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A hyperbolic two-phase flow model involving five partial differential equations is built for
liquid-gas interface modelling. The model is able to deal with interfaces of simple contact
where normal velocity and pressure are continuous as well as transition fronts where heat
and mass transfer occur, involving pressure and velocity jumps. These fronts correspond
to extra waves into the system. The model involves two temperatures and entropies but a
single pressure and a single velocity. The closure is achieved by two equations of state that
reproduce the phase diagram when equilibrium is reached. Relaxation toward equilibrium
is achieved by temperature and chemical potential relaxation terms whose kinetics fis
considered infinitely fast at specific locations only, typically at evaporation fronts. Doing
so, metastable states are involved for locations far from these fronts. Computational
results are compared to the experimental ones of Simoes-Moreira & Shepherd (1999).
Computed and measured front speeds are of the same order of magnitude and the same
tendency of increasing front’s speed versus initial temperature is reported. Moreover,
the limit case of evaporation fronts propagating in highly metastable liquids with the
Chapman-Jouguet speed is recovered as an expansion wave of the present model in the
limit of stiff thermal and chemical relaxation.

1. Introduction

When a liquid initially in thermodynamic equilibrium undergoes strong rarefaction
waves, it may reach a metastable state where the temperature is higher than the satu-
rated one at the final pressure of the expanded state. Then the superheated liquid releases
its metastable energy (stored as internal energy) very quickly, even explosively, produc-
ing either pure vapor, fif the liquid is retrograde (Chaves (1984); Thompson ef al. (1987);
Kurschat et al. (1992)), or liquid-vapor mixture at high velocity. This phenomenon fs
often called cavitation. Such situations appear frequently in nature and in many indus-
trial applications, as liquid flows around hypervelocity projectiles, submarine airfoils, or
inside nozzles such as fuel injector systems. Cavitation in these systems always produces

1 E-mail adress: richard.saurel@polytech.univ-mrs.fr
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FicURE 2. Liquid thermodynamic path associated to the expansion wave producing a
superheated liquid

strong disturbances. In most applications, cavitation appears as a multidimensional phe-
nomenon due to geometrical effects. This multidimensional character complicates hoth
experiments and theoretical approaches. By jusing one-dimensional expansion tubes sev-
eral authors (Grolmes & Fauske (1974); Chaves (1984); Thompson et al. (1987); Hill &
Sturtevant (1990); Frost et al. (1991); Kurschat et al. (1992); Simoes-Moreira & Shep-
herd (1999); Reinke & [Yadigaroglu (2001)) succeeded in isolating the main phenomenon
we propose to summarize hereafter. These experiments consisted in connecting a verti-
cal tube filled with & liquid in thermodynamic equilibrium at atmospheric pressure (or
higher) to a very low-pressure chamber (figure 1).

As soon as the membrane between the liquid land the vacuum chamber s ruptured, rar-
efaction waves propagate through the liquid producing a superheated liquid (figure 2).
Then a subsonic phase-transition front propagates through the superheated liquid pro-
ducing a high velocity liquid-vapor mixture in thermodynamic equilibrium towards the
low-pressure chamber. The ffront velocity is approximately 1 im/s while the ejected mix-
ture velocity s of the order of 100 m/s.

These experimental observations indicate that both liquid and wvapor compressibilities
have to be considered. They also report the presence of an acoustic wave (expansion
wave) preceding the evaporation front, itself preceding a contact discontinuity and a
compression wave as represented in the figure 1. The corresponding waves pattern fs
shown in the (z,t) diagram of figure 3.

Expansion effects in industrial systems are often due to geometrical effects, as for exam-
ple in nozzles where cavitation appears at locations where tthe pressure iis very low and
the liquid superheated (figure 4).

The aim of the present paper is to develop a model able to deal with metastable states
and evaporation front dynamics, as well as the other waves shown in figure 3. The model
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FIGURE 3. A typical waves pattern of cavitating systems
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Fi1cURrE 4. Cavitating flow in a nozzle. Cavitation pockets appear in the divergent of the
nozzle where geometrical expansion produces metastable liquid state.

must also be able to deal with interfaces separating a liquid and a non condensable gas.
Indeed, mass transfer occurs only under specific thermodynamic conditions tthat do not
necessarily correspond to the local thermodynamic state at the interfaces. Thus the model
must be able to deal with interfaces of simple kcontact as well as evaporating interfaces.

The paper is organized as follows. Existing model are reviewed and a critical analysis
is given in § 2. Justification of the choice for temperature non equilibrium model is done.
Tn §3, starting from the total non kquilibrium model of Baer & Nunziato (1986) an
asymptotic analysis is carried out in order to derive a single velocity and pressure two
phase flow model including heat transfers. This imodel has the ability to solve interface
problems with non miscible fluids. Its thermodynamic closure is examined in §4. Mass
transfer modelling is addressed in §5. Closure relations are obtained by examining the
entropy production in each phase and in the mixture. The basic ingredients to solve the
hyperbolic system with heat and mass transfer are reported in §6. Numerical results
are reported in §7. The limit case of interfaces separating pure non miscible fluids is
examined. Then mass transfer is introduced producing extra waves into the system.
Computed results are compared to the experimental ones of Simoes-Moreira & Shepherd
(1999). The Chapmann—Jouguet {(CJ) kinetic relation proposed by Chaves (1984) for
evaporation fronts propagation in highly metastable liquids is recovered and justified as
an eigenvalue of the limit system with stiff thermal and chemical relaxation.

2. Review of existing models

[Essentially two classes of models are available in the literature. The first class corre-
sponds to pressure and temperature equilibrium models, the second class being related
to temperature non-equilibrium models.

2.1. Pressure and temperature equilibrium models

Four models at least belong to this category, with increasing level of complexity:
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¢ The mixture Euler equations with & kubic equation of state (EOS). A prototype of
such EOS is the van der Waals one. With kuch Imodels a loss of hyperbolic occurs in
the spinodal region. In other words, the square sound speed may becomes negative and
waves propagation has no physical sense (Menikoff & Plohr (1989)).

a The mixture Euler equations can also be used with a tabular EQS or a combination
of pure phase EOSs with assumption bf pressure, temperature and chemical potential
equilibrium in the two-phase region (see for example Saurel et al. 1999; Liou & Edwards
1999). Such model removes the preceding loss of hyperbolicity. However, the mixture lis
assumed to evolve under thermodynamic equilibrium, thus omitting metastable states.
Also, the model is unable to deal with imaterial interfaces separating a liquid and a
non-condensable gas. Hence, it has a restricted domain of application.

e The mixture Euler equations are sometimes augmented by & mass fraction equa-
tion lwith a relaxation term (Faucher et al. (2000)), as frequently done for mixtures of
reacting gases. This four equations model is unable to kolve interfaces between a liquid
and a non-condensable gas (water/air for example). This lis due to its isothermal closure
not compatible with interface conditions (equal pressures and normal velocities but not
temperatures). Moreover, determination of the mass relaxation term is an issue.

¢ Models derived from the gecond-gradient theory (Cahn & Hilliard (1958)). In this
approach, the interface is described as a diffuse zone with a capillary length scale that
has to be resolved. This results in severe restrictions as this zone length is typically of the
order of one nano-meter. To do practical simulations, at the scale on an individual bubble
for example, the interface has to be thickened (Jamet et al. (2001)). Such |procedure
has important cousequences on the model ability to deal with metastable states. Also,
interfaces with large density gradients are very difficult to kolve, as lwell as interfaces
separating immiscible fluids (water/air for pxample).

