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A framework based on physical optics for simulating the effect of imperfect

compound refractive lenses (CRLs) upon an X-ray beam is described, taking

into account measured phase errors obtained from at-wavelength metrology.

A CRL stack is modelled, with increasing complexity, as a single thin phase

element, then as a more realistic compound element including absorption and

thickness effects, and finally adding realistic optical imperfections to the CRL.

Coherent and partially coherent simulations using Synchrotron Radiation

Workshop (SRW) are used to evaluate the different models, the effects of the

phase errors and to check the validity of the design equations and suitability

of the figures of merit.

1. Introduction

The use of refractive optics for the focusing of X-rays dates

back to the mid-1990s (Tomie, 1994; Snigirev et al., 1996) which

is relatively recent when compared with the use of diffractive

(early 1930s) and reflective optics (late 1940s). Although a

recent development, X-ray lenses are used at most high-

energy synchrotron facilities1 and X-ray free-electron lasers

(XFELs) either for beam conditioning, final focusing of the

X-rays into the sample or for imaging. The recent develop-

ment and establishment of fourth-generation synchrotron

light sources – as upgrades of existing machines or the

construction of new facilities – and the emergence of the

XFEL poses a new challenge for X-ray optics: wavefront

preservation, as at modern sources the X-ray beam quality at

the sample is primarily limited by the optical quality (Schroer

& Falkenberg, 2014; Yabashi et al., 2014).

Under certain conditions, X-ray lenses are well adapted for

situations where minimizing wavefront distortions is impor-

tant (Roth et al., 2017; Seiboth et al., 2017; Kolodziej et al.,

2018). To understand their impact on the optical design of

complete beamlines, it is necessary to be able to simulate

them realistically. The basic implementation of X-ray lenses

is already available on the two most widespread beamline

simulation tools: SHADOW (Sanchez del Rio et al., 2011)

and SRW (Chubar & Elleaume, 1998). Both implementations,

although based on different schemes, i.e. ray tracing (Alianelli

et al., 2007) and wave optics (Baltser et al., 2011), respectively,

are based on an ideal model combining refraction and

absorption for the stacked lenses. Since then, much has been

done in terms of refining the modelling of ideal X-ray lenses

ISSN 1600-5775

1 Just before the ESRF shut down for the installation of the new ESRF-EBS
storage ring, in December 2018, approximately 40% of the existing beamlines
used X-ray lenses in their optical setup.
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(Umbach et al., 2008; Sanchez del Rio & Alianelli, 2012;

Osterhoff et al., 2013; Simons et al., 2017; Pedersen et al., 2018)

and, to a certain extent, the modelling of optical imperfections

(Pantell et al., 2001; Andrejczuk et al., 2010; Gasilov et al.,

2017; Osterhoff et al., 2017). With the exception of the work of

Roth et al. (2014), investigating the inner structure of X-ray

lenses, the present models consider only lens shape and

departure from a perfect parabolic shape to either test the

limits of figure errors and fabrication defects or to improve

lens shape and focusing quality. These, however, do not

include the data from real lenses metrology, as is routinely

done for X-ray mirrors simulations (Sanchez del Rio et al.,

2016). Furthermore, it is important to have simulation tools

to allow for the accurate implementation of synchrotron or

XFEL light sources, allowing the compound refractive lenses

(CRLs) to be included in a complete beamline configuration in

combination with other optical elements. This is possible with

both SHADOW and SRW.

In this work, we propose a framework for simulating CRLs

taking into account their thickness, absorption and individual

lens phase errors measured with at-wavelength metrology.

Such phase errors can arise from material inhomogeneities

(voids, impurities) and/or figure errors from the lens-forming

process. Our approach is fully compatible with SRW as the

X-ray optics community interest shifts to the study of wave-

front preservation and tolerancing in low-emittance synchro-

tron or XFEL beamlines. However, the extension and

application of this methodology to ray-tracing (Rebuffi &

Sanchez del Rio, 2016) and hybrid methods (Shi et al., 2014)

is possible.

This paper is organized as follows. Section 2 introduces

basic design equations necessary for modelling X-ray lenses

and figures of merit to evaluate the optical performance of the

CRL. With increasing complexity, Section 3 introduces the

complex transmission element and from it derives the repre-

sentation of the CRL and their phase errors used for accurate

simulations of real imperfections. Section 4 presents the

simulations in two groups: coherent and partially coherent

simulations. This is where the evaluation of the different

models, the effects of the lens imperfections and checking the

validity of the design equations and suitability of the figures of

merit is done. Finally, the results are discussed and the main

conclusions are drawn.

2. Compound refractive lenses

In this section, we recall some important design equations in

Section 2.1 and figures of merit used when assessing the X-ray

focusing quality in Section 2.2.

2.1. CRL anatomy

X-ray lenses may have different surface shape: in initial

experiments (Snigirev et al., 1996) a cylindrical surface was

used, which was soon replaced by a parabolic shape that

almost completely removes geometrical aberrations (Lengeler

et al., 1999). Parabolic lenses are the most used X-ray lenses

for CRLs as they can focus in one dimension (1D; cylinder

with parabolic section) or in two dimensions (2D; paraboloid

of revolution). It is worth noting, however, that, although less

usual, X-ray lenses can assume other shapes: an elliptical

profile when focusing collimated beams (Evans-Lutterodt

et al., 2003) or a Cartesian oval for point-to-point focusing

(Sanchez del Rio & Alianelli, 2012). However, parabolic

shapes always present a very good approximation to

geometric focusing and reduce the geometrical aberrations to

levels that are smaller than the contributions from the fabri-

cation errors and diffraction effects.

Very often X-ray lenses are defined by a small set of

parameters as shown in Fig. 1(a). These are: (i) material;

(ii) apex radius of curvature (Rx, Ry); (iii) lens thickness (L) or

geometrical aperture (A), and (iv) distance between the apices

of the parabolas (twall).

