
Computational Statistics (2020) 35:1027–1057

https://doi.org/10.1007/s00180-020-00959-3

ORIG INAL PAPER

Modelling rankings in R: the PlackettLuce package

Heather L. Turner1 · Jacob van Etten2 · David Firth1,3 ·

Ioannis Kosmidis1,3

Received: 30 October 2018 / Accepted: 18 January 2020 / Published online: 12 February 2020

© The Author(s) 2020

Abstract

This paper presents the R package PlackettLuce, which implements a generalization

of the Plackett–Luce model for rankings data. The generalization accommodates both

ties (of arbitrary order) and partial rankings (complete rankings of subsets of items).

By default, the implementation adds a set of pseudo-comparisons with a hypothetical

item, ensuring that the underlying network of wins and losses between items is always

strongly connected. In this way, the worth of each item always has a finite maximum

likelihood estimate, with finite standard error. The use of pseudo-comparisons also has

a regularization effect, shrinking the estimated parameters towards equal item worth.

In addition to standard methods for model summary, PlackettLuce provides a method

to compute quasi standard errors for the item parameters. This provides the basis for

comparison intervals that do not change with the choice of identifiability constraint

placed on the item parameters. Finally, the package provides a method for model-

based partitioning using covariates whose values vary between rankings, enabling

the identification of subgroups of judges or settings with different item worths. The

features of the package are demonstrated through application to classic and novel data

sets.

This research is part of cooperative agreement AID-OAA-F-14-00035, which was made possible by the
generous support of the American people through the United States Agency for International
Development (USAID). This work was implemented as part of the CGIAR Research Program on Climate
Change, Agriculture and Food Security (CCAFS), which is carried out with support from CGIAR Fund
Donors and through bilateral funding agreements. For details please visit https://ccafs.cgiar.org/donors.
The views expressed in this document cannot be taken to reflect the official opinions of these
organisations. The work of David Firth and Ioannis Kosmidis was supported by the Alan Turing Institute
under EPSRC grant EP/N510129/1, and part of it was completed when the Ioannis Kosmidis was a Senior
Lecturer at University College London.

B Heather L. Turner
ht@heatherturner.net

1 Department of Statistics, University of Warwick, Coventry, UK

2 Bioversity International, Turrialba, Costa Rica

3 The Alan Turing Institute, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-020-00959-3&domain=pdf
http://orcid.org/0000-0002-1256-3375
http://orcid.org/0000-0001-7554-2558
http://orcid.org/0000-0003-0302-2312
http://orcid.org/0000-0003-1556-0302
https://ccafs.cgiar.org/donors

1028 H. L. Turner et al.

Keywords Plackett–Luce model · Partial rankings · Tied rankings · Shrinkage ·

Model-based partitioning · R

1 Introduction

Rankings data arise in a range of applications, such as sport tournaments and consumer

studies. In rankings data, each observation is an ordering of a set of items. A classic

model for such data is the Plackett–Luce model, which stems from Luce’s axiom of

choice (Luce 1959, 1977). This axiom states that the odds of choosing one item, i1,

over another, i2, do not depend on the other items available for selection in that choice.

Suppose we have a set of J items

S = {i1, i2, . . . , i J }.

Under Luce’s axiom, the probability of selecting some item i j from S is given by

P(i j |S) =
αi j

∑

i∈S αi

,

where αi ≥ 0 represents the worth of item i . The worth is a latent characteristic, with

higher values indicating that an item is more likely to be selected. In practice, it could

represent the ability of an athlete or the attractiveness of a product, for example.

A ranking of J items can be viewed as a sequence of independent choices: first

choosing the top-ranked item from all items, then choosing the second-ranked item

from the remaining items and so on. Let a ≻ b denote that a is ranked higher than b.

It follows from Luce’s axiom that the probability of the ranking i1 ≻ · · · ≻ i J is

J
∏

j=1

αi j
∑

i∈A j
αi

, (1)

where A j is the set of alternatives {i j , i j+1, . . . , i J } from which item i j is chosen. The

above model is also derived in Plackett (1975), hence the name Plackett–Luce model.

In this paper, we present the R package PlackettLuce (Turner et al. 2019). This

package implements an extension of the Plackett–Luce model that allows for ties in

the rankings. The model can be applied to either complete or partial rankings (com-

plete rankings of subsets of items). PlackettLuce offers a choice of algorithms to fit

the model via maximum likelihood. Pseudo-rankings, i.e. pairwise comparisons with

a hypothetical item, are used to ensure that the item worths always have finite max-

imum likelihood estimates (MLEs) with finite standard error. Methods are provided

to obtain different parameterizations with corresponding standard errors or quasi-

standard errors (that do not change with the identifiability constraint). There is also a

method to fit Plackett–Luce trees, which partition the rankings by covariate values to

identify subgroups with distinct Plackett–Luce models.