2.2. Temperature non-equilibrium models

Three models at least belong to this category:

e The most conventional temperature non-equilibrium model is the 6 equations model
obtained for example with averaging methods (Ishii (1975); Delhaye & Boure [1982)). It
involves a balance equation bf mass, momentum and energy per fluid. Contrarily to the
preceeding models, the mixture evolves with two velocities. 1t is present in the literature
with two options:

i) One of the phases is considered incompressible, the mixture pressure being those
of the gas phase. Such option is not compatible with the presence of rarefaction
waves in the liquid phase, whose presence is mandatory fin cavitating flows.
ii) Both phases are compressible and the closure is achieved with the pressure equi-
librium assumption (Butler et al. (1982)).
The 6 equation model, with both options has a restricted domain pf hyperbolicity. This
results in a restricted validity to problems where transient wave propagation is not es-
sential. Moreover, it is unable to solve interface problems (water/air for example).

e The 7 equations model (Baer & Nunziato (1986)) (and its variants) is unconditionally
hyperbolic and is able to deal with a wide range of applications. [t is composed of the
same 6 equations as previously, augmented by an evolution equation for the wolume
fraction of one of the constituents. [ts ability to solve interface problems as well as fluid
mixtures with several velocities was demonstrated in Saurel & Abgrall (1999), Saurel
& Le Metayer [2001) and Saurel et al. (2003). This model has been extended to the
propagation of evaporation fronts in cavitating systems (Le Metayer et l. (2005)). The
four waves present in the figure 3 are correctly captured and the model is able to deal
with metastable states. It has been used for practical computations and validated against
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experiments of supercavitation. However it is quite complex to code and does not provide
information about the structure of the evaporation front, as the front is considered as a
sharp discontinuity.

e The last model involves a single pressure and velocity. It is composed of two mass
balance equations, one mixture momentum equation, one mixture energy equation and a
volume fraction equation. This 5 equations model (Kapila et al. (2001)) is unconditionally
hyperbolic. Its ability to solve interface problems with compressible fluids was demon-
strated in Murrone & Guillard (2004), Perigaud & Saurel (2005) and Petitpas et al.
(2007). It was extended in Perigaud & Saurel (2005) to capillary and viscous effects.
Contrarily to the Cahn & Hilliard (1958) model, the interface has no capillary length
scale. This has important consequences onm numerical resolution as well as its ability to
deal with large density ratios. Another important difference is also present regarding
thermodynamic closure. Two pure phase [EOSs are used instead of a single oue, like van
der Waals one. The model remains out of thermal equilibrium and the presence of tem-
perature and chemical potential differences will be used hereafter to derive a relaxation
model able to deal with evaporation fronts.

This last model is the starting point of the present analysis. Its derivation in the presence
of heat and mass transfer is ldetailed hereafter. Its fhermodynamic closure, based on
two equations of state is detailed. The building of kinetic terms that make the system
relax toward equilibrium is done on the basis of the entropy inequality. With this kinetic
closure and special treatment of stiff relaxation, the model is shown to be able to compute
evaporation fronts by solving their internal structure. Metastable states are involved, as
well ag shock, rarefaction and interface dynamics. Dynamic appearance of cavitation
pockets is studied in the following limit kituations:

e simple mechanical pocket growth,
s mechanical pocket growth with heat bnd mass exchanges.

3. The flow model when there is no mass transfer

The present approach is based on & five equations model with a single pressure and
a single velocity but two temperatures and entropies. Mass transfers will he modeled as
relaxation effects. Before doing such extension, the flow model in absence of mass transfer
is derived. It is obtained in the asymptotic limit of a non equilibrium two-phase, two
pressures and two velocities hyperbolic multiphase flow model. The following asymptotic
reduction follows the lines of Kapila ef al. (2001).

B.1. The “parent” model

The starting point of the present analysis is the Baer & Nunziato (1986) with symmetric
closure frelations (Saurel et al. 2003; Chinnayya ket al. 2004):
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da

ra L fup e Vay = pu(p1 — p2),
t

30&1/’1

ot

+ div(an pruy) = 0,

8061pl’u1

5 + div(ag prug @ ug) + V(arpr) = prVar + Alus — uq)

Oaq p1 En

En + div(aq (p1 E1 + p1)ur)

=prus - Vg + dug - (uz —uy) — prua(pr — p2) + G (3.1)

Oy P2
ot

+ diU(Oégpg’LLg) = O,

Oaspaut )
% =+ dZU(Okauk & uk) + V(Oégpg) = pIVa2 _ A('U,Q _ ul)

Oazps _
TR div(as(p2 By + p2)us)

\ =prus - Vag — duy - (uz — uy) + pru(pr — p2) — Q1

We denote respectively by ag, pg, Uk, Pk, Er and e the volume fraction, the density, the
velocity fvector, the pressure, the total specific energy and the internal specific energy of
the phase k. The total specific energy is defined by k = ej, + u2 /2.

The heat ltransfer term @4 is simply modeled by ¢4 = |H(T> —T1) where H = 5.5, in-
volves the convective heat transfer coefficient h and the specific exchange surface S;.This
system guarantees conservation for the mixture and is frame invariant.

[The interaction terms that appear in the right hand side express the effects which drive
the system to mechanical equilibrium by the way bf relaxation coefficients. Following
Saurel et al. (2003) where the continuous limit of the discrete two-phase flow equations
derived in [Abgrall & Saurel (2003) s obtained, symmetric closure relations are available:

U= % and A = Z1Z2,u
where Z represents the acoustic impedance (Z = |pc). The average interfacial pressure
and velocity are given by:

_ Zapa+ Zop . 0ay, (us —u1)Z1 25
pr = ————dsign(—)————,
Zl + Z2 or Z1 + ZQ (3 2)
= Ziuy + Zouy 4 n(%) P2 — P1
! Zl + Z2 g 81‘ Z1 + ZQ ’

The system (3.1) with this choice of interface variables and relaxation coefficient is con-
sistent with the second law of thermodynamics. Other kstimates are also possible, one
other choice is given by Baer & Nunziato (1986):

pr = pi1,
Wy = Us.

(3.3)

In the present study, where stiff mechanical relaxation is konsidered, the estimates (3.2)
and (3.3) can be used findifferently. However, in the general case of finite relaxation
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rate, the estimates (3.2) are able to enforce interface kbonditions at each volume fraction
discontinuity (equality of normal velocities and pressure) automatically (Abgrall & Saurel
2003). This system lis unconditionally hyperbolic and admits the characteristic waves
speeds: uy, ug + cx, ur — ¢y for each phase k and the interface velocity 7.

[For the present application, this system involves unnecessary effects (two velocities and
two pressures) and a reduced model is preferred. It is indeed important to determine the
simplest model involving the pertinent physics. The reduction of system (3.1) is done in
the following subsection.

3.2. Reduced model

The two-phase flow model (3.1) can be written using primitive variables, namely

oU
—=FU)+®(U),
= FU)+e W),
with
—Uy - Va1
—div(aprur)
o —uy - Vuy — —Vp + uvfn
a1p1 T o 9 “h
Uy —p1éidiv(ur) + — —2<el) (ur —wu1) - Va
preidiv(ug pr—p I 1 1
U= D1 7F(U): ' a1 ' 8/)1 1
Q2p2 —dif(azpzuz)
Uz —us - Vug — —Vp2 + uV@Q
P2 P2 Q2p2
. I 5 [ Oe:
—pacidiv(uz) + = pr—p3 (2) (ur —u2) - Vas
@2 8/)2 P2
and
p(p1 — p2)
0
A
Uy — U
06101( ? 1)

Fl 2 861 Fl Fl
et _ ool _ AL (s — , — -1
@(U) = Mal [pl & (8/)1)131 (pl p2) * ay (UI U1)(U2 U1) + (03] Ql

0
A
_a2p2 ('U,Q - ul)
FQ 9 (862) FQ FQ
— - = - —A—(ur —u2)(us —u1) — —
’uaz lpl P> B b (Pl pz) az( T 2)( 2 1) ale

Here, ¢; represents the speed of sound of phase k:
P _ (%)
P%», Opr i

(5nr)
i/ ,,

and T’y rrepresents the Gruneisen coefficient of phase % :

V=12 It =uw (gp’“)
€k 143

Vk=1,2 =
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where vy = 1/pg.
The reduced system is bbtained in the limit of stiff mechanical relaxation:

1
pu=—,A A== where e— 0",
€ €

Note that infinite frelaxation parameters are consistent with the expression of pressure
and velocity relaxation parameters linked by the relation A = Z; Zsp. It is also important
to note that heat transfer effects are not considered in the same limit, as we are seeking
a temperature non equilibrium model.