We begin by defining the optical power F = f �1 of a single

refracting surface of radius R, where f is its focal length. The

index of refraction for the X-ray regime can be expressed as a

complex number: n = 1 � � + i�, with � being the refraction

index decrement and � the absorption index, both strongly

dependent on energy and material. With the X-ray beam

moving along the positive z-direction in Fig. 1, the refracting

power of the vacuum/lens interface is given by

Fx;y �
1

fx;y
¼

n2 � n1

�Rx;y

¼
�

Rx;y

: ð1Þ
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Figure 1
(a) Sagittal cut of an X-ray lens showing its main geometrical parameters.
This concave lens focuses X-rays in the y-direction if n1 > n2. (b) N-
stacked lenses. A single X-ray lens refracts very weakly. To overcome this
drawback – pointed out as early as the late 1940s (Kirkpatrick & Baez,
1948) – lenses are usually stacked, hence ‘compound’ in compound
refractive lenses.



Here we will consider only the real part of the indices of

refraction as this governs the focusing effect of the lenses. As

illustrated by Fig. 1(a), lenses are typically formed by two

refracting surfaces of nominally the same radii. From paraxial

optics, the total optical power of refracting surfaces in intimate

contact is the sum of their powers. The same is valid for the

cases where the distance between them can be ignored.

Typical materials used for X-ray lenses have 10�7 � � � 10�3

for their usual application energies (Serebrennikov et al.,

2016). To overcome the weak refraction of a single element,

several X-ray lenses are stacked (Tomie, 1994; Snigirev et al.,

1996). Still, under the assumption of thin elements, we have

fthin CRL ¼
Rx;y

2N�
; ð2Þ

where the 2N comes from stacking N lenslets with two

refracting surfaces each, as shown in Fig. 1(b). A correction

factor can be added to equation (2) in order to account for the

thick-element nature of the CRL, as proposed by Kohn et al.

(2003). The corrected focal length for a thick CRL is given by

fCRL ¼
Rx;y

2N�
þ
LCRL

6
: ð3Þ

This focal distance is taken from the middle of the CRL and

LCRL is the CRL longitudinal size, that is, the distance from

the front surface of the first optical element to the back

surface of the last lens.

Another important parameter for optical design is the lens

geometrical aperture A, as it provides an upper bound for the

numerical aperture of the system and, ultimately, to the

theoretical optical resolving power. Assuming a parabolic

profile of the refracting surface, the lens geometrical aperture

can be calculated as

Ax;y ¼ 2 L� twallð ÞRx;y

� �1=2
; ð4Þ

where L is the lenslet thickness and twall is the distance

between the apices of the parabolas, commonly referred to as

the web thickness.

Due to absorption, the geometrical aperture defined in

equation (4) is greater than or equal to the effective lens

aperture as indicated by Kohn (2017). There are several

reported ways of defining the effective lens aperture. Fig. 2

shows the transmitted intensity profile of a CRL composed of

ten 2D beryllium lenses with nominal radius Rx, y = 50 mm and

circular geometric apertureA1 = 440 mm at different energies.

Unlike visible optics, where the transmitted intensity profile

within the aperture closely follows that of the illumination, the

transmitted profile through a (stack of) X-ray lens(es) has

strong absorption towards the edge, which defines the CRL as

an apodized optical system.

2.2. CRL performance

Here we present the reader with some other useful figures

of merit commonly used for evaluating the performance of

optical systems.

2.2.1. Diffraction-limited focal spot. Even an ideal and

aberration-free finite optical element is not able to image a

point source to a point-like image. Limiting the extent of the

focusing element by defining an aperture will induce diffrac-

tion effects on the wavefront and these will limit the smallest

reachable focus spot size. The normalized response of the

optical system to this point-like source input is called the

point-spread function (PSF). For a system with circular aper-

ture and uniform amplitude across the exit pupil, the intensity

of such a focused beam at the image plane is proportional to

a squared first-order Bessel function of the first kind (Airy

pattern). The full width at half-maximum (FWHM) of the

central cone is given by

d ¼ 1:22�ð1�MÞ
fCRL

A
; ð5Þ

whereM is the magnification of the system, which goes to zero

for a plane wave or a very distant source. Systems with

nonuniform illumination at the pupil exit, in our case apodized

systems approaching a Gaussian illumination (see Fig. 2), may

present a different PSF shape depending on the truncation

imposed by the aperture. A very weakly truncated focusing

system (e.g. transmission curve for 6 keV in Fig. 2) will have a

Gaussian-shaped focal spot as little to no cropping occurs and

therefore diffraction effects can be neglected. Increasing the

truncation of the beam enhances diffraction effects from the

geometric aperture. A strongly truncated focusing system (e.g.

transmission curve for 12 keV in Fig. 2) will have a PSF that

resembles the diffraction pattern in the far-field associated

with the aperture of the system2 (Mahajan, 1982, 1986).

2.2.2. Tolerance conditions for aberrations. Introducing

errors to the optical system will reduce the peak intensity in

the PSF. The ratio between the peak intensities of the aber-

rated- and non-aberrated PSF of a system with the same

aperture and focal length is referred to as the Strehl ratio

[cf. Section 9.1.3 of Born et al. (1999)]. The optical aberrations

on the exit pupil of an optical system can be described by the

aberration function �(x,y), with the dimension of metres,

research papers

J. Synchrotron Rad. (2020). 27, 305–318 Rafael Celestre et al. � Simulation of real CRL imperfections 307

Figure 2
Intensity transmission profile of a CRL composed of ten 2D beryllium
lenses with nominal radius Rx, y= 50 mm, geometric apertureA1 = 440 mm
and twall = 10 mm at different photon energies. The vertical dashed line
represents the lens geometrical half-aperture. The calculations were
performed using the Synchrotron Radiation Workshop computer code
(Chubar & Elleaume, 1998).

2 The far-field diffraction pattern of a circular aperture is a squared first-order
Bessel function profile while a square aperture will produce a 2D sinc-squared
pattern (Guasti & Heredia, 1993).



which represents any deviation in shape from an ideal profile.

For small aberration values, the Strehl ratio can be approxi-

mated3 by

Sratio a ¼
Iaberrated

Iaberration free
’ 1�

2�

�

� �2

��
2; ð6Þ

where � is the wavelength and�� is the standard deviation of

the aberration function �(x,y). An important consequence of

equation (6) is that the reduction in the peak intensity on the

focal plane does not depend on the type of aberration nor the

focal length of the optical system but on its standard deviation

across the exit pupil of the optical system (Born et al., 1999).