In the next section, we review the available software for modelling rankings and

make comparisons with PlackettLuce. Then in Sect. 3 we describe the Plackett–Luce

123

Modelling rankings in R: the PlackettLuce package 1029

model with ties and the methods implemented in the package for model-fitting and

inference. Plackett–Luce trees are introduced in Sect. 4, before we conclude the paper

with a discussion in Sect. 5.

2 Software for modelling rankings

First, in Sect. 2.1, we consider software to fit the standard Plackett–Luce model. Then

in Sect. 2.2, we review the key packages in terms of their support for features beyond

fitting the standard model. Finally in Sect. 2.3 we review software implementing

alternative models for rankings data and discuss how these approaches compare with

the Plackett–Luce model.

2.1 Fitting the Plackett–Lucemodel

Sections 2.1.1 and 2.1.2 describe two ways the Plackett–Luce model can be fitted with

standard statistical software. Section 2.1.3 reviews packages that have been specifically

developed to fit the Plackett–Luce model or a related genralization. The performance

of the key packages for R are compared in Sect. 2.1.4.

2.1.1 Fitting as a log-linear model

Each choice in the ranking can be considered as a multinomial observation, with one

item observed out of a possible set. The “Poisson trick” (see, for example, Baker 1994)

expresses these multinomial observations as counts (one or zero) of each possible

outcome within each choice. For example, the ranking {item 3} ≻ {item 1} ≻ {item

2} is equivalent to two multinomial observations: {item 3} from {item 1, item 2, item

3} and {item 1} from {item 2, item 3}. These observations are expressed as counts as

follows:

choice item 1 item 2 item 3 count
[1,] 1 1 0 0 0
[2,] 1 0 1 0 0
[3,] 1 0 0 1 1
[4,] 2 1 0 0 1
[5,] 2 0 1 0 0

The Plackett–Luce model is then equivalent to a log-linear model of count, with

choice included as a nuisance factor to ensure the multinomial probabilities sum to

one, and the dummy variables for each item (item 1, item 2, item 3) included

to estimate the item worth parameters.

As a result, the Plackett–Luce model can be fitted using standard software for

generalized linear models (GLMs). However, expanding the rankings to counts of

each possible choice is a non-standard task. Also, the choice factor will have many

levels: greater than the number of rankings, for rankings of more than two objects. A

standard GLM fitting function such as glm in R will be slow to fit the model, or may

even fail as the corresponding model matrix will be too large to fit in memory. This

123

1030 H. L. Turner et al.

issue can be circumvented by “eliminating” the nuisance choice factor, by taking

advantage of the diagonal submatrix that would appear in the Fisher Information matrix

to compute updates without requiring the full design matrix. This feature is available,

for example, in the gnm function from the R package gnm (Turner and Firth 2018).

Even then, the model-fitting may be relatively slow, given the expansion in the number

of observations when rankings are converted to counts. This issue is exacerbated when

ties are allowed, since the number of possible outcomes increases quickly with the

number of items.

2.1.2 Fitting as a Cox proportional hazards model

For complete rankings, the probability in Eq. (1) is equivalent to that for a special case

of the rank-ordered logit model or exploded logit model (Allison and Christakis 1994).

This model assumes a certain utility Uri for each item i and respondent r , which is

modelled as

Uri = μri + ǫri .

Here μri may be decomposed into a linear function of explanatory variables, while the

{ǫri } are independent and identically distributed with an extreme value distribution.

The standard Plackett–Luce model is then given by a rank-ordered logit model with

Uri = log(αi) + ǫri .

Allison and Christakis (1994) demonstrated that the rank-ordered logit model can

be estimated by fitting a Cox proportional hazards model with equivalent partial like-

lihood. Therefore, specialist software is not required to fit the model. Software such

as the rologit function in Stata or the rologit function from the R pack-

age ROlogit (Tan et al. 2017) provide wrappers to methods for the Cox proportional

hazards model, so that users do not have to specify the equivalent survival model.

Compared to the log-linear approach, the rank-ordered logit model has the

advantage that the ranks can be modelled directly without expanding into counts.

Nonetheless, the model fitting requires a dummy variable for each item and a stratifi-

cation factor for each unique ranking. Therefore, the estimation becomes slow with a

high number of items and/or unique rankings.