With these notations, the preceding system becomes:

oU 1
E:F(U)HEW(U)JFQ(U) (3.4)
with:
(P — p2)
0
0
0
YAV,
142 (s — 1)
a1p1 0
1 AVAIN Iy
Y(U) = ——1K1(p1 —p2) + ) (ur —ui)(uz —w1) LQUU) = oqu
0 0
0
_Z1Z2 (3 — 1)
o O
2P ~La
T 717251
—2K2(p1 —pz) - 2( I —Uz)(uz —U1)
Qa9 (65

Here, ' and ¥ are regular enough functions evaluated at a state U which is close to the
mechanical equilibrium state Uy. We can ket

Ut =Uy+elU; + 0(62)
and the system (3.4) becomes:
Uy ol

OF(U) a(U)

1
a1 +6W = F(Uo) + € U (Uo)Ul + ;‘I’(Ug) + U (Uo)U1
oQU .
o) + 228D @y, + o).
Since Uy is an equilibrium state,
T(Up) =0 (3.5)

and, lthe system under reduced form becomes:

oy ()

5 FUo) + ETii (Uo)Us + Q(Us) (3.6)

Condition [3.5) implies that in lthe asymptotic state, the system has to verify:

o_,0_ _0
Uy =Uy = U
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and

P =p)=p

These constraints used in (3.6) give the reduced model that takes into account heat
transfer effects:

0o . [e5]e %) <F1 Fz)
— +u Vo, = K (aq,p1,p2,p) diviu) + - — + —
T 1 (a1, p1, p2,p) div(u) ﬁpw% tamE \ar o 71

Oay P1
ot

+ div(agpru) =0

4 306202

3 + div(azpou) =0 (3.7)

Opu
ot

OpE
ot

+div(pu@u)+Vp=10

+ div(u(pE+p))=0

where K = ajas(pac — p1c3)/(aapic? + aypac3). The upperscript ”0” has been omitted
for the sake of clarity. The mixture variables are defined by: p = aip; + asps and
E=Y1E, + Y5 Es, where Yy, = agpr/p denotes the mass fraction of the phase k.

4. Thermodynamic closure

In order to circumvent the difficulty of models having negative square speed of sound
in the two-phase region, the present model uses two equations of state (EOS). Each
fluid possesses its own EOS. In the present paper, we consider ”stiffened gas” (SG)
equations of state, but the method can be easily generalised to more complex convex
equations bf state. Our fgoal in using this type of EOS is to handle the essential of the
physics and thermodynamics under simple analytical formula. Moreover this EOS is the
simplest [prototype that contains the main physical properties of pure fluids: attractive
and repulsive molecular effects. Doing so, each fluid has its own thermodynamics bnd in
particular its own entropy. In the present modelling of mass transfer, detailed in the next
section, relaxation towards equilibrium is achieved by a kinetic process, contrarily to van
der Waals modelling where mass transfer is a thermodynamic path. It is the reason why
the present modelling preserves hyperbolicity during mass transfer.

However, when equilibrium fs reached, conventional properties of the phase diagram
have to be recovered (latent heat of vaporization, saturation temperature) that depend
on pressure or temperature. In other words, the two pure fluids EQS must be connected
by some constraints. These constraints are used for the determination of the barious
constants involved in these EOSs.
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[For each phase the thermodynamic state is determined by the SG EOS that reads:

_ P+ VP v a

elp, ) = T =0 g (4.10)
_ (7 — 1)CvT

v(p,T) = T (4.1b)

WT) =~C,T + ¢ (4.1¢)

T'Y
S
(p+ poo)ly — 1)

Where e, v = 1/p, p, T, h and g are respectively the internal energy, the specific volume,
the pressure, lthe temperature, the enthalpy land the Gibbs free energy of the considered
phase. The constants, characteristic of each fluid are: 7, pes, Cy, q Bnd ¢'.

A method to determine these parameters in gas-liquid systems fis given in Le Metayer
et al. (2004). The lcoupling of gas and liquid parameters is particularly examined. This
method is summarized hereafter.

4.1. Method to determine SG EOS parameters

Parameters of the SG EOS are determined from experimental curves for each fluid. In
the case we are interested in (liquid in presence of its vapor), we need the saturation
curves. The experimental data needed are : p = psat(T), Pieap(T); hgeap(T), Vieap(T),
Ug,exp(T") and the latent heat of vaporization Ly czp(T) = hg eap(T) — hi,eap(T).
(a) From the expression of enthalpy (4.1¢), we have:
dhy,

Vi =14 ar = VCuk = Cp -

This permits to determine the average heat capacity coefficients Cp ; by a linear approx-
imation between two reference states 0 and 1 as:

hi exp(T1) — B eap (T
Vi=tg Gy = ez = frenlT0),

This also allows the calculation of the reference energies:

Vk = lag 9 = hk76mp(T0) - Cp,kTO~

(b) Then, by using the experimental curve p = pg,:(T), the specific volume is expressed
as:
(Cps = Co)T

Yk =1, v (T) = .
g k( ) psat(T) + Poo,k

(4.2)
Under logarithmic differentiation, we have:
V=19  dlog(vy(T)) = dlog(T) — dlog (psat(T) + Poo.k) -
The integration of this equation between lthe two reference states 0 and 1 yields:
Vk=1,g log(vi(T1)) — log (vx(To))
= log(T1) — In(To) —10g (Psat(T1) + Poo,k) + 108 (Psat (To) H poc.k)

These expression allows the calculation of the coeflicients poo 4:

Uk (T0)T1psat(To) — vk (Th) Topsat (Th)
v (T1)To — v (To)Th

VE=19 = Poojk =
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(¢) Then (4.2) applied to the reference state 0 provides the approximation of C,, ;:

g (T
h=lg  Cow = Coe— B gy (To) + o).
(d) The approximation for v follows :
Cyp
Yk =1, —
9 Y Cor

(e) At thermodynamic equilibrium, the two Gibbs free energy have to be equal (g, =
¢1) with the definition (4.1d)). This implies:

B
log (p + poc,w) = A+ = + Clog(T) + Dlog (p + poo.t) (4.3)

where A, B, IC and D depends on the SG EOS parameters:

Z:CP,I_CP,9+q;_ql, B— qi — 4y C - Cp,g_cp,l and ID — Cp,l_cv,l
Cp,,q - Cv,.q ’ Cp,g - Cw; ’ Cp,g - Cv,g’ Cp,g - Cw;

The relation (4.3) is non linear but permits the computation of the theoretical curve
p = Psat(T). Such computation needs the two entropy constants ¢'. By convention, we
take g = 0 J.kg~'.K ! and choose q; in order to have the best fit between theoretical
and experimental curves.

This algorithm for the determination of SG [EQS jparameters is yvery accurate provided
that experimental curves saturation curves are quasi-linear. It means that the two refer-
ence states have to be sufficiently close. Near the kritical point, restrictions appear. But
far from this point, wide ranges of temperatures and pressures can be covered as shown
hereafter.

4.2. Results for water and dodecane

As an illustration, results concerning liquid and vapor water and liquid and vapor dode-
cane are ppresented.

lFor water, the chosen temperature range is 298 — 473K. The corresponding experi-
mental data (Oldenbourg 1989) are :
Psat(To) = 3166Pa,  hyepp(To) = 104.7 x 103J/Kg, hgeap(To) = 2473.4 x 103J/K g,
Vg,eap(To) = 42.4m3 /K g,
Psat(Th) = 155 10°Pa,  hyepp(T1) = 851.6x103T/Kg, |hg.exp(Th) = 2733.7x103J/K g,
Vg,eap(T1) = 0.124m? /K g.
The results of the preceding algorithm are summarized in table 1 and the comparison
between experimental and SG approximation curves is shown in figure 5. Obviously, some
errors are present, pssentially regarding the liquid kpecific volume where 25% maximum
error is noticed. The reason is that the SG EOS is the simplest prototype involving re-
pulsive and httractive potentials for condensed Imaterials. With this particularly simple
formulation it is possible to fit quite correctly saturation curves and phase diagram. If
better accuracy is required, a more sophisticated model can be used (Mie Gruneisen EOS
for example), to the price of a heavier method to Hetermine the various constants. Qur
aim is not to build EOSs in this paper but to propose a general technique. The problem
of defining a proper equation of state has been considered in Le Metayer et al. (2004)
and the method we propose in this paper can be applied to more general EQS without
any special conceptual difficulty. Once more, our aim is more to show that the new mul-
tiphase model, under simplified thermodynamic closure, is able to deal with evaporation
waves and metastable states with reasonable accuracy.
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Pook(Pa) Cp(J/kg.K) Cyu(J/kyg.K) ~ q(J/kg) ' (J/kg.K)
liquid 10° 4267 1816 2.35 —1167 x 10° 0
vapor 0 1487 1040 1.43 2030 x 10> —23 % 10°

TaBlE 1. SG EOS parameters for liquid and vapor water
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F1GURE b. Saturation curves for water in the temperature range 298-473 K. Experimental
curves are shown with lines and stiffened gas approximation are shown with symbols.