Alternative expressions to equation (6) are available in

Section 8.3 of Mahajan (2011), namely

Sratio b ’ 1�
2�

�

� �2
��2

2

" #2

; ð7Þ

known as the Maréchal expression, and

Sratio c ’ exp �
2�

�

� �2

��
2

" #

; ð8Þ

an empiric expression that fits better numerical results

(Wetherell, 1980). However, for strong aberrations, there is no

simple analytic expression to describe the relation between

the Strehl ratio and the standard deviation of the aberration

function �(x,y) (Kessler, 1981).

It is possible to define an arbitrary minimum acceptable

value to the Strehl ratio when evaluating an optical element

quality (tolerancing). This value depends on the final appli-

cation and the desired performance. However, a value of

Sratio � 0.8 is commonly found throughout the literature as an

indicator of a well corrected optical system.4 Inserting Sratio �

0.8 into equation (6), one obtains

j��j � �=14; ð9Þ

which is known as the Maréchal criterion for optical quality.

Equations (7) and (8) give similar limits: �/13.67 and �/13.30,

respectively. In order to apply equation (9) to the case of an

X-ray lens, we use equation (13b) (from Section 3.1) with�� =

ð2�=�Þ��z = ð2�=�Þj��j, where �� is the standard deviation

of the phase, and we replace the projected thickness �z with

the standard deviation of the projected figure error �z,

�z � �=14�: ð10Þ

Equation (10) gives an upper limit to the standard deviation of

accumulated figure errors for X-ray lenses in order to comply

with the Maréchal criterion of tolerable wavefront aberra-

tions, or, in other words, to sustain Sratio � 0.8. For a more

complete discussion on the aberrated PSF, Strehl ratio and

tolerance conditions for primary aberrations, refer to Section 9

of Born et al. (1999) and Section 8 of Mahajan (2011).

2.3. Chromatic aberrations

The optical properties of the X-ray lenses are strongly

dependent on the wavelength as both � and � have an energy

dependency. This causes chromatic aberrations and limitations

on the optical performance of the CRL under an X-ray beam

with finite bandwidth. The chromaticity of X-ray lenses can be

used favourably for X-ray harmonic rejection from insertion

devices and coarse X-ray spectrum filtering (Vaughan et al.,

2011; Polikarpov et al., 2014).

3. CRL: physical optics modelling

In this section, we present the models for accurately repre-

senting a realistic CRL following wave-optics representation

(Goodman, 2017). We start by defining a complex transmis-

sion element and, with increasing complexity, we present the

different models that are based on this complex transmission

element concept.

3.1. The complex transmission element

The amplitude transmission of radiation through matter can

be expressed as a complex operator – Section 2 of Paganin

(2006),

Tðx; y; z; �Þ ¼ exp

�

�2�i

�

Z

C

h

�ðx; y; z; �Þ � i�ðx; y; z; �Þ
i

ds

�

;

ð11Þ

with z being along the beam direction, x and y are the trans-

verse coordinates to z, � is the wavelength and
R

C
is a path

integral along ds. Favouring a more compact notation, we drop

here the explicit energy dependency of the index of refraction.

The z-dependence of � and � is abandoned in the projection

approximation, which is often valid when modelling refractive

optics.5 The integral in equation (11) reduces to

Tðx; y; zÞ ¼ exp

�

�2�i

�

Z �z

0

�

�ðx; yÞ � i�ðx; yÞ
�

ds

�

¼ exp

�

�2�i

�

�

�ðx; yÞ � i�ðx; yÞ
�

�z

�

;

Tð�zÞ ¼
ffiffiffiffiffiffiffiffi

TBL

p

exp
	

i�



; ð12Þ

where

research papers

308 Rafael Celestre et al. � Simulation of real CRL imperfections J. Synchrotron Rad. (2020). 27, 305–318

3 Equations (6) to (8) were obtained using a fully coherent illumination of the
optical system; however, defining the Strehl ratio as the ratio between the peak
intensities of the aberrated- and non-aberrated optical under study transcends
the nature of the illumination. A more complete derivation of the Strehl ratio
[equation (6)] can be found in Section 9.1.3 of Born et al. (1999).
4 This comes from historic reasons: both Rayleigh’s �/4 criterion for spherical
aberrations (1879) and the extended Maréchal criterion for optical quality
(1943) yield a Strehl ratio of �0.8 (Born et al., 1999).

5 Multi-slicing techniques are often used to deal with the cases where, for weak
scatterers, n(x,y,z) 6¼ n(x,y,z +�z). Here�z is an incremental distance along
the propagation direction. Chapters 2.2 and 2.7 of Paganin (2006) deal in more
detail with the projection approximation and the multi-slicing technique,
which was first described in the context of the scattering of electrons by atoms
and crystals (Cowley & Moodie, 1957).



TBL ¼ exp �
4�

�
��z

� �

¼ exp ���zð Þ; ð13aÞ

� ¼ �
2�

�
��z: ð13bÞ

The integration path ds is along the z direction. It is propor-

tional to the projected thickness�z, which in turn depends on

the transverse coordinates: �z � �z(x,y). Equation (13a)

shows the absorption experienced by the wavefront when

passing through matter (Beer–Lambert law), and equation

(13b) shows the phase-shift experienced by the wavefront. The

coefficient multiplying �z in TBL is know as the linear

attenuation coefficient �. The transmitted electric field is

obtained by multiplication of the input field with the complex

transmission operator in equation (12), that is, E2 =

T½�zðx; yÞ� 	 E1.

3.2. Ideal thin lens and single lens equivalent

At any point inside the geometric aperture of a single bi-

concave paraboloidal X-ray lens, the projected thickness �z

can be calculated as

�zðx; yÞ ¼
x2

Rx

þ
y2

Ry

þ twall: ð14Þ

Equation (14) can be substituted into equations (13a) and

(13b) to retrieve the complex transmission element expression

for an X-ray lens,

Tsingle lensð�zÞ � ¼ exp i
2�

�
�

x2

Rx

þ
y2

Ry

þ twall

� �� �


 exp �i
2�

�
�

x2

Rx

þ
y2

Ry

� �� �

� : ð15Þ

The * symbol represents an arbitrary input electric field.

Equation (15), the single lens model, accounts for the

absorption (first exponential) and phase shift (second expo-

nential ignoring the constant phase shift induced by twall). The

complex transmission representing a CRL composed of N

elements is, thus, represented by

TCRLð�zÞ � ¼ Tsingle lensð�zÞ
� �N

�: ð16Þ

The model represented by equation (16) will be referred to as

the single lens equivalent. This model represents a lens stack

by a single transmission element with equivalent focal distance

and the projected thickness of all the N single lenses as shown

in Fig. 3(a).