2.1.3 Specialized software

Several software packages have been developed to model rankings data, which provide

specialized functions to fit the Plackett–Luce model. Rather than re-expressing the

model so that it can be estimated with a standard modelling function, these specialized

functions take a direct approach to fitting the Plackett–Luce model.

One such approach is Hunter’s (2004) minorization–maximization (MM) algo-

rithm to maximize the likelihood of the observed data under the Plackett–Luce model.

This algorithm is used by the R package StatRank and is one of the algorithms

available in the Python package choix (Maystre 2018). Alternatively the likelihood

can be maximised directly using a generic optimisation method such as the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm. This is another option offered by choix

123

Modelling rankings in R: the PlackettLuce package 1031

and is the method used in the R packages pmr (Lee and Yu 2015) and hyper2 (Han-

kin 2019). A third option offered by choix is the “Luce spectral algorithm”, which in

a single iteration (LSR) gives a close approximation to the MLEs and may be used

iteratively (I-LSR) to give a maximum likelihood solution (Maystre and Grossglauser

2015).

In addition, a number of algorithms have been proposed to fit Plackett–Luce mix-

ture models. These models assume the rankings are observations from G subgroups,

each with a distinct Plackett–Luce model. The group membership probabilities are

estimated as part of the model-fitting. Therefore, software to fit Plackett–Luce mix-

ture models can be used fit the standard Plackett–Luce model by fixing the number

of groups, G, to be one. The R package mixedMem (Wang and Erosheva 2015)

implements a variational Expectation-Maximization (EM) algorithm, which returns

MLEs in the case of a single group. The R package PLMIX (Mollica and Tardella

2014, 2017, 2020) uses a Bayesian framework and offers the choice to maximize

the posterior distribution via an EM algorithm, which reduces to the MM algorithm

with noninformative hyperparameters, or to simulate the posterior distribution using

Markov-chain Monte-Carlo (MCMC) techniques.

PlackettLuce offers both iterative scaling, which is equivalent to the MM algorithm

for the standard Plackett–Luce model, and generic optimization using either BFGS or

a limited memory variant (L-BFGS) via the R package lbfgs package (Coppola et al.

2014).

2.1.4 Performance of software to fit the Plackett–Luce model

Even using specialized software, the time taken to fit a Plackett–Luce model can

scale poorly with the number of items and/or the number of rankings. Table 1 shows

some example run times for fitting the Plackett–Luce model with specialized software

available in R, including ROlogit for comparison. The run times are presented for

three different data sets taken from the PrefLib library of preference data (Mattei and

Walsh 2013). The data sets are selected to represent a range of features, as summarised

in Table 2.

As expected, ROlogit, based on R’s coxph function, shows a marked drop in per-

formance when the number of unique rankings is high. A similar drop off is seen for

hyper2 where the time is spent specifying the likelihood function for each unique

ranking. Although StatRank uses an MM algorithm, the same as used by Placket-

tLuce and PLMIX in these benchmarks, it shows poor performance for a moderate

number of items (≥ 10) and/or a high number of unique rankings. Similarly pmr

which uses the same optimization method as hyper2 becomes impractical to use with

a moderate number of items.

Clearly, the details of the implementation are as important as the estimation method

used. PlackettLuce copes well with these moderately-sized data sets and is compa-

rable to mixedMem. PlackettLuce is faster than mixedMem on the Netflix data as it

can work with aggregated unique rankings. PLMIX is consistently fast; the superior

performance over PlackettLuce when both the number of items and the number of

unique rankings is high can be explained by its core functionality being implemented

in C++ rather than pure R code.

123

1032 H. L. Turner et al.

Table 1 Run times for fitting the Plackett–Luce model to data sets summarised in Table 2 using different
R packages

Time elapsed (s)

PlackettLuce hyper2 PLMIX pmr StatRank ROlogit mixedMem

Netflix 0.042 0.115 0.535 0.586 0.648 1.462 0.388

T-shirt 0.023 0.123 0.007 a 7.473 0.043 0.006

Sushi 1.384 83.657 0.135 a 23.074 10.991 1.879

See “Appendix 1” for details and code
aFunction fails to complete

Table 2 Features of example
data sets from PrefLib (Mattei
and Walsh 2013). The Netflix
data were collated by (Bennett
and Lanning 2007)

Rankings Unique rankings Items

Netflix 1256 24 4

T-shirt 30 30 11

Sushi 5000 4926 10

2.2 Features beyond fitting the standardmodel

So far, we have compared packages in terms of their ability to fit the standard Plackett–

Luce model. In practice, rankings data can have features that require a generalization

of the standard model, or that can cause issues with maximum likelihood estimation.

In addition, not all packages provide facilities for inference on the estimated item

worths.