Pook(Pa) Cp(JlkgK) Co(J/kg.K) ~ q(J/kg) ¢ (J/kg.K)
liquid 4 x 108 2534 1077 2.19 —755 x 10° 0
vapor 0 2005 1956 1.025 —237 x 10> —24 x 10°

TaBlE 2. SG EOS parameters for liquid dodecane and its vapor

The same algorithm fis used to determine thermodynamic parameters of dodecane, in
the temperature range 298 — 473K . Phase diagram and associated data are available
in Simoes-Moreira (1994). The corresponding SG EOS parameters are summarized in
table 2. The same accuracy when compared with experimental data was bbserved.
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F1GURE 6. Wood’s speed of sound versus liquid volume fraction for a liquid-vapor water
mixture.

4.3. Mizture SG FOS

With the help of the phases EOS, the mixture EOS ls pasily obtained. The mixture
specific internal energy definition writes:

pe = aip1é1 + azpaesr

By using SG [EQS [4.1a), each product pgep can be written as:

Pkt YkPoo,k
ppep = Dk T WPk ) o
e —1

Under pressure equilibrium, we bbtain the closure relation for system (3.7):

ple—Yigi — Yogp) — (St 4 2222 )
p(p767a17a27Y17Y2) - oy

Qs
v1—1 + y2—1

(4.4)

With this mixture EOS, the flow model (3.7) reproduces propagation of acoustic distur-
bance at the Wood speed of sound (Wood 1930):
1 a «a

— =t — (4.5)

PCy 161 p263
This sound speed has a non-monotonic bhehavior versus volume fraction, as shown in
figure 6. The system (3.7) is strictly hyperbolic with the characteristic waves ppeeds:
U+ Coy U — Cyp and w.

5. Mass transfer modelling
5.1. Basic ideas

As mentioned in Section 2, it is well known (Menikoff & Plohr 1989) that van der Waals
or cubic EQS used in the context of the Euler or Navier-Stokes pquations correspond
to ill-posed models. The square of the sound speed becomes negative in the spinodal
zone. Our model considers phase change as a kinetic transformation and not as a ther-
modynamic one. [The phase diagram in figure 7 illustrates both options. With the kinetic
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FIGURE 7. Schematic representation of the thermodynamic path using a cubic EOS compared
to the kinetic process represented in dashed line. With the cubic EOS, hyperbolicity is lost in
the spinodal zone. The present model consists in using a kinetic transformation to connect the
isentropes of liquid and vapour. As no thermodynamic path is involved, the mixture sound speed
is always defined. Tn the kinetic approach, from a metastable liquid (end of liquid isentrope)
non equilibrium vapour and liquid are produced ht constant specific volume for the mixture.
Vapour production makes the pressure increase. During kinetic evolution the non equilibrium
points of liquid and vapour move in direction of saturation curves. At each non equilibrium state
pressure equilibrium is assumed. When thermodynamic equilibrium is reached, liquid and vapour
states are located on saturation curves. Then, if the specific volume is increased, the equilibrium
concentration evolves and as limit (case, the vapour expands along an isentrope starting from
the saturation curve. Note that when the various non-equilibrium states are omitted, the global
transformation path (in bold dash lines), composed of two thermodynamic paths and a kinetic
one gives a transformation very closed to the one of van der Waals. The main difference is that
ill posedness issues have been removed.

representation, metastable states are present, and the mixture sound speed is always
defined. Such approach poses however extra difficulties:

e Determination of the phases EQS. This issue has been examined previously.

e Determination of mass transfer terms.
The system (3.7) describes a compressible two-phase flow mixture in mechanical equilib-
rium but out of thermal equilibrium. The goal is now to introduce mass transfer effects.
The addition of mass transfer modifies the mass equation of each fluid:

Oa . ;
L diy (a1 pru) = pY;
ot

3042/)2 . _ ;
5 + div (agpau) = —pY)

where pY; epresents the mass flux from fluid 2 to fluid 1. Mass transfer is considered with
finite rate. It means that it has no dependence with the small parameter . Expression
for this mass flux has to be determined.
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Mass transfer implies changes in the volume fraction. We assume that the volume
fraction equation becomes:

r %
%—i—u-V&l—Kdiv(u)ﬁ-#Q( ! >Q1+pp1 (5.1)

2
Qap1C] + Qp205 \ Qg [

where the interfacial density p; has to be determined.

The determination of the expressions for mass transfer Y7 and interface density oI
is based upon the analysis of the entropy production. To this end, lthe first step is to
determine the entropy equation for each fluid.

5.2. Determination of the entropy equations of the phases

The entropy kquations are determined as solutions of an algebraic system built on the
basis of:
e energy conservation of the mixture,
e pressure equilibrium between [phases.
Let us first examine the constraint given by energy conservation to the entropy equations.
By jusing the energy and momentum equations of system (3.7), a simpler form of the
energy equation is obtained:
de dv
@ Pa
Where the mixture internal energy is defined by € = Yiey + Yaes and the mixture specific
volume is given by v = Yiv1 + Yavs. Thus (5.2) becomes:

dey dvy des dvs .
v (G ) o () i visn

=0 (5.2)

Here h; = e, + puy, is the enthalpy of the phase k. By using the Gibbs identity for each
phase k, we have:
dek d’Uk dSk

at " Par T ar
The mixture energy conservation now becomes:

dSl d82 .
i —+YsTo— + (hy — he) Y7 = 0. 5.3
11dt+22dt+(1 2) Y] (5.3)
d81 ds S92
This last equation involves the two functions — and —— that we want to determine.

|A second equation is provided by the imechanical equilibrium kondition:

pi(p1,$1) = p2(p2, 52), (5.4)

from which we get,
Opr\ dpr  (Opr dsi_ (Opy @ L (92 ds2
8/)1 51 dt 381 o1 dt 8/)2 5o dt 682 P dt '

The definition of speed of sound and Gruneisen coefficient for each phase knables us to

write:
for k=1,2 (%) = c% and (8ﬂ) = pily Tk
Opr sk ) .,
The mechanical equilibrium condition (5.4) becomes:
dp, dsy dpQ dss
ot r T Ly T 5.5
1dt+p111dt zdtH-Pz2zd (5.5)
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The equations (5.3) and (5.5) form a system bf two equations with the two unknowns
functions ds; /dt and ds»/dt, and then we get

a1 p1Q2p2 Iy | Ih)dsy odp2 5 dpr ;
Qproaprp (11 12 vy (222 _ 2P T, (hy — b)Y
P 1<a1+a2> dt 2( i g ) el )

Q1 p102P2 Iy Iy dse 2dp2  ,dp
Gproapap (11, J2) @y
2 <a1 + a2> dt ( dt g dt

) — piTy (= ha) V3

(5.6)
The next step is to replace the variation dp;/dt and dps/dt by variations of the olume
fraction and velocity divergence with the help of the mass equations. The system (5.6)
now becomes:

. r r d ’ d
ap102p2 <_1 - _2> dsi _y, K& . ﬁ) 9 (i~ ) d”k )}

p e %1 oo ) dit o1 Qs dt
c? 2\ . .
—pYo | =+ = Y1 —paTa (b1 — ho) 17
(0%] 9

10102 P2 rh Is d;z 202 da;
T _ T —_—
et (e 2) e = o (S0 20) Bty

2 2 )
+ o1 K—l + —2) Vi —piT1 (b1 — h2) Vi
(0%] 9

(5.7)

Then by using the volume fraction equation (5.1), the entropy equations become functions
only of heat exchange, mass transfer and interfacial density py:

v @5 _H(L-T) Yy (hy — ho)
! dt pT1 FlTl % T %
[07] Fl FQ

. (5.8)
‘@:_H(TQ_Tl)_ Yl(hl—hg)
>t pTo T fa Q2
(%) Fl Fz

; —+—

* ‘FYI T <_ e +<i+§>>

« «

TQK—1+—2> pPI 1 2
(0%5] a9

5.3. Ezamination of the phases entropy production

Entropy equation for each phase (5.8) is composed of three terms. Each of them expresses
a physical phenomenon responsible for entropy production :

e The first one is related to heat exchange,

e The second one is associated to mass ltransfer.

e The last term is associated to the pressure relaxation process associated to mass
transfer. Consider a pressure perturbation appearing during mass transfer, see figure 8.
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utc

Vapour
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FI1GURE 8. Schematic representation of liquid evaporation. An elementary volume Awv of liquid is
transformed to vapour with a pressure perturbation. Acoustic waves propagates through liquid
and vapour, reflect at volume boundaries and restore pressure equilibrium. The overall process is
isentropic as these waves are of small amplitude. These waves are necessarily weak as evaporation
is a continuous phenomenon. Elementary volume and pressure perturbations tend to zero.