3.3. Multi-slicing representation of a CRL

For a CRL composed of a very high number of lenslets, the

single-lens equivalent approximation [equation (16)] may not

be adequate to correctly represent such optical systems mainly

due to the thick nature of the stack – shown by equation (3);

and due to the progressive focusing inside the CRL (Schroer

& Lengeler, 2005) – exaggerated in Fig. 1(b). For such cases, it

is possible to adapt the multi-slicing (MS) techniques for the

calculation of the transmission of a wavefront through a CRL.

Unlike the methods described by Paganin (2006) and most

recently by Li et al. (2017) and Munro (2019), where a single

weakly scattering optical element is sliced into several slabs, it

is sufficient for most practical cases to break down a CRL into

its lenses as shown in Fig. 3(b). This can be justified by the fact

that, at their typical operation energy, the materials used for

lens manufacturing have a very low � (Serebrennikov et al.,

2016), rendering the individual lenslets a weak focusing

element where the projection approximation holds (Proto-
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Figure 3
Hierarchical depiction of the CRL. (a) A single thin element equivalent
to several lenslets. This representation accounts for net refraction and
absorption in one transmission element but ignores intra-lens spacing.
(b) Multi-slice representation of a CRL. Here each lens of the stack
is represented individually by one transmission element. Those are
separated by a drift space corresponding to the typical distance between
elements (�s). (c) Not only can the CRL be represented as a series of
thin elements separated by drift spaces, but figure errors can also be
added. They are placed directly after the thin element representing a
single X-ray lens.



popov & Valiev, 1998). The complex transmission repre-

sentation of a CRL based on the MS approach is given by

TCRL�MSð�zÞ � ¼ Tsingle lensð�zÞ 	
�

Dð�sÞ 	 Tsingle lensð�zÞ
�N�1

�;

ð17Þ

where Dð�sÞ is the operator formulation of the Fresnel free-

space propagation over a distance �s (distance between the

centre of two adjacent lenses), from Section 1.4.1 of Paganin

(2006).

Equation (17) represents a wavefront *modified by a single

lens complex transmission Tsingle lens, followed by free-space

propagation Dð�sÞ over a distance �s. The multiplication of

the resulting electric field by the transmission element and

subsequent free-space propagation is carried out (N � 1)

times until the Nth lens is reached and the last element of the

lens stack is accounted for.

Optical imperfections measured with high spatial resolution

can be readily converted into a transmission element by direct

application of equation (12) to the height profile, provided it is

a 2D map of the phase defects. In this case, the height profile

will be the projected thickness of �z(x,y) in the preceding

equations. The MS model introduced earlier in this section can

then be adapted to account for the phase errors of the indi-

vidual lenses,

TCRL�MSð�zÞ � ¼ Timperfect lensð�zÞ

	
�

Dð�sÞ 	 Timperfect lensð�zÞ
�N�1

�; ð18Þ

with

Timperfect lensð�zÞ ¼ Tfigure errorsð�zÞ 	 Tsingle lensð�zÞ: ð19Þ

This extended version of the MS model is shown in Fig. 3(c).

4. Analysis of figure errors from metrology with X-ray
speckle tracking

To simulate the CRL performance on a beamline more

accurately, one needs a 2D map of surface imperfections.

Optical and tactile metrology methods are not the most

appropriate to characterize single X-ray lenses due to their

geometry (Lyatun et al., 2015) and their general insensitivity

to subsurface defects (voids, inclusions etc). At-wavelength

metrology is often more appropriate for obtaining the figure

errors. Several methods are available using X-rays: tomo-

graphy (Narikovich et al., 2017), grating interferometry

(Rutishauser et al., 2011), speckle tracking (Berujon et al.,

2013) and ptychography (Seiboth et al., 2016).

Each error profile used in the following simulations comes

from a real 2D-Be lens individually characterized using X-ray

speckle vectorial tracking (XSVT) (Berujon et al., 2020a,b) at

the BM05 Instrumentation Beamline at the ESRF (Ziegler et

al., 2004). This technique allows for a high spatial resolution

(pixel size of �0.65 mm 
 0.65 mm) characterization of the

lens figure error in projection approximation, which can be

incorporated directly in the simulations.

4.1. Aberrations from metrology data

Following Harvey et al. (1995), the figure errors of the

lenses can be specified in terms of their spatial frequency, as

they often have different effects on the image quality. Three

regions are commonly used for that: low-, mid- and high-

spatial frequencies. The low-spatial frequencies (LF) are

responsible for changing the beam profile and reducing the

peak intensity. Mid- and high-spatial frequencies (HF) are

responsible for scattering the light around the (focused) beam

and have potential for broadening it, together with the

expected reduction of the Strehl ratio. The low frequencies are

related to the conventional optical aberrations (Born et al.,

1999) and they can be described by a set of orthonormal

polynomials. For optical systems with a circular aperture, 2D

Zernike polynomials are often used (Mahajan & Dai, 2007),

while for rectangular apertures (typical of 1D-focusing lenses)

2D Legendre polynomials are more common (Ye et al., 2014).6

The mid- and high-frequencies are the residuals from the

polynomial fit of the aberrated profile. When referring to the

full frequency extent, that is, the addition of the low-, mid- and

high-spatial-frequencies, we use ‘full profile’ (FF). From the

analysis of the experimental data we can infer that the low

frequencies span from �500 mm or 2 
 103 m�1 (geometrical

aperture of a lenslet) to �50 mm or 2 
 104 m�1 (power

spectral density cut-off; cf. Fig. 4), while the mid- and high-

frequencies span from �50 mm or 2 
 104 m�1 to �1.3 mm

or 0.8 
 106 m�1 (obtained from the Nyquist frequency of the

measured data: determined by one over twice the detector

resolution).

Table 1 presents the radius of curvature, r.m.s. value of the

figure errors and useful aperture obtained by XSVT for each

simulated lenslet and the accumulated error profile, that is, the

net errors seen by a plane wavefront passing through the lens

stack. Fig. 4 presents the accumulated figure errors for the

simulated stack, along with their power spectrum density for

the full profile, low- and mid- and high-spatial frequencies; as

well as the Zernike polynomial fit of the full profile, which is

dominated by primary spherical aberration (Z11), tertiary

spherical aberration (Z37) and horizontal coma (Z8). Tilts and

defocus (Z2, Z3 and Z4) are not treated here as optical errors.