In this section, we compare the key packages for fitting the Plackett–Luce model

in terms of their ability to meet these additional requirements.

2.2.1 Partial rankings

As the number of items increases, it is typically more common to observe partial

rankings than complete rankings. Partial rankings can be of two types: subset rankings,

where subsets of items are completely ranked in each observation, and top n rankings,

where the top n items are selected and the remaining items are unranked, but implicitly

ranked lower than the top n. Both types can be accommodated by the Plackett–Luce

model but imply a different form for the likelihood. For subset rankings, the set of

alternatives in the denominator of (1) will only comprise remaining items from the

subset of items in the current ranking. For top n rankings the set of alternatives is

always the full set of items minus the items that have been selected so far in the

current ranking.

Given this difference in the likelihood, implementations tend to support only one

type of partial ranking. PlackettLuce and choix handle subset rankings only, while

PLMIX, ROlogit and mixedMem handle top n rankings only. The documentation

for StatRank suggests that it supports subset rankings, but we were unable to validate

such support. hyper2 can handle both types of partial ranking, since it requires the

123

Modelling rankings in R: the PlackettLuce package 1033

Table 3 Run times for fitting the Plackett–Luce model to the NASCAR data from Hunter (2004)

Features of NASCAR data Time elapsed (s)

Rankings Items Items per ranking PlackettLuce hyper2

36 83 42–43 0.199 36.123

All rankings are unique

likelihood to be specified for each observation. However, hyper2 provides a utility

function for subset rankings making these easier to fit with the package.

Table 3 shows run times for fitting the Plackett–Luce model to the NASCAR sub-

set rankings from Hunter (2004). These results illustrate that PlackettLuce is more

efficient than hyper2 for modelling subset rankings of a relatively large number of

items.

2.2.2 Tied ranks

ROlogit can handle tied ranks as tied survival times in the underlying Cox proportional

hazards model. The ties are accommodated in the likelihood by summing over all

possible strict rankings that could have resulted in the observed tie. This assumes that

one of these strict rankings is correct, but a lack of precision means we observe a tie.

However in some contexts, a tie is a valid outcome, for example, an equal number

of goals in a sports match. As far as we are aware, PlackettLuce is the only software

to model ties as an explicit outcome based on item worth, through an extension of the

Plackett–Luce model described in Sect. 3.

2.2.3 Inference

In order to conduct frequentist inference on the item parameters, it is necessary to

compute standard errors. The only packages based on maximum likelihood estima-

tion with this functionality are PlackettLuce and ROlogit. The computation of the

variance-covariance matrix in PlackettLuce is currently based on the methodology

for generalized linear models, so the rankings are internally expanded as counts as

described in Sect. 2.1.1.

PLMIX allows for a fully Bayesian inference based on the approximation of the

posterior distribution.

2.2.4 Disconnected or weakly connected networks

In some cases, the MLE does not exist, or has infinite standard error. This happens when

the network of wins and losses implied by the rankings is not strongly connected—

an issue explored further in Sect. 2.2.4. PlackettLuce ensures that the item worths

can always be estimated by using pseudo-rankings. This approach can be viewed as

incorporating a “shrinkage” prior as in a Bayesian analysis (but with estimation based

on maximization of the posterior density). The choix package implements methods

of regularization that have a similar effect.

123

1034 H. L. Turner et al.

Since PLMIX uses a Bayesian framework that incorporates a prior, the package

will always produce finite worth estimates.

2.2.5 Heterogeneity

As noted in Sect. 2.1.3 PLMIX and mixedMem offer the facility to model hetero-

geneous rankings via mixture models, which allow for latent groups with different

item worth. This is similar in spirit to the tree models offered by PlackettLuce, which

define such groups through recursive binary splits on attributes of the judges or other

variables that covary with the rankings. This partitioning approach does not rely on

parametric assumptions, whereas the mixture models assume a heterogeneous sam-

pling distribution.

2.2.6 Summary of software features

A summary of the features of the main software for Plackett–Luce models is given in

Table 4. pmr and StatRank are not included as they do not support any of the features

mentioned (with the possible exception of partial rankings in the case of StatRank,

where the documented support could not be validated).

Some of the software for Plackett–Luce models have features beyond the scope of

PlackettLuce and these features are also included in Table 4. ROlogit can model the

item worth as a linear function of covariates. hyper2 can handle rankings of combi-

nations of items, for example, team rankings in sports. This feature is implemented

by extending the Plackett–Luce model to describe the selection of a combination T j

of items from the alternatives, that is

J
∏

j=1

∑

i∈T j
αi

∑

i∈A j
αi

.