The system turns back to mechanical equilibrium with the help of acoustic waves emitted
during evaporation. This is similar to acoustic waves emitted by flames. These waves of
small pmplitude are isentropic.

We thus consider that the pressure relaxation process present during mass transfer
is isentropic. This corresponds to the third term on the right hand side of (5.8) that
vanishes. This remark permits determination of the interface density:

piei | pacs

« Qe

pr= gt (5.9)
_ + P
23] (&%)

5.4. Mizture entropy inequality
The second principle of thermodynamics applied to the mixture reads:

% +div (psu) 2 0
where the mixture entropy is defined by s = Yj 57 + Y555.
By using mass equations and expressions (5.8) for the entropies in this inequality leads
to:
T —T1)? .
S ) + (G —g)TrY1 20 (5.10)

where an "interface temperature” appears:

LT I,T T T.
TI—<11+ 22>/<_1+_2>

agq Qa2 (€3] Q2

The extended Gibbs free energies appear:
fork=1,2 g, =hy —Tsy,

with hy, the enthalpy of the phase k and T = 1 Ty /T7.
It appears [learly that the first term of (5.10) frelative to heat exchanges is necessarily
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greater or equal to zero. The second term will be greater or equal to zero if we assume
that:

Yi=Wp(@2r91)
where v is a positive relaxation parameter that controls the rate at which the mixture
relaxes to thermodynamic equilibrium. This corresponds to the form of mass transfer
terms we were seeking. Note that this modelling of relaxation terms guarantees equilib-
rium conditions of equal temperatures and equal Gibbs free energy.

5.5. The model

We now have a symmetric hyperbolic non-equilibrium compressible two-phase flow model
with heat and mass exchanges:

2 2
P | P26

Oa . o O r r .
O | Vay = Kdiv () + ——222 (2L 22) g 4 0L G2y
ot Qopic] +arpecs \ oy e d N a3

Qi &1

aogtm + div <a1p1u> = le

Oas p: .
% + div <agpgu> = —p¥;

0
%;u—i—div (pu®U)+Vp:O

ag_tE + div (u(pE +p)> =0

(5.11)
where:

K _ aea(p2cs — pich)
‘ Q2p163 + aypacd

Vi = (g, — 71)

Q=HT-1T)

The mixture pressure is given by (4.4):

&1 Y1 Poo,1 QA2Y2Pco,2
e — _ _ , ,
P( Yig: }2112) ( -1 =1 )

p(p767a17a27Y17Y2) = aq %)
-1 r-1
The determination of the temperature relaxation parameter H for a two-phase mixture
with arbitrary interfacial area is a difficult issue. The same remark holds for the phase
transition kinetics parameter v that does not depend only of interfacial area but also of
local chemical relaxation. To circumvent these [difficulties. we use a kolution procedure
based on infinite relaxation parameters, but at selected spatial locations only. More pre-
cisely, in order to retain metastable states, the relaxation parameters H and v will be
set to zero for locations far from the interfaces. At the interfaces, they will be taken infi-
nite in order to fulfill equilibrium interface conditions with mass transfer. When dealing
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with interfaces of simple contact, they will be set to zero everywhere. Such procedure fis
summarized by:

B +oc Lif e<a <1l—¢
v = { 0 therwise

6.6. Limit interface model

It is interesting to note that this relaxation method corresponds to the local resolution
(in fact at the interface only) of the following limit system, corresponding to the mixture
Euler equations:

Op . _

n + div(pu) =0

Opu )

W'f’dl’l) (pu®u+p) =0 K512)
OpE

% +div[(pE +p)u] =0

where the mixture density reads p = a1 p1 + @2p2 and the mixture internal energy reads
pe = aypre; + aspaes. The total mixture energy fs still defined by E = e + u?/2.
This system is closed by three thermodynamic equilibrium conditions:

pL=p2=p (5.13)
T =T =T (5.14)
g1 = go. (5.15)

With the help of the SG EOS (4.1) with conditions (5.13) bnd (5.14), each phase variable
can be expressed as a function of pressure and temperature. The definitions of mixture
density and internal energy now read:

p=oaz(p2(p,T) = pr(p, T)] + pr(p, T)
1 (5.16)
€= [z [p2(p, T)ex(p, T) — p1(p, T)ex(p, T)] + p1(p, T)e1(p, T)]

The kondition (5.15) now reduces to the mixture EOS (4.3) and the system (5.16) be-
comes:

N _ p—p(T)
2(T) = () — (T (5.17)
e(T) = /% [0(T) [p2(T)es (T) — pr (Tea ()] + pr(T)ex(T)] (5.18)

The equation (5.18) can be solved numerically. It allows the determination of as with
(5.17) and p with (4.3). Thus, the system is closed.

The system (5.12) can lalso be written under primitive variable form:
dp Ou
it 20
dt + wr
du 109p
b 5.19
dt + p Ox ( )

dp 2 Ou
E—i—pc %—0
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By using the sound speed definition ¢? = (8p/dp), the following fexpression is obtained:

1 @ Q a1py [ds P« ps [ds 2

1 2 101 1 202 9
— = F +T (—) F <—) 5.20
pct,  met o pad3 [Cpm dp Cpy \ dp (520
corresponding to the thermodynamic equilibrium mixture speed bf sound. Details are
given in appendix A. The Wood formula (4.5) is recovered with the first two terms of
(5.20). This limit model is again hyperbolic with the characteristic waves speeds: u + c.,,
U — Ceq and u.
However, with the algorithm detailed in the following, there is no need to solve explicitly
{5.12). The coupling with chemically inert zones far from evaporation fronts and diffuse

interface zone governed by (5.12) will be done by the numerical procedure described in
the next section. It relies on system (5.11).

6. Numerical method

The numerical method to solve the compressible two-phase flow system (5.11) with
heat and mass transfer proceeds in two steps. At kach time step, the hyperbolic system
in absence of heat and mass transfer is solved. This provides the non equilibrium hydro-
dynamic field. Stiff thermal and chemical relaxations are then solved at the interfaces
only. The interfaces are detected from the knowledge of volume fraction fields.

The basic ingredients of the hyperbolic kolver are kummarized hereafter following Pe-
titpas et al. (2007). This solver is not conventional as the hyperbolic system is not conser-
vative. Conventional Godunov type schemes or other existing methods are not suitable
for its resolution. Then we present a new stiff differential solver specifically derived for
the present model. It is used for integration bf stiff heat and mass transfer terms.

6.1. Hyperbolic solver
The hyperbolic system (5.11) without heat and mass transfer reads:

O .
8—tl +u- Val =K (0417/’17,02713) div Ku)
O )
81tp1 +div (a1 pru) =0
306202 . _
+ div (aapsu) =0 (6.1)
ot
dpu .
W—i—dlv (pu®u)+Vp=0
OpE
Sl divu(pE +p)] =0
\ Ot

The volume fraction equation fof system (6.1) is not written in konservative form. This
rises two important difficulties regarding numerical fresolution:

s Conventional shock relations are not available. In absence of these relations, the
Riemann problem cannot be solved. The Riemann problem is the cornerstone of modern
numerical methods to solve hyperbolic systems.

e The average of the volume fraction variable within a computational cell has no phys-
ical sense. Cell averages have sense only for conservative variables.
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Non conventional shock relations for system (6.1) are proposed in Saurel ef al. (20075).
These relations:

s |Guarantee conservation of the mixture.

e Tend to the single-phase shock relations when one of the phases disappears. They
thus guarantee a correct behavior in the single-phase limit. This feature is important for
interface problems.

e Preserve volume fraction positivity. This is also an important feature for numerical
resolution in the presence of material interfaces.

e Are symmetric with respect to the phases. This allows a possible extension of the
model to an arbitrary number of components.

e Are in perfect agreement with experimental shock measurements. It has been val-
idated for more than 100 experimental tests involving a wide range of shock strength,
very different acoustic impedance ratios between phases, different initial volume fractions
of the [phases, different EOS of pure components. See again Saurel et al. (2007b).

e Last, the mixture Hugoniot curve is tangent to the mixture isentrope. This means
that multiphase weak shock waves behave like kimple compression waves. This feature is
also important for the Riemann problem resolution.