5. Simulation results

In this section, we present the simulations of the main CRL

models. All simulations presented here were made using

Synchrotron Radiation Workshop (SRW) (Chubar &

Elleaume, 1998)7, as it conveniently offers the possibility of

fully and partially coherent calculations, and presents native

parallelization with the MPI standard (Chubar et al., 2011).

Fully coherent calculations were performed using a single

CPU of an Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz,

while partial coherent simulations used 28 CPUs of the same

computer infrastructure (NICE OAR cluster at the ESRF).
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6 Using 2D Zernike and Legendre polynomials for describing conventional
optical aberrations in X-ray lenses was first presented by Koch et al. (2016).
7 Available at https://github.com/ochubar/srw.



5.1. Lenses and lens stack

The simulated lenses are 2D-Be lenses with a nominal

radius of Rx, y = 50 mm chosen as representative of lenses used

widely at beamlines at many synchrotrons. Such lenses have

typically 1 mm thickness and are held in a 2 mm-thick lens

frame. If the wall thickness is �30–40 mm, the lens geometric

aperture calculated by applying equation (4), which gives

A1 � 440 mm. The lens array is composed of ten lenses

without any spacing other than the intrinsic lens frame

thickness. The transmission through this CRL can be seen in

Fig. 2. At 8 keV, i.e. the energy used for the simulations, the

index of refraction for beryllium is n = 1 � 5.318
10�6 +

i2.071
10�9. Applying equation (2) with N = 1, one obtains

the focal length for a single lens: flens = 4.701 m. The lens stack

focal distance can be obtained by applying equation (3) with

N = 10 and L = (N � 1) 
 2 mm = 18 mm: fCRL = 473 mm,

giving a magnification of approximately 126 :1 (M ’ 8 
 10�3

for a source 60 m away from the CRL) and a diffraction-

limited spot size [equation (5)] of �200 nm.

5.2. Simulations with a coherent wavefront

For this set of simulations, we used a collimated (plane)

wavefront as any deviations from a constant phase and

intensity on the exit of the optical system can be immediately

attributed to the CRL model being studied.

5.2.1. The PSF: ideal focusing. After passage through the

CRL model being studied, a plane wave will develop a

quadratic phase term that has a curvature radius equivalent

to the effective focal distance of the optical system. Table 2

compares the calculated focal lengths [equations (2) and (3)]

against the focal length extracted from the simulation models.

While the single-lens equivalent model and the CRL multi-

slicing values were obtained using the nominal radius R =

50 mm, the focal length the CRL-MS+FF model was obtained

considering the radii from Table 2.

The propagation of the wavefront from the exit pupil of the

CRL to the focal length distance (image plane) is equivalent

to an optical 2D-Fourier transform of the system pupil func-

tion. The PSF of the optical system corresponds to the squared

modulus of this Fourier transform, which is the wavefront

intensity at the focal plane, considering a plane wave illumi-
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Figure 4
Accumulated CRL figure errors and their power spectrum density (PSD)
for (a) and (b) full-frequency figure errors (FF); (c) and (d) the low-
spatial-frequencies (LF); (e) and (g) mid- and high-spatial frequencies
(HF). (g) Zernike polynomials (in Noll notation) amplitude from the
transmitted wavefront phase from CRL with full errors. The amplitudes
are normalized to the wavefront in angströms. The orange bars indicate
rotationally symmetric terms. Notable contributions are Z2 and Z3 (tilts),
Z4 (defocus), Z8 (horizontal coma), Z11 (first-order spherical aberration)
and Z37 (third-order spherical aberration).

Table 1
Summary of the main parameters from the metrology of the Be lenses
used in the simulations.

The bottom rows display the accumulated figure errors calculated by
propagating a plane wave through the system; the accumulated figure errors
weighted with the system transmission at 8 keV; and the quadrature
summation of the individual r.m.s. values from L01 to L10.

Figure errors (r.m.s) (mm)

Lens
number

Radius
(mm) FF LF HF

Useful
aperture (mm)

L01 49.43 0.56 0.47 0.30 425.9
L02 48.66 1.12 1.03 0.42 421.0
L03 49.18 0.90 0.74 0.52 430.9
L04 49.88 2.24 2.18 0.49 427.2
L05 48.66 1.19 1.07 0.52 424.7
L06 49.26 1.15 0.85 0.77 428.4
L07 49.29 0.75 0.60 0.46 433.4
L08 49.41 1.28 1.13 0.69 432.1
L09 48.71 1.43 1.36 0.44 433.3
L10 48.63 0.82 0.73 0.37 417.3

Accumulated 5.22 4.91 1.77 417.3
Weighted 3.64 3.54 0.85 –
Quadrature-sum 3.88 3.53 1.63 –

Table 2
Comparison between theoretical and simulated focal lengths for different
CRL models.

Focal length (m)

Lens model Calculated Fit Difference

Single lens equivalent 0.470 [equation (2)] 0.470 –
CRL multi-slicing 0.473 [equation (3)] 0.473 <0.1%
CRL-MS+FF 0.465 [equation (3)] 0.465 <0.1%



nation as in Sections 2.3.1 and 6.2 of Goodman (2017). The

phase of the propagated field at the focal position along with

the normalized PSF for the multi-slice CRL models (without

and with the addition of figure errors) can be found in

Figs. 5(d)–5(e), 6(d)–6(e), 7(d)–7(e) and 8(d)–8(e). The

calculated FWHM of the central lobe of the PSF for the single-

lens equivalent, multi-slicing and multi-slicing with figure

errors is displayed in Table 3 along with the theoretical

diffraction-limited spot size [equation (5)]. The relative

intensities of the aberrated PSF normalized to the ideal case

(Strehl ratio) are compiled in Table 4 and shown in Fig. 9(a).