2.3 Other software for modelling rankings

Although we are focusing on the Plackett–Luce model in this paper, there are other

approaches to modelling rankings data. This section reviews the main alternatives and

the available implementations.

Table 4 Features of key packages for fitting the Plackett–Luce model

Package Partial rankings Ties Inference Weak network Heterogeneity Covariates Teams

PlackettLuce Subset Yes Frequentist Yes Tree No No

ROlogit Top n Yes Frequentist No None Yes No

PLMIX Top n No Bayesian Yes Mixture No No

MixedMem Top n No None No Mixture No No

hyper2 Any No None No None No Yes

choix Subset No None Yes None No No

“Inference” refers to inference beyond parameter estimation. “Weak network” is short-hand for a network
that is not strongly connected

123

Modelling rankings in R: the PlackettLuce package 1035

2.3.1 Mallows’ Bradley–Terry model

For partial rankings of two items, i.e., paired comparisons, the Plackett–Luce model

reduces to the Bradley–Terry model (Bradley and Terry 1952). Mallows’ Bradley–

Terry model (Mallows 1957) is an alternative way to extend the Bradley–Terry model

for complete rankings. Each ranking is considered as a set of paired comparisons

and their joint probability is modelled assuming independence, normalizing over all

possible rankings. Mallows’ Bradley–Terry model is implemented by the eba and

prefmod packages for R (Wickelmaier and Schmid 2004; and Hatzinger and Dittrich

2012, respectively). Although both packages estimate item worths, neither eba nor

prefmod provide methods for inference based on these estimates.

The prefmod package implements Mallows’ Bradley–Terry model as a special

case of a wider class of pattern models, where a pattern is a set of paired comparisons

considered simultaneously. Several extensions of the basic model are implemented

in prefmod: allowing for dependencies between paired comparisons that involve the

same item; allowing for ties and partial rankings; incorporating item, subject or order

effects, and allowing for latent subject effects via mixture models. However, not all

of these features can be combined. Specifically, item effects, subject effects due to

continuous attributes, order effects and mixture models are not compatible with par-

tial rankings. Partial rankings are implemented by treating unranked items as having

missing ranks and all possible rankings including missing values must be considered.

This means that the methods do not scale well to a large number of items (the package

documentation suggests 8 items as a reasonable maximum).

2.3.2 Mallows distance-based model

The Mallows distance-based model (Mallows 1957) does not model the worth of items,

but rather a global ranking. Specifically, it models the modal ranking and a dispersion

parameter, which describes how quickly the probability of a ranking decreases with

increasing distance from the modal ranking. Extensions include the generalized Mal-

lows model that allows a separate dispersion parameter for each free position in the

ranking, which can give some indication of the relative worth. Standard and gener-

alized versions of Mallows models are implemented in the pmr and PerMallows R
packages (Irurozki et al. 2016).

The rankdist R package implements mixtures of the standard Mallows model

for complete or subset rankings via maximum likelihood (Qian and Yu 2019). The

BayesMallow R package (Vitelli et al. 2018) implements mixtures of the standard

Mallows model in a Bayesian framework. This has the advantage of facilitating infer-

ence on the global ranking (in each sub-population), e.g. 95% highest posterior density

intervals on ranking position; probability of an item appearing in the top 10, etc. In

addition, subset rankings, top n rankings, missing ranks and ties can all be accommo-

dated in the Bayesian model.

123

1036 H. L. Turner et al.

Table 5 Features of key packages using alternative models for rankings, compared to PlackettLuce

Package Model Focus Inference Partial rankings Ties Heterogeneity

PlackettLuce PL Worth Frequentist Subset Yes Trees

eba Mallows BT Worth None None No None

prefmod Mallows BT Worth None Any Yes Categorical effects

PerMallows Mallows DB Ranking None None No None

BayesMallow Mallows DB Ranking Bayesian Any Yes Mixture

rankdist Mallows DB Ranking None Subset No Mixture

Rankcluster ISR Cluster membership Frequentist Any No Mixture

Mallows BT = Mallows Bradley–Terry model, Mallows DB = Mallows distance-based model, ISR =
Insertion Sorting Rank model. “Inference” refers to inference beyond parameter estimation, related to the
focus of analysis under “Focus”

2.3.3 Insertion sorting rank model

The Rankcluster package (Grimonprez and Jacques 2016) implements an alternative

probabilistic model for rankings called the Insertion Sorting Rank model. This is based

on a modal ranking and a parameter for the probability of a ranker making an implicit

paired comparison consistent with the modal ranking. Heterogeneity is accommodated

via a mixture model and the model can be applied to subset or top-n rankings. As the

package name suggests, the focus is on clustering subjects by their modal ranking and

the probability of membership, rather than inference on item worths.

