Pia-.x.y.z.w)
+ /iE(l-w) + Sx(l-w) -—

ow dxdw

dxdy dxdz

It follows that S(a) :=P(a; 1,1,1,1) = P (host survives to age a) satisfies

dS(a)

where mM(a) := E{M(a)} and it is emphasized that M(a) is the parasite load conditionally upon the
age a.

Then the joint probability generating function Q{a ;x,y,z,w):= P(a; x, y, z, zv)/S(a) of I(a), L(a)
solution of

dO(a: x, v, z, w) dO(ax v z w\
i<p(a)l'i(y) i}+lXlnMi\J(atx>y>2,w)+M-i\* x)

, ,, v ,, ^ , , ,,dQ(a;x,y,z,w)
{"(1 x)y /iL(l y) + y(y z)}

dy

dQ(a;x,y,z,w)

, n ,dQ(a;x,y,z,w) d2Q(a;x,y,z,w)
+ fiE(l-w) \-Sx(\—w) —

ow dxdw

+ 6 x(\ ,}d2Q(a>x>y>z>w) ,d*Q(a;x,y,z,w)
dxdy ''2 ' dxdz

that, for i, /, m, e ~^ 0,

(1)

(2)

(3)

survival of the host to

, M(a), and E(a) is the

(4)
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Moments

One can deduce corresponding differential equations for the moments of I(a), L(a), M(a) and E{a), by differentiating (4)
appropriately and setting x=y=z=w= 1. We use the notation mt(d) := E(I(a)), crIL(a) := cov(/(a), L(a)), <r2(a) := <ru(a)

= var(/(a)), etc. Then differentiating (4) separately with respect to x, y, z and w gives the following equations:

dm,(a)/da = -/

dmL(a)/da =
d m M ( a ) / d a = - / M l 2 l M I M

dme(a)/da = AmM(a)-fiEmE(a)-aaME(a)-8((7,E(a) + ml(a)mE(a)), (5)

where mc = £(C) = h\\).

Note that the nonlinearity of the system means that these equations involve second moments of the variables.

We can now derive a set of similar equations with the derivatives of the second moments on the left-hand sides. For
example, differentiating (4) with respect to both x and y gives an expression for dE{I{a) L(a))/da. This can be combined
with the earlier equations to give a differential equation for crIL(a), as

dcT,L(a) dE{I(a)L(a)))
( j ) ( f l )

da da da da

Again, the nonlinearity of the system means that there will be terms involving third moments on the right-hand sides of
these equations, so that we do not obtain a closed system of equations for solution. To obtain exact moments of the
variables it is necessary to solve equation (4). However, one method of obtaining approximate results is to assume that the
joint distribution of the 4 variables is multivariate normal, so that their third moments can be expressed in terms of their
means and second moments. In particular, if general variables X, Y, Z (which need not be distinct) have a multivariate
normal distribution then, in an obvious notation,

E(XYZ) = mxaXY + myazx + mzaXY + mxmYmz. (6)

By this device we obtain a closed set of equations (given in (7), together with (5)) that can be solved to give approximate
results for the means, variances and covariances of the variables.

da%a)/da = ,»> , («) - 2 o » } + v{mL(a) + 2a, L{a)}
do-l(a)/da = <f>(o-2

c + m2
c) + (/tL + y){mL(a)-2a2

L(a)}
+ ^{<r, L(a) + m,(a) m,(a) - 2m,(a) o|(fl) - 2mL(a) a,L{a)}

da\t(.a)/da = tiM{mM{a) - 2o-2
M(a)} + y{mL(a) + 2aLM(a)}

+ Pi{a,M(a) + m,(a) mA/(a) - 2m,{a) cr2
M(a) - 2mM{a) o-,M(a)}

do-\{d)lda = liE{mE{") ~ 2<r2
E(a)} + \{mM{a) + 2aME(a)}

do- (a)/da= +s{m,(a)m(a) + -(a)2m(a)o-(a)2m(a)o-2(a)}

datM{a)/da = -(fiI+

d(rLM(a)/da = -(fiL + fiM + y) a-LM(a)-fil{m,^a) <rLM(a) + mL(a) <T,M(a)}
- fi2{m,(a) <rLM(a) + mM{a) <rIL(a)} - y{mL(a) - <T2