5.2.2. Beam caustics. The beam characteristics at the image

plane are very important and the simulations show obvious

differences between the CRL multi-slice with and without

figure errors at that position. We complement this with

investigations of the effect of optical imperfections away from

the focal position, especially because several experimental

applications may use a defocused beam. To obtain an overview

of the beam evolution up- and downstream of the focal posi-

tion, one can propagate the wavefront along the optical axis

and for each position extract a cross section of the beam. This

will be referred to as the beam caustic.8 The beam cross-

section for selected positions along the beam optical axis can

be seen in Figs. 5(b)–8(b), while Figs. 5(c)–8(c) show the beam

caustics for the same multi-slice CRL models. The horizontal

cuts were taken at y = 0. The zero position along the optical

axis is given by the distance from the centre of the CRL to the

image plane for each model (cf. Table 2). To calculate the

beam caustics, the wavefront was propagated from 10 mm

upstream of the focal position to 10 mm downstream in 4001

equally spaced steps along the optical axis.

5.3. Partially coherent simulations

The PSFand beam caustic simulations shown previously are

both fully coherent calculations. They present the focusing of

a perfect plane wavefront to a diffraction-limited spot. This

shows the intrinsic limitations of the optical system, but

inherently neglects the effects of an extended and partially

coherent source.

5.3.1. X-ray source. The emission of a single electron

passing through an undulator (filament beam) is fully

coherent. By changing the electron initial conditions (posi-

tions, direction and energy), propagating the emission of this

electron through the beamline and adding up intensities, one

can simulate partially coherent radiation if the electron beam

phase space (5D) is sufficiently sampled (Chubar et al., 2011).
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Figure 5
Ideal CRL-MS model at 8 keV. (a) Partially coherent simulations show the beam profile up- and downstream of the focal position averaging 104

wavefronts to simulate the radiation emitted by an undulator; (b) the coherent simulations show the beam profile of a plane wavefront being focused;
(c) beam propagation near the focal position (beam caustics) for a fully coherent beam (horizontal cut around y = 0); (d) phase and (e) intensity of the
PSF calculated focusing a plane-wavefront; ( f ) demagnified image of the undulator photon source (extended source).

8 Strictly speaking, the beam caustic is the envelope of light rays after passing
through an optical element – see p. 60 of Lawrence (1972).



In a conservative approach, the partially coherent simulations

presented here were performed using 104 wavefronts to ensure

convergence.

For this section, we chose to implement a hypothetic

beamline operating on the new Extremely Brilliant Source

(ESRF-EBS) magnetic lattice (Dimper et al., 2014). The

beamline sits on a straight section and has a CPMU189

undulator as an insertion device. The undulator was tuned to

its first harmonic at 8 keV for all simulations. The photon

source size is �71.92 mm 
 12.38 mm and its divergence

�17.66 mrad 
 14.72 mrad (FWHM, horizontal versus

vertical). The first optical element was placed 60 m down-

stream of the centre of the undulator to ensure a beam foot-

print larger than the geometric aperture of the CRL being

studied (A1 ’ 440 mm) and a constant intensity over it. The

transverse coherence length at the optical system is estimated

to be �60 mm 
 448 mm, from the van Cittert–Zernike

theorem. If there is no cropping of the beam (e.g. use of slits to

generate a secondary source), the horizontal direction is less

coherent than in the vertical, leading to a stronger blurring of

the image in the less coherent direction; cf. Section 7.5 of

Goodman (2017).

5.3.2. Beam characteristics at the focal position. The image

of the extended X-ray source is similar to convolution

between the geometrically demagnified image of the source

and the 2D-PSF of the imaging system, provided the beam is

not strongly cropped anywhere in the beamline being simu-

lated. Figs. 5(e)–8(e) show the normalized demagnified image

of the undulator photon source while Table 3 presents the

horizontal and vertical FWHM for those simulations.

Normalizing the images to their peak intensity aids qualitative

comparison, but omits the fact that the introduction of aber-

rations to the system contributes to the reduction of the peak

intensity and increases the background radiation – which has

been discussed in Section 2.2.2. Fig. 9(b) shows horizontal and

vertical intensity cuts for the multi-slice CRL models. This is a

graphical representation of the Strehl irradiance ratio, as the

intensities of the aberrated models are normalized to the peak

intensity of the aberration-free CRL model.

5.3.3. Beam profile evolution along the optical axis.

Calculating the full beam caustic with partially coherent

simulations is impractical using current simulation methods

and computers/clusters especially if (i) the beamline does not

present a very high degree of coherence, thus requiring a very

large number of wavefronts to accurately simulate the partial-

coherence; (ii) the beamline has low transmission (strong
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Figure 6
CRL-MS model with high-frequency figure errors at 8 keV. (a) Partially coherent simulations show the beam profile up- and downstream of the focal
position averaging 104 wavefronts to simulate the radiation emitted by an undulator; (b) the coherent simulations show the beam profile of a plane
wavefront being focused; (c) beam propagation near the focal position (beam caustics) for a fully coherent beam (horizontal cut around y = 0); (d) phase
and (e) intensity of the PSF calculated focusing a plane-wavefront; ( f ) demagnified image of the undulator photon source (extended source).

9 Cryogenic Permanent Magnet Undulator with 18 mm magnetic period.



beam cropping, diffraction orders outside apertures); or

(iii) the sampling along the optical axis is high. Still, many

applications require to operate up- or downstream of the focal

position and assessing the beam quality on such positions is

essential. Figs. 5(a)–8(a) show the beam profile evolution

spanning 10 mm along the optical axis for selected positions

up- and downstream of the image plane. Images are displayed

showing their relative intensity to the beam in the focal plane.

The positions chosen were the same as in Figs. 5(b)–8(b),

selected cuts along the beam caustics, so direct comparison

between fully and partially coherent simulations can be made.

6. Discussion

In this section, we discuss the main results drawn from the

simulations presented previously. We start by making

considerations on the effect of optical imperfections on a

(partially) coherent X-ray beam. The merit of using the Strehl

ratio for X-ray lenses tolerancing is discussed. Finally, some

comments on the simulation times of the several models and

simulations are made.

6.1. The effect of optical imperfections

Applying the Maréchal criterion [equation (9)] calculated

for beryllium lenses illuminated at 8 keV requires the accu-

mulated projected figure errors to be �z � 2.08 mm. Table 1

and Fig. 4 show that, except for the high-frequency range, the

system is operating far from ideal as the system exceeds the

limit imposed by the Maréchal criterion.