2.3.4 Summary

Table 5 provides an overview of software based on alternative models, compared to

PlackettLuce.

3 Plackett–Lucemodel with ties

In this section, we describe and demonstrate the core features of the PlackettLuce

package: modelling partial rankings with ties, conducting inference on the worth

parameters, and handling ranking networks that are not strongly connected.

3.1 Modelling partial rankings with ties

The PlackettLuce package permits rankings of the form

R = {C1, C2, . . . , CJ },

where the items in set C1 are ranked higher than (better than) the items in C2, and

so on. If there are multiple objects in set C j these items are tied in the ranking. To

123

Modelling rankings in R: the PlackettLuce package 1037

accommodate such ties, PlackettLuce models each choice in the ranking with the

Davidson-Luce model as developed recently by Firth et al. (2019).

For a set S, let

f (S) = δ|S|

(

∏

i∈S

αi

)
1

|S|

,

where |S| is the cardinality of the set S, δn is a parameter representing the prevalence

of ties of order n (with δ1 ≡ 1), and αi is the worth of item i . Then, the probability of

a ranking R with ties up to order D is given by

J
∏

j=1

f (C j)
∑min(D j ,D)

k=1

∑

S∈(
A j
k
)

f (S)
. (2)

Here D j is the cardinality of A j , which is the set of items from which C j is chosen,

and
(A j

k

)

denotes the set of all possible choices of k items from A j . The value of D

can be set to the maximum number of tied items observed in the data, so that δn = 0

for n > D.

The scale of the worth parameters needs to be constrained for the parameters to

be identifiable. PlackettLuce constrains the worth parameters to sum to one, so that

they represent the probability that the corresponding item comes first in a ranking of

all items, given that first place is not tied.

The 2-way tie parameter δ2 is related to the probability that two items of equal worth

tie for first place, given that the first place is not a 3-way or higher tie. Specifically,

that probability is δ2/(2 + δ2). The 3-way and higher tie parameters are similarly

interpretable, in terms of tie probabilities among equal-worth items.

Further description of this general model for handling multi-item ties, including its

origins and its most important properties, can be found in Firth et al. (2019).

3.1.1 Pudding example

When each ranking contains only two items, the model in Eq. (2) reduces to the

extended Bradley–Terry model proposed by Davidson (1970). In Davidson ((1970),

Example 2), a case study is presented where respondents were asked to test two

brands of chocolate pudding from a total of six brands. The results are provided as the

pudding data set in PlackettLuce. For each pair of brands i and j , the data set gives

the total number of paired comparisons (ri j), along with the frequencies that brand i

was preferred (wi j), that brand j was preferred (w j i) and that the brands were tied

(ti j).

R> library(PlackettLuce)
R> head(pudding)

123

1038 H. L. Turner et al.

i j r_ij w_ij w_ji t_ij
1 1 2 57 19 22 16
2 1 3 47 16 19 12
3 2 3 48 19 19 10
4 1 4 54 18 23 13
5 2 4 51 23 19 9
6 3 4 54 19 20 15

PlackettLuce(), the model-fitting function in PlackettLuce, requires each

ranking to be specified by the numeric rank (1, 2, 3, . . .) assigned to each item. For the

pudding data, it is easier to specify the ordering (winner, loser) initially. In particular,

we can define the winner and loser for the three sets of paired comparions: the wins

for brand i , the wins for brand j and the ties:

R> i_wins <- data.frame(Winner = pudding$i, Loser = pudding$j)
R> j_wins <- data.frame(Winner = pudding$j, Loser = pudding$i)
R> ties <- data.frame(Winner = asplit(pudding[c("i", "j")], 1),
+ Loser = rep(NA, 15))
R> head(ties, 2)

Winner Loser
1 1, 2 NA
2 1, 3 NA

In the last case, the base R function asplit() is used to split the i and j columns of

pudding by row, giving a vector of items that we can specify as the winner, while the loser is

missing.

The combined orderings can be converted to numeric rankings using the as.rankings()
function from PlackettLuce:

R> pudding_rankings <- as.rankings(rbind(i_wins, j_wins, ties),
+ input = "orderings")
R> head(pudding_rankings)

[1] "1 > 2" "1 > 3" "2 > 3" "1 > 4" "2 > 4" "3 > 4"

R> tail(pudding_rankings)

[1] "4 = 5" "1 = 6" "2 = 6" "3 = 6" "4 = 6" "5 = 6"

The result is an object of class "rankings". The print method displays the rankings in a

readable form, indicating the ordering of the brands. However, the underlying data structure stores

the rankings in the form of a matrix:

R> head(unclass(pudding_rankings), 2)

1 2 3 4 5 6
[1,] 1 2 0 0 0 0
[2,] 1 0 2 0 0 0

The six columns represent the pudding brands. In each row,0 represents an unranked brand (not

in the comparison),1 represents the brand(s) ranked in first place and 2 represents the brand in sec-

ond place, if applicable. PlackettLuce()will also accept rankings in this matrix form, which

it will convert to a rankings object using as.rankings() with input = "rankings".