These relations are summarized hereafter (6.2):

fork=1,2 Y =Y

p(u—0) =po(ug — o) =m

. 6.2
p—po+m?(v—uvo) =0 (62

p+p0(v 0

for k=1,2 e, —¢€) + 5 p— o) = 0.

Thanks to these relations and Riemann invariants, exact or approximate Riemann solvers
can be derived (Petitpas et al. 2007). Once the Riemann [problem is solved, the second
difficulty is to average or project the Riemann problem solution onto the computational
cell. Because bf the volume fraction variable, we cannot 1se conventional projection
methods. Thus a specific relaxation-projection method has been derived in Saurel et al.
(2007a) and Petitpas et al. (2007). All details are available in these references.

6.2. Stiff thermo-chemical solver

The cell now contains a multiphase mixture in mechanical equilibrium but out of thermal
and chemical equilibrium. Indeed, each phase in the cell has its own temperature and
Gibbs free energy. In order to fulfill interface conditions in the presence of heat and mass
transfer (equal temperatures land chemical potentials) a relaxation method is used. The
interface is located by the following procedure:

e A cell is considered filled by a pure fluid when its volume and mass fractions are
closed to 1 (say for example [l —¢; where typically e, = 107%) . The interface corresponds
to mixture cells when volumes and mass fractions range between e and L —es (typically,
€2 = 107%). This second small parameter has to be chosen in order that evaporation occur
only in the interfacial zone and not during expansion waves that produce metastable
states. Expansion waves indeed induce gas volume fraction increase. If e, is taken too
close of €; evaporation may occur too early and not jonly in the interfacial zone.

s Mass transfer is allowed if one of the fluid in the mixture cell is metastable (T}, >
Tsat(P)))-
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The hydrodynamic evolution being now hchieved by the humerical approximation of
system (6.1) the goal is now to solve the following system of ordinary differential equations
at the interface only:

pict | pacs

Oay 3R ry T, o Qo <
e e e

ot azp1 + arpacd \a1  as @ c N 3 PY1 = B

(041 (841
306101 y
= ph =8
ot pI1 = o
6.3)

306202 __ Y

ot pri
Opu
art

ot
OpE
— =0.

\ ot

The integration of this system hecessitates closure relations for ;1 and Y;. in particular
regarding relaxation parameters h and v. In order that the model be free of parameters
we assume that thermodynamic local equilibrium is reached at the interface at any time.
It means that h and v tend to infinity locally. This assumption is standard at equilibrium
interfaces when mass transfer occurs. It does not mean that the entire flow evolves at
thermodynamic equilibrium. The states remain out of equilibrium far from interfaces.

In the context of numerical integration, taking infinite relaxation parameters means
that the equilibrium has to be reached at the end of each time step. The time step
is imposed by CFL restriction of the hydrodynamic system. Using this time step, we
determine Q; and V; in order that thermodynamic equilibrium be reached at the end of
each time step. To determine these source terms, the equations for the temperatures and
Gibbg free energies differences are necessary. They read:

OAT

o T AG BN

(6.4)
8Ag_ ’ Iy
W—AQ1 + B'Y;

where |4, B, A’, B' are functions of all flow lvariables. Their expressions are detailed in
appendix B.

The simplest numerical approximation of these equations is used. Let ”n” and "n 417
denote two successive time steps. The variables at time t™ are taken equal to those
resulting of the numerical integration of system (6.1). The variables at time #"*! denote
the end of the integration process, including both hydrodynamic effects and source terms
(6.3). The simplest numerical approximation of this ODE system writes:

(AT)"+1 — (AT)"
At

(Ag)" — (Ag)”
At

= A"Q} + B YY"

(6.5)
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By imposing that thermodynamic equilibrium is reached at the end of the time step we
have: (AT)™" = 0 and (Ag)™"" = 0. The [corresponding heat and mass transfer terms
are given by:

B (AT)" B (Ag)"

O =—Up aB A AR _AB At

(6.6)
A AT 4 (Age
AB' — A'B At AB' — A'B At

These approximations of heat and mass transfer terms allow the calculation bf source
terms Sy, and Sy, of system (6.3). Nevertheless, there is no guarantee that positivity of
the solution be preserved, in particular regarding mass and volume fractions. A limitation
of these source terms has to be done. Let us express the maximum admissible source term
for the volume fraction evolution in order to preserve |positivity bf this lvariable:

¥ =

1—
At‘“ i Sa, >0
Smaz,a; = (6.7)
—Tojfl otherwise.

The same maximum source term lis computed for mass fraction positivity. Thus, if
[Smaz,er] > 1Say| and [Smez,vi| > |Syy|. the humerical integration can be done with
the hydrodynamics time step. Otherwise, equations are stiff and the integration time
step has to be reduced. The ratio Ry, = Smaz,a1/Sq; is computed and the system (6.3)
is integrated on a fraction of the time step, typically: Al.pem = Rao, At/2. Successive
point integrations are done in order that the complete hydrodynamic step be covered.

With this plgorithm, thermodynamic equilibrium is freached very fast and positivity of
the solution is preserved. Using this relaxation method corresponds to the local resolution
(actually at the interface only) of the limit system, corresponding to the mixture Euler
equations {5.12).

7. Numerical Results.

The aim of this section is to highlight model’s capabilities for the numerical resolution
of interface problems with or without mass transfer. A set of one dimensional tests are
first considered for validation issues. Then two-dimensional tests are secondly addressed
for tthe dynamic kreation of super-cavitating flow pockets.

7.1. Two-phase shock tube without mass fransfer.

In this example, the left part of a shock tube is filled with liquid dodecane at high pressure
p; = 108 Pa with density p; = 500 kg/m>. The right chamber is set at atmospheric
pressure and filled with vapor dodecane at density p, = 2 kg/m?. The initial discontinuity
is located at = = 0.75 m in a 1-m length tube. For numerical reasons, each chamber of
the tube contains a weak volume ffraction of the other fluid (typically 107%).

In the first example, the liquid - gas interface is solved as & contact discontinuity: heat
and mass transfer are removed. The results are shown at time £ = 473 us in figure 9
and consist in three conventional waves. From left to right, a left-facing rarefaction wave
propagates through lthe liquid, the kontact discontinuity is moving from left to right
and a right-facing shock propagates fthrough dodecane yvapor. The numerical solution fs
compared to the exact one and shows a perfect agreement.
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Pressure (0.0°MPa) Velocity (m/%)
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FiGURE 9. Dodecane liquid-vapor shock tube without mass transfer. The numerical solution
(symbols) is compared to the exact one (lines). An excellent agreement is observed. The velocity
graph scale has been chosen in order that a direct comparison with the results of the next figure
be easy.

7.2. Two-phase shock tube with mass transfer.

We now rerun the same test case and konsider heat and mass transfer at the interface.
Indeed, the rarefaction wave propagation transforms the stable high pressure liquid do-
decane into a superheated liquid and evaporation has to be considered (figure [10). An
additional left-facing wave (evaporation front) appears between the rarefaction wave and
the contact discontinuity. It propagates through lthe superheated liquid and produces a
liquid-vapor mixture at thermodynamic equilibrium and high velocity.

Infinite relaxation parameters are lused at the finterface only. The limit model corre-
sponds to the mixture Euler equations (5.12), for which acoustic disturbances propagate
at ceq (5.20). Far from the interface, the Kapila et al. (2001) model is solved in absence
of relaxation terms. This model ttends to the considered pure fluid Euler equations, for
which acoustic disturbances propagate at ¢, [the bpeed bof sound of phase k). As ¢, s
always lower (or equal) than gy, acoutic [perturbations in pure phases propagates faster
than evaporation fronts (whose velocity cannot exceed ¢.q4). Thus, acoustic precursors are
present and correspond to expansion or compression waves in pure fluid. They produce
metastable states.

We can see the four waves (the left facing expansion wave, the evaporation front, the
contact discontinuity and the fright-facing shock as was mentioned fin the introduction
section and in figure 3) on the mixture density graph of figure 10. The evaporation front
makes the vapor mass fraction increase, but total evaporation is not reached. The second
jump in mass fraction is related to the contact discontinuity.