The addition of the mid- and high-spatial frequency errors

(�z ’ 1.77 mm) is related to scattering around the focused

beam, contributing thus to an increased background and

consequently reducing the peak intensity following Harvey

et al. (1995). Using a linear scale, both the ideal PSF and

the demagnified source image in Figs. 5(e)–5( f) are indis-

tinguishable from their aberrated counterparts in Figs. 6(e)–
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Figure 7
CRL-MS model with low-frequency figure errors at 8 keV. (a) Partially coherent simulations show the beam profile up- and downstream of the focal
position averaging 104 wavefronts to simulate the radiation emitted by an undulator; (b) the coherent simulations show the beam profile of a plane
wavefront being focused; (c) beam propagation near the focal position (beam caustics) for a fully coherent beam (horizontal cut around y = 0); (d) phase
and (e) intensity of the PSF calculated focusing a plane-wavefront; ( f ) demagnified image of the undulator photon source (extended source).

Table 3
Summary of the FWHM beam sizes for various CRL models.

The extended source image sizes are taken from the partially coherent
simulations averaging the intensity of 104 wavefronts.

Extended source image

Lens model PSF (nm) Horizontal (nm) Vertical (nm)

Analytic equations 199.8 605.6 204.1
Single lens equivalent 201.7 598.5 207.2
CRL multi-slicing 203.0 602.4 208.0
CRL-MS + HF 202.5 607.7 207.0
CRL-MS + LF 197.6 640.6 207.3
CRL-MS + FF 197.2 631.9 209.6



6( f), which is due to the fact that the accumulated figure error

complies with the Maréchal criterion. When considering the

low-spatial-frequency figure errors (�z ’ 4.91 mm), however,

concentric faint rings start appearing on the PSF. Homo-

geneous concentric rings on the PSF are a classical signature

of spherical aberration, which is a major component of the

LF figure errors – cf. Z11 in Fig. 4(g). The predominance of

spherical aberration on 2D parabolic Be lenses has already

been observed; see Fig. 6.14 of Seiboth (2016b). The PSF due

to spherical aberration can be seen also in Figs. 8.5 and 8.6

of Mahajan (2011). In the partially coherent simulations, the

rings around the main lobe seen at the PSF simulations are

stretched horizontally to the point that their visibility is

maintained vertically, but horizontal cuts [Fig. 9(b)] show

almost no trace of them, due to the reduction in transverse

horizontal coherence (blurring effect). Small misalignments

between the lenslets and some residual tilt from the LF errors

contribute to a lateral displacement of the beam in the image

plane – this is also observed in Figs. 7(e) and 8(e). Using the

full-frequency-range figure errors (�z ’ 5.22 mm) yields a

combined effect that is analogous to the superposition of the

HF and LF figure errors. The CRL-FF model can be seen in

Fig. 8. The diffraction effects from the aperture of the CRL are

not easily observable because the system has an apodized

Gaussian intensity at the exit pupil (Mahajan, 1986).

The addition of figure errors changes the beam profile

more significantly up- and downstream of the focal position.

Figs. 5(a)–5(c) show the focusing for the multi-slicing model of

the CRL without any optical imperfections. Introducing the

HF errors does not significantly change the beam shape as

they contribute to the scattering of light outside the beam

envelope defined by the beam caustics – cf. Figs. 6(a)–6(c).

The LF errors act to change the beam shape dramatically as

can be seen in Figs. 7(a)–7(c) and 8(a)–8(c). Upstream of the

image plane, a persistent central lobe is observed, albeit much

less intense, with a high background around it thus reducing

the signal-to-noise ratio. Downstream, the beam has a drop in

intensity in the middle, looking like a doughnut when a cut

transverse to the optical axis is made. This behaviour is

observed both on fully and partially coherent simulations.

Such beam caustics have been extensively reported by

experimental groups working under highly coherent condi-

tions, with similar optics and ptychographic reconstruction of

X-ray beams – cf. Fig. 3 of Schropp et al. (2013), Fig. 2 of

Seiboth et al. (2016) and Fig. 3 of Gasilov et al. (2017).

6.2. The Strehl ratio for X-ray lenses

The Strehl ratio for the CRL models is presented in Table 4.

In the numerical simulations, the intensity at the centre of the
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Figure 8
CRL-MS model with the full figure errors at 8 keV. (a) Partially coherent simulations show the beam profile up- and downstream of the focal position
averaging 104 wavefronts to simulate the radiation emitted by an undulator; (b) the coherent simulations show the beam profile of a plane wavefront
being focused; (c) beam propagation near the focal position (beam caustics) for a fully coherent beam (horizontal cut around y = 0); (d) phase and
(e) intensity of the PSF calculated focusing a plane-wavefront; ( f ) demagnified image of the undulator photon-source (extended source).



beam is normalized to the intensity obtained by a single-lens

equivalent system. Due to this fact, the CRL-MS model has

slightly more intensity in the central peak than the single lens

equivalent (�0.9% and �0.4% for the coherent and partially

coherent cases, respectively), which is explained by the fact

that the X-rays are continuously being focused inside the

CRL10 – cf. Schroer & Lengeler (2005).

Our results show (Table 4) that applying the Strehl ratio

calculated from analytic equations (6) to (8) overstates the

effect of moderate figure errors on the overall system

performance. In order to understand the dependency of the

numerically simulated Strehl ratio versus height error r.m.s.

we used the CRL-MS+HF model and scaled each individual

figure error (Table 1) by a constant value to allow for a

scanning of the total projected figure error �z. The results in

Fig. 10 show the expected Strehl ratio as a function of the

projected figure errors �z for different analytical approxima-

tions [equations (6) to (8)] and for the numerical calculations

with a fully and partially coherent illumination. All approa-

ches show very good agreement up to Sratio > 0.8, when they

start diverging. The expressions for Sratio a [equation (6)] and

Sratio b [equation (7)] can be considered as approximations for

Sratio c [equation (8)], therefore are only expected to be valid

over a restricted range (large Sratio). A fit of the simulation

data (coral rhombuses and blue squares in Fig. 10) gives

Sratio coh: ’ exp
	

� 2:32
 1010�2
z � 6:13
 104�z

þ 2:54
 10�2



; ð20aÞ

Sratio part:coh: ’ exp
	

� 2:28
 1010�2
z � 5:07
 104�z

þ 2:29
 10�2



: ð20bÞ

Unfortunately, due to the nature of the projected figure errors

(in the range of few micrometres r.m.s.), we are not able to

discard the non-quadratic terms. We can rewrite equation (20)

as follows,

Sratio simulation ’ exp �
2�

�

� �2
	

	1��

2
�
2�

�
	2��� 	3

" #

;