L(a)}
da,E{a)/da = -(/ir + /j,E)o-,E(a)-S{mI(a)(T,E(a) + mE(a)o-2(a)}

LE(a)- A{mt( f l) crIE(a) + m,(a) aLE{a)}
- 8{mE(a) o-IL(a) + m,(a) (TLE{a)} + AaLM(a)

* M J ( O ) / ^ = "(/«« + /'>M(;('
!
)-A('"j((«)

i r
i» + »

I
;(

(I
)
l7
ME(

II
)l

- S{mE(a) o-IM(a) + m, <rME(a)} + Aa2
M(a) + y<rLE(a), (7)

where <7£.:=var(C) = h"(a) + h'(l) — (h'(\))2. In fact, in order to derive these equations there is no need to assume the
multivariate normality of the variables I(a), L(a), M(a) and E(a), but only that their third moments satisfy (6).

Isham (1995) discusses this method (termed normal approximation) of obtaining approximations for the moments of
stochastic processes, in the context of a simpler host-macroparasite model in which there is a single random variable
representing parasite load, and there is no attempt to model immunity, larval burden or associated egg count. For this
model, exact solutions are obtainable. It is found that the exact mean parasite load, as a function of time (age), is generally
well approximated by the mean of the normal approximation, which is a substantial improvement over the deterministic
solution. In addition, the normal approximation provides reasonably good estimates of the variability of the process.

The equations for the deterministic approximation to our model are the simplified version of (5) in which all second
moments (of the form o-(j(a)) are identically zero. The normal approximation improves upon this by using the correct
differential equations (5) for the means, although their solution is not exact because it is used in conjunction with
approximating equations (7) for the variances and covariances.

It is important to emphasize that the variables /(a), L(a), M(a) and E(a) need not be, even approximately, normally
distributed. In Isham (1995) it is shown that it is quite possible for the approximate moments, obtained by the method of
normal approximation, to be good even in cases where the normal distribution is a wholly inappropriate approximation to
the true distribution.

If required, approximations can be obtained by assuming other forms for the joint distribution of the variables, and
using the corresponding forms for the third moments in place of (6). It has often been observed empirically (Anderson
& May, 1978 a; Pacala & Dobson, 1988; Shaw, 1994; Wilson, 1994) that the distribution of parasite load is close to negative
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binomial, and therefore an approximation based on this distribution is explored, in a forthcoming paper, for the univariate
model of Isham (1995). There, it will be demonstrated that the negative binomial approximation provides a further
improvement over the normal approximation, and the paper will discuss the adequacy of the distributional approximation
as well as that of the first and second moments. Ideally, we would explore here a multivariate negative binomial
approximation to the joint distribution of I(a), L(a), M(a) and E(a). What is needed is a suitably broad class of joint
distributions with negative binomial marginals and arbitrary covariances, but we have not yet found a satisfactory
candidate for this.

In the specification of this model, the variable E represents eggs 'associated with' the host. However, the choice of
appropriate parameter value depends very much on exactly what is meant by this. In particular, if E(a) represents the
' within host ' egg-burden, then the parameter /iB must include both the genuine ' death' of eggs and the effect of frequent
voiding in faeces. The latter will dominate fiE, which will be much greater than the other rates involved in the process.
Thus it is reasonable to assume that the process E(a) is in equilibrium and that its moments (mE, cr|) are independent of
time.

Numerical work also indicates that, to a good approx, we can set d<rLE/da and daME(a)/da to zero if fiE is large. In
practice, therefore, we have used (5) and (7) to calculate the moments of/, L and M (not involving E) numerically (Grenfell
et al. 1995). We then calculated moments involving E (mE, <r|, etc) as functions of the variables by setting the rate equations
for the E moments to zero.

Asymptotic approximations

We assume that there is no immunity v = a = 0 and that age, a^- oo.
In this case (and assuming that jiF is much greater than other loss rates),

so that C V | « CVJ, as long as mM + ytj, M/'/iE -4 a\r This can be shown to be true as long as fiE P- y, /<,„ and y are of roughly
equal magnitude and the mean adult burden, fiM f> 1. All these requirements are satisfied for trichostrongylid-ruminant
interactions so that, as confirmed by further numerical simulations, CV2

E « CVij,.
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