Modelling phase transition in imetastable liquids. 25

Pressure (0.1°MPa) Velocity (mis)
1000 ™ 350
300
250
100
200
150

“' -/
1 L,/ i

] 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 08 1
% (m) x(m
Mixture density (kqg/m3) Vapor Mass Fraction
1000 1
0.9
08
100 03
0.6
05
0.4
1
o 0.3
0.2
01
1 0
1] [iR] 02 o0 04 05 06 OF 08 09 1 1] 0.1 02 0% 04 05 06 0OF 08 08 1
* (m} x (m)

FigUrE 10. Dodecane liquid-vapor shock tube with mass transfer. The thermo-chemical solver
is lused at the interface. An kextra wave appears traducing evaporation of superheated liquid.
The second [jump in mass fraction is the kontact discontinuity between liquid-vapor mixture
produced by evaporation and shocked vapor initially present in the right chamber. The velocity
graph can be compared with those of the preceding figure, where mass transfer at the interface
is absent.

The corresponding phase-space trajectory is reported in figure 11 together with the mix-
ture density graph where all fluid states are visible. Stable high pressure liquid dodecane
represented by point 1 is expanded until point 2 with an isentropic path. Point 2 corre-
sponds to metastable liquid dodecane. The kvaporation front transforms lthe metastable
liquid into a liquid-vapor mixture under thermodynamic equilibrium (points 3; and 3,).
There lis no thermodynamic connection between point 2 and points 3; and 3, because
they are just linked by a kinetic process. On the other part of the shock tube, initial
vapor (point p) is shocked and follows a Hugoniot curve until point 4. Points 3 bnd 4
have no thermodynamic connections as they are just linked by mechanical equilibrium
through a simple contact discontinuity.

7.3. Validation against shock tube experiments.

Experiments in shock tube have been carried out by Simoes-Moreira & Shepherd (1999).
Liquid dodecane is initially kept stable for a certain temperature and is suddenly ex-
panded into a low pressure chamber. An evaporation front propagates into metastable
liquid dodecane ejecting high velocity liquid-vapor mixture. Velocity of this front was
measured for different initial temperatures of liquid dodecane. Front velocities are com-
puted under the same conditions with the present model and compared with experiments.
Results are shown in figure 12. Each point corresponds to a shock tube computation with
a given initial temperature of the liquid in the high pressure chamber. The agreement
is mot perfect but front velocities are bf the same order of magnitude and the same ten-
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F1GURE [L1. Phase-space trajectory for the flow simulated in figure 10. Trajectories in dashed lines
(between points 2 and 3) in the phase diagram represent kinetic connections between superheated
liquid and equilibrium mixture. Points 3 and 4 have no thermodynamic connections as they
are just linked by mechanical equilibrium through a simple contact discontinuity separating
vaporized mixture and shocked initial vapor.

dency of increasing front velocity with increasing temperature is observed. The slight
discrepancies between experimental and computed results are explained by the inaccura-
cies present in the simplified model EOS used for the phases. Using a more sophisticated
EOS than SG (Mie Gruneisen for example) iis an option tto improve this point.

7.4. About the CJ kinetic relation.

The CJ kinetic relation s often used to close Rankine Hugoniot system to deal with
evaporation fronts in metastable liquids. In this context, the front is considered as a
discontinuity whose speed is determined by the C.J condition. Obviously, such procedure
is approximate and valid only in limit situations, when the liquid is highly metastable so
that the system tends to evaporate as fast as possible i.e. with the maximum admissible
mass flow rate. This limit evaporation regime is considered in the present model with
slight modification.

In tthe present model the interface is solved as a relaxation zone where the multiphase
flow model tends to the equilibrium Euler equations. This last system admits very differ-
ent waves speeds from the ones of the temperature non equilibrium model. This results
in the appearance of a transition front that corresponds to an expansion wave bf the
equilibrium model. Indeed, bbservation of the numerical results at different times show
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FiGURE 12. Evaporation front jvelocity in superheated dodecane versus initial temperature of
liquid dodecane. The experimental results of Simoes-Moreira & Shepherd (1999) (line) are com-
pared with front velocities computed with the new model (dash line).

a smearing of the evaporation wave, exactly as a computed expansion wave and not as a
contact discontinuity. As represented in the figure 13, this expansion wave propagates to
the left at the velocity approximately equal to u —c.,. There is no contradiction between
our modelling and preceding Hugoniot analysis. Conventional modelling hased on jump
conditions closed by CJ assumption consider the front as a discontinuity obeying the prin-
ciple of mass, momentum and energy conservation with an evaporation wave propagating
at the maximum admissible speed [CJ). Such model was proposed by Chaves (1984) and
validated against many experiments when a retrograde liquid is highly metastable. In
such modelling, negative pressure jumps are obtained (‘negative shocks’ (Thompson &
Lambrakis 1973)). In our approach, the wave is solved as an expansion wave of the relaxed
system. It also obeys to lthe principles of mass, momentum and energy conservation. lts
speed corresponds to the one of acoustic waves of the equilibrium system v — ¢, with
the sound speed given by (5.20). It is also associated to a pressure decrease, as in all
expansions waves. It is thus in perfect agreement with preceding analysis, except that
the front is not considered as a discontinuity.

These observations give an interpretation of the model proposed by Chaves (1984) where
the Chapmann Jouguet kinetic relation (¢ E u £ ¢ where ¢ represents the front velocity)
was proposed. The present Iresults show that this kinetic relation is pppropriate in such
limit situation and that the pvaporation front corresponds to an expansion wave of the
thermodynamic equilibrium model.

The differences in accuracy when compared for example with Simoes-Moreira & Shep-
herd (1999) results are only due to the EOSs. [The equilibrium EOS of the present relaxed
system is not exactly the same as in Simoes-Moreira & Shepherd (1999). The EOS used
by these authors is more accurate, but not valid everywhere in particular in the spinodal
zone.

Let us mention that CJ pvaporation fronts are associated to extreme conditions. Under
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F1curE 13. Comparison between local wave speed (lines) computed with o; = %7

characteristic velocity based on the equilibrium speed of sound u — ce, in dash lines and charac-
teristic fvelocity based on the mechanical equilibrium u — cw (Wood) speed of sound in dotted
lines. The comparison is done for the flow simulated in figure 10 in the x-range where the evap-
oration front is present. It appears clearly that the evaporation front propagates at CJ speed.

moderate conditions, the front is subsonic and its dynamics is governed by multidimen-
sional effects where thermal diffusion, capillary effects and chemical relaxation play an
important role. Such effects can be introduced in the present ppproach by coupling the
present relaxation method with tthe capillary and [dissipative effects modelling described
in Perigaud & Saurel (2005). Extra efforts are necessary to reach this goal.

7.5. Two-phase expansion tube.

In this example, a 1-m length tube is filled with liquid water at atmospheric pressure and
with density p = 1150 kg/m?. An initial velocity discontinuity is located at = 0.5 m. On
the left, the velocity is set to © = —2 m/s and on the right, v = 2 m/s. An initial weak
volume fraction of vapor water (a, = 107%) fis added to the liquid. Thermodynamic
parameters of water are given in table 1. First, the numerical solution without mass
transfer is compared to the exact one. The solution is represented in figure 14 at time
t = 3.2 ms. It results in left- and right-facing rarefaction waves. The vapor Wolume
fraction increases at the center of the domain. This is due to the gas mechanical expansion
present in small proportions. This effect tends to create new interfaces in the domain.
Dynamic appearance of these interfaces is considered in the numerical resolution as well
as in the exact solution, provided in Petitpas et al. (2007). The gas pocket that pppears
is not due to mass transfer, but to mechanical relaxation only (bubbles growth).
However, these rarefaction waves make the liquid metastable and phase transition
may occur. Figure 15 presents the solution when mass transfer is involved. The solution
is shown at the same time as previously and compared to the previous exact solution
without evaporation. Liquid water is expanded until the saturation pressure is freached
(see the pressure graph) then evaporation appears and a [quite small amount of vapor
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F1GURE 14. The multiphase model computed solution (symbols) withont mass transfer is
compared to the exact one (lines) on the symmetric expansion tube.

is created (see the mass fraction graph). This small amount of vapor has nevertheless
strong consequences on the vapor volume fraction that increases significantly.