ð21Þ

where 	 are scaling constants that, in principle, depend on the

number of elements, lens material, energy and, most impor-

tantly, the spatial distribution of the accumulated errors over

the optical element aperture. For our particular examples, 	1 =

0.71, 	2 = 0.28 and 	3 = 2.54 
 10�2 for the coherent case and

	1 = 0.70, 	2 = 0.24 and 	3 = 2.29 
 10�2 for the partially

coherent case. When comparing equation (21) with equation

(8), a value of 	 < 1 suggests that there is some weighting of the

phase errors reducing their effect, but simply multiplying the

accumulated phase errors (cf. Table 1) with the normalized
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Figure 9
Graphical representation of the Strehl ratio. Horizontal (full lines) and
vertical (dashed lines) intensity cuts at the focal position from several
CRL models under (a) fully and (b) partially coherent illumination. The
partially coherent simulations were performed by averaging the intensity
of 104 wavefronts.

Figure 10
Strehl ratio from numerical simulations and from the application of
different approximations [equations (6) to (8)] as a function of the figure
error �z from a lens stack made of beryllium illuminated at 8 keV. The
vertical dashed black line indicates the maximum tolerable thickness
[equation (10)] for complying with the Maréchal criterion [equation (9)],
that is, ��/14 ’ 2.08 mm. The partially coherent simulations were
performed with 104 wavefronts.

Table 4
Strehl ratio calculated for the multi-slicing models (ideal and with
aberrations) using the accumulated figure errors (�z) and equation (6) to
equation (8).

Non-physical values omitted. Partially coherent simulations were performed
with 104 wavefronts.

Lens model
�z
(mm) Sratio a Sratio b Sratio c Coherent

Partially
coherent

CRL-MS 0.00 1.00 1.00 1.00 1.00 (9) 1.00 (4)
CRL-MS+HF 1.77 0.85 (5) 0.86 (0) 0.86 (5) 0.87 (6) 0.88 (1)
CRL-MS+LF 4.91 – 0.19 (4) 0.28 (2) 0.50 (1) 0.51 (0)
CRL-MS+FF 5.22 – 0.13 (5) 0.32 (7) 0.45 (3) 0.46 (4)

10 This effect is negligible for a short CRL, but it can become important when
the number of elements is drastically increased (Schroer & Lengeler, 2005).



optical system transmission (cf. Fig. 2) does not allow

prediction of 	 and we leave this as an open question at the

time of writing.

Following the recent discussion about the pertinence of

Sratio � 0.8 as an indicator of optical quality for the X-ray

regime and the performance of such optical systems away

from the focal position (Cocco, 2015; Cocco & Spiga, 2019), we

can observe from our simulations (Figs. 5–8) that, in terms

of wavefront preservation, X-ray lenses are apparently more

susceptible to the low-frequency figure errors, as they are the

ones that change the beam profile up- and downstream of the

focal position. The high-frequency errors lead to scattering of

the beam and speckles, but generally do not change the beam

shape even away from the focal position. It is clear from Figs. 7

and 8 that the Strehl ratio encountered at the focal position

(cf. Fig. 9) is not preserved up- or downstream from it.

Fortunately, the low frequencies are those which can be

readily corrected by the fitting of corrective optics (Seiboth et

al., 2017). Corrective plates aim at increasing the Strehl ratio

in the low-frequency range, leaving the high frequencies as the

bottleneck for corrected systems performance.

6.3. Simulation time

Increasing the complexity of the simulation model comes

at the expense of increasing the overall simulation time, but,

as long as the transverse wavefront sampling is maintained,

memory consumption is not affected from one model to

another. The time increase in the simulations is mainly due to

(i) the increase in the number of drift spaces and the number

of optical elements; (ii) from reading the densely sampled

metrology data. Table 5 presents the typical simulation times

for this work. Those are particularly high because the trans-

verse sampling of the wavefronts is several times larger than

the nominal minimal sampling necessary to mitigate artefacts

or under-resolved features on the wavefront. Employing 104

wavefronts for the partially coherent simulations is also

exaggerated, but was done to ensure that any changes on the

simulation come from the change of model being studied and

not from the statistical nature of the sampling of the electron-

beam phase space. The simulation times presented on Table 5

can certainly be reduced without loss of accuracy by adopting

a more sensible sampling.

7. Conclusion

Building on physical optics concepts and already implemented

optical elements in SRW, we have expanded the concept of

the complex transmission element representation of the CRL

to account not only for its thick element nature but also real

imperfections obtained with at-wavelength metrology. We

have studied the adequacy of commonly used design equa-

tions and figures of merit by performing coherent and partially

coherent simulations. We were able to accurately simulate the

effects of figure errors on beam shape and intensity along the

optical axis. Our simulations of the beam caustics compare

well with experimental data from other research groups using

the same type of Be lenses. We show that using the Strehl ratio

formulations given by equations (6) to (8) leads to an under-

estimation of the system performance if the total projected

figure errors are larger than the limit imposed by the �/14

criterion (Maréchal criterion for optical quality). We see an

immediate application to lens tolerancing and guidelines for

accepting or not commercial optical elements and in-house

lens production and testing of X-ray lenses (quality control).

By decomposing the figure errors in frequency ranges, we note

that the strongest contribution to the degradation of the

wavefront both in focus and away from it comes from the low-

frequency range, which is where corrective optics are most

efficient. By being able to add individual lens profiles to a

lens stack we envisage the possibility of calculating corrective

optics for an arbitrary lens combination offline, as opposed to

experimentally measuring the wavefront phase errors of the

lens stack as proposed by Seiboth et al. (2017).
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Table 5
Summary of the simulation times for different CRL models, from the
most simple one (single lens equivalent) up to the more complex multi-
slicing (MS) with figure errors.

Simulations were performed on an Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40 GHz cluster at the ESRF. Partially coherent calculations were carried out
using 28 cores in parallel.

Model Fully coherent
Partially
coherent Caustics

Single lens equivalent 33 s 2 h 44 min 1 h 32 min
Multi-slicing 58 s 5 h 12 min 1 h 33 min
MS + figure errors 2 min 48 s 5 h 42 min 1 h 35 min

(1 wavefront) (104 wavefronts) (4001 pts)
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