To specify the full set of rankings, we need the frequency of each ranking, which will be

specified to the model-fitting function as a weight vector:

123

Modelling rankings in R: the PlackettLuce package 1039

R> w <- unlist(pudding[c("w_ij", "w_ji", "t_ij")])

Now we can fit the model with PlackettLuce(), passing the rankings object and the

weight vector as arguments. Setting npseudo = 0 means that standard maximum likelihood

estimation is performed and maxit = 7 limits the number of iterations to obtain the same worth

parameters as Davidson (1970):

R> pudding_model <- PlackettLuce(pudding_rankings, weights = w,
+ npseudo = 0, maxit = 7)

Warning in PlackettLuce(pudding_rankings, weights = w,
npseudo = 0, maxit = 7): Iterations have not converged.

R> coef(pudding_model, log = FALSE)
1 2 3 4 5

0.1388005 0.1729985 0.1617420 0.1653930 0.1586805
6 tie2

0.2023855 0.7468147

Here we have specified log = FALSE to report the estimates in the parameterization of

Eq. (2), with the worth parameters constrained to sum to one. In Sect. 2.2.3 we discuss why it is

more appropriate to use the log scale for inference.

3.1.2 Choice of algorithm

As noted in Sect. 2.1.3, PlackettLuce() offers a selection of three fitting algorithms, which

can be specified by setting the argument method to "iterative scaling", "BFGS" or

"L-BFGS". Iterative scaling is the default because it is a reliable, albeit slow, method. Conver-

gence is determined by direct comparison of the observed and expected values of the sufficient

statistics for the parameters.

The sufficient statistics are: for each item, the number of outright wins plus one nth of the

number of n-way ties (n = 1, . . . , D); and for each tie of order n, the number of n-way ties.

Assessing convergence by how close the sufficient statistics are to their expected value gives more

control over the precision of the parameter estimates, compared to specifying a tolerance on the

change in log-likelihood.

Iterative scaling is slow because it does not use derivatives of the log-likelihood. However,

PlackettLuce() uses Steffensen’s method (see for example, Nievergelt 1991) to accelerate

the algorithm when it gets close to the final solution.

The BFGS and L-BFGS algorithms are implemented in PlackettLuce via the workhorse func-

tions optim() (from base R) or lbfgs() (from lfbgs). Both algorithms use derivatives of the

log-likelihood, therefore typically require fewer iterations than iterative scaling. However, BFGS

approximates the Hessian matrix (matrix of second derivatives), which is computationally expen-

sive, while L-BFGS uses past estimates of the first derivatives to avoid evaluating the Hessian.

Overall then, L-BFGS typically has the quickest run time, followed by iterative scaling, then

BFGS.

3.2 Inference

3.2.1 Standard errors and Z tests

A standard way to report model parameter estimates is to report them along with their correspond-

ing standard error. This is an indication of the estimate’s precision. However, implicitly this invites

123

1040 H. L. Turner et al.

comparison with zero. Such comparison is made explicit in many summary methods for models

in R, with the addition of partial t or Z tests. These are tests of the null hypothesis that a parameter

is equal to zero, provided that the other parameters are in the model. However, this hypothesis is

generally not of interest for the worth parameters in a Plackett–Luce model: we expect most items

to have some worth, the question is whether the items differ in worth. Besides, when the worth

parameters are constrained to sum to one, this constrains each parameter to lie between zero and

one. A Z test based on asymptotic normality of the MLE is not appropriate for worth parameters

near the limits, since it does not account for the constrained parameter space.