The solution with mass transfer is composed of 4 expansion waves, as shown in figure
16. In order to highlight the two slow expansion waves, the solution is now shown at time
t = 59 ms in figure 17. The two leading fast expansion waves have left the tube. The two
slow evaporation fronts have characteristic profiles pf expansion waves. This observation
confirms the previous interpretation of evaporation fronts as expansion waves of the
equilibrium system. When rarefaction effects become stronger, it is possible to see the
four waves present on a single graph. In figure 18 the same conditions are hsed except
regarding Welocities which are set to v = —500 m/s on the left, and u = 500 m/s on
the right. In this case, evaporation is much intense fresulting in a large cavitation pocket
where the gas volume fraction is closed to I. However, this pocket does not contain pure
gas but a mixture at thermodynamic equilibrium as shown on the mass fraction profile.
The various expansion waves have now comparable velocities, as shown in figure 19.

7.6. Two-dimensional illustrations.

The model capabilities are now illustrated on severe test problems involving kavitation
pockets with or without evaporation. The first example is related to supercavitation
around a high velocity underwater projectile. The second test is related to kavitation
pockets in fuel injector nozzles.

7.6.1. High welocity underwater projectile.

A liquid water flow at velocity 600 m/s fis considered around an immersed obstacle.
Liquid water fis initially at atmospheric pressure with a density of 1150 kg/m3. A weak
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FIGURE 15. The multiphase model computed solution (symbols) with mass transfer is compared
to the exact one (lines) without imass transfer on the symmetric expansion tube. Mass transfer
appears and results in important differences for all flow variables.

Expansion
wave

Expansion
wave

FIGURE 16. Wave propagation diagram of the symmetric expansion tube.

volume fraction of vapor (o, = 1073) is initially present in water. At the leading edge
of the obstacle & strong compression zone is present and the pressure exceeds 2000 atm.
Then the high velocity liquid flow undergoes strong rarefaction waves at each geometrical
singularity and the pressure decreases.

On the left column of figure 21 the computational results are shown at steady state
without mass ftransfer. In absence of mass transfer, the simulation does not breakdown
as a small volume fraction of gas is present everywhere. This is a nice feature of Kapila
et al. (2001) model. This model however need specific numerical scheme as it is non-
conservative. Appropriate numerical method is developed in Petitpas et al. (2007).

On the right of the same figure, mass transfer is involved. Qualitatively, both results
are very similar: a cavitation wake appears. But the mechanisms responsible for these
cavitation waves are very different. On the |left, only mechanical effects are responsible
for bubble growth while on the right mechanical and chemical relaxation effects are
responsible of the pocket growth. It means that results without mass transfer can be used
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FI1GURE 17. Long time behaviour for the test problem of figure 15. The two slow expansion
waves are clearly visible.
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F1GURE 18. Numerical solution of the multiphase flow model with mass transfer and strong
velocity difference in the expansion tube. The four expansion waves are clearly visible.
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F1GURE 20. Initial configuration of an high velocity underwater [projectile.

for a qualitative prediction of the locations where cavitation appears. For a quantitative
prediction, results with mass transfer are more realistic. It is interesting to note that the
maximum vapor mass fraction s not very large (less than 0.13). The pressure level in
the cavitation pocket is quite different: 0.4 atm with mass transfer, corresponding to the
saturation pressure, to be compared lwith 10~3 atm in absence of mass transfer.

7.6.2. High pressure fuel injector.

The second situation under study consists in a nozzle where liquid fuel, from a high
pressure chamber is injected into another chamber at atmospheric pressure. The high
pressure tank (1000 atm) is filled with liquid dodecane at density 570 kg/m?, correspond-
ing to the temperature T' = 640 K (lower than the critical temperature). As previously a
weak volume fraction of vapor (a,, = 107%) is present in the liquid. The initial conditions
consist in an initial discontinuity between liquid dodecane at 1000 bar and 570 fg/m?>
and its vapor at atmospheric pressure. Results are shown in figure 23 at times ¢ = 24 us,
t =60 pus, t = 120 ps, t = 600 ps. On the left, computed results without mass transfer
are presented, and on the right those including evaporation. As in the preceding example,
the results are qualitatively kimilar. But quantitative differences are present regarding
flow variables.

It is interesting to note that only slight differences in cavitation pocket size are present.
Two-phase nozzle flows have been used in the past to determine mass transfer rate in
non-equilibrium two-phase flow models. Mass transfer rate was adjusted in order to
match the kavitation pocket size. The present computations show that such method fs
inappropriate. Indeed, cavitation pocket size has la too weak dependence regarding mass
transfer. Mechanical effects alone are able to produce significant cavitation pockets.
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Figure 21. High velocity underwater projectile. On the left, the solution obtained without heat
and mass transfer and on the right the solution with the new thermo-chemical solver. Solutions
are shown at steady state. From top to bottom, contours of : vapor volume fraction, vapor mass
fraction and mixture density. White regions represent from top to bottom respectively: regions
where vapor volume fraction is closed to 1, regions where vapor mass fraction becomes non
negligible (0.1) and regions where mixture density is lower than the density at infinity.
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F1GURE 23. Flow in a high pressure fuel injector. Mixture density contours are shown at times
t =24 ps, t =60 pus, t =120 pus and t = 600 ps. On tthe left, the solution is obtained without
heat and mass transfers and on Ithe fright fthe solution is bbtained with the thermo-chemical
solver.
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8. Conclusions

|A new hyperbolic compressible flow model has been built for the computation of cavi-
tating flows. Relaxation effects are modeled and are able to connect the non equilibrium
flow model to the mixture Euler model when fhermodynamic equilibrium is reached.
The connection occurs through rarefaction waves where mass transfer occurs. The over-
all model is able To predict dynamic evaporation waves as well as interfaces of simple
confact separating non-miscible phases.

The model analysis shows that the Chapmann Jouguet kinetic relation for the dynamics
of evaporation fronts (Chaves 1984; Thompson et al. 1987) is recovered as an fexpansion
wave of the present model in the limit of stiff thermal and chemical relaxation. Numerical
examples show that the model is able o predict complex flow pattern in one and two
dimensions.

Appendix A. Determination of equilibrium speed of sound.

[From the definition of mixture internal emergy; we have:
e = (a1pier + azpaez) /p (A1)

When the mixture evolves under thermodynamic equilibrium, the temperature is linked
to the pressure (4.3). Each thermodynamic variable can tthus be expressed as a function
of pressure only: e, (p) and pi (p). Equation [A 1) can be written as:

e(p,p) = % Kplel + L2 pyey %Plel)) : (A2)

P2 — P1

The mixture speed of sound definition reads:

p_ (0
. Op b dp
‘ (8/})3 (8) (43)
Op p
Differenciating e wit respect to p and p, we obtain:
d d — d >
—ﬂoqu (eQ el) - ﬁaﬂ)l (ez el) + E041/)1 + #azpz
1L dp P2 — p1 dp p2 — p1 dp dp (A4)
c2 es — € ‘ )
Plea D= p1p2 ( : 1)
P2 — pP1

This sound speed ls the equilibrium one as (4.3) has been used. We now use the Gibbs
relation for each phase:

dey, dsy. p dﬂ

Vk=1,2 — =T+ 55— A5
dp dp ~ p; dp (45)
Noting that
dpy Apk Opr \ dsi
k=12 L (ap (5 W (46)

we obtain the mixture equilibrium speed of sound formulation (5.20):

1 Qg Qs arpr (dsi\? FQPQ dss \”
chq P10$ P2C§ [Cpm ( dp ) Cpi < dp > ‘|
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Appendix B. Coefficients A, B, A’ and B’ for thermo chemical solver.

In order to determine heat and mass transfer terms (6.6), the four coefficients A, B, A’
and B’ have to be calculated at time ™. Here, we provide expressions of these coefficients
in lthe context of SG EQS. They write:

I, I's 1 \ 1
A=—(Cy —Cy) pc® ( 5 — ) + +
( ! 2)'0 P1Cf pzcg Cv,171a1p1 bv,272052p2

2 2
o=l ) (o)
Pl P2
1 1
—pl'(hy — h _
oL (P = ha) (Cv,17lrlp1 Cv,272r2/)2>
r r
A = (chl — D202)p02 (12 — 22)
p1eq P2C3

D D
- (1 + %1 ) LI (1 + = ) 1
v V1) ap Cyave ) aaps

B' = (D1C1 - D2Cy) p K”pij - rm) - (E - r@)]

P2

D, ) 1 ( D, ) 1 ]
+pI' (hy — h 1+ +(1+
P (hy = ho) K Cyoav) Tips Cy2v2) Tapo

where the coefficients C and |Dy, are given for each phase k by:

o — (1 =) T
= TR Tk
Vi (P + Poo,k)
Gk — Gk
D, = ——=
k T,
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