On the log scale however, before identifiability constraints are applied, there are no bounds

on the parameters. We can constrain the worth parameters by computing simple contrasts with a

reference value. By default, the summary method for "PlackettLuce" objects contrasts with

the worth of the first item (the first element of colnames(R)), which is equivalent to setting

the worth parameter for that item to zero:

R> summary(pudding_model)

Call: PlackettLuce(rankings = pudding_rankings, npseudo = 0,
weights = w, maxit = 7)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

1 0.0000 NA NA NA
2 0.2202 0.1872 1.176 0.239429
3 0.1530 0.1935 0.790 0.429271
4 0.1753 0.1882 0.931 0.351683
5 0.1339 0.1927 0.695 0.487298
6 0.3771 0.1924 1.960 0.049983
tie2 -0.2919 0.0825 -3.539 0.000402

Residual deviance: 1619.4 on 1484 degrees of freedom
AIC: 1631.4
Number of iterations: 7

The Z tests for the item parameters test the null hypothesis that the difference from the worth

of item 1 is zero. None of the Z tests provide significant evidence against this hypothesis, which

is consistent with the test for equal preferences presented in Davidson (1970). The tie parameter

is also shown on the log scale here, but it is an integral part of the model rather than a parameter

of interest for inference, and its scale is not as relevant as that of the worth parameters.

The reference value for the item parameters can be changed via theref argument, for example,

setting to NULL sets the mean worth as the reference:

R> summary(pudding_model, ref = NULL)

Call: PlackettLuce(rankings = pudding_rankings, npseudo = 0,
weights = w, maxit = 7)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

1 -0.176581 0.121949 -1.448 0.147619
2 0.043664 0.121818 0.358 0.720019
3 -0.023617 0.126823 -0.186 0.852274
4 -0.001295 0.122003 -0.011 0.991533

123

Modelling rankings in R: the PlackettLuce package 1041

5 -0.042726 0.127054 -0.336 0.736657
6 0.200555 0.126594 1.584 0.113140
tie2 -0.291938 0.082499 -3.539 0.000402

Residual deviance: 1619.4 on 1484 degrees of freedom
AIC: 1631.4
Number of iterations: 7

3.2.2 Quasi standard errors

As shown by the two summaries of the model fitted to the pudding data in Sect. 3.2.1, the standard

error of the item parameters changes with the reference level. In some cases, there will be a natural

reference, for example, when comparing an own brand product with competing brands. When this

is not the case, inference can depend on an arbitrary choice. This problem can be handled through

the use of quasi standard errors (Firth and De Menezes 2004; see also Firth 2003) that remain

constant for a given item regardless of the reference. In particular, the quasi standard error is not

changed by setting an item as the reference, so even in cases where there is a natural reference,

the uncertainty around the worth of that item can be represented.

Quasi standard errors for the item parameters are implemented via a method for the qvcalc
function from the qvcalc package:

R> pudding_qv <- qvcalc(pudding_model)
R> summary(pudding_qv)

Model call: PlackettLuce(rankings = pudding_rankings,
npseudo = 0, weights = w, maxit = 7)

estimate SE quasiSE quasiVar
1 0.0000000 0.0000000 0.1328950 0.01766108
2 0.2202447 0.1872168 0.1327373 0.01761919
3 0.1529644 0.1935181 0.1395740 0.01948091
4 0.1752864 0.1882110 0.1330240 0.01769538
5 0.1338550 0.1927043 0.1399253 0.01957908
6 0.3771362 0.1924059 0.1392047 0.01937796

Worst relative errors in SEs of simple contrasts (%): -0.8 0.8
Worst relative errors over *all* contrasts (%): -1.7 1.7

Again by default, the first item is taken as the reference, but this may be changed via the

ref argument. The plot method for the returned object visualizes the item parameters (log worth

parameters) along with comparison intervals:

R> plot(pudding_qv, xlab = "Brand of pudding",
+ ylab = "Worth (log)", main = NULL)

The output is shown in Fig. 1. There is evidence of a difference between any two item parameters

if there is no overlap between the corresponding comparison intervals. The quasi-variances allow

comparisons that are approximately correct, for every possible contrast among the parameters.

The routine error report in the last two lines printed by summary(pudding_qv) tells us that,

in this example, the approximation error has been very small: the approximation error for the

standard error of any simple contrast among the parameters is less than 0.8%.

123

1042 H. L. Turner et al.

1 2 3 4 5 6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Brand of pudding

W
o

rt
h

 (
lo

g
)

Fig. 1 Worth of brands of chocolate pudding. Comparison intervals based on quasi standard errors

3.3 Disconnected or weakly connected networks

Given a ranking of items, we can infer the wins and losses between pairs of items in the ranking.

For example, the ranking {item 1} ≻ {item 3, item 4} ≻ {item 2}, implies that item 1 wins against

items 2, 3 and 4; and items 3 and 4 win against item 2. These wins and losses can be represented

as a directed network.

For example, consider the following artificial set of paired comparisons:

R> ABCD_matrix <- matrix(c(1, 2, 0, 0, ## A beats B
+ 2, 0, 1, 0, ## C beats A
+ 1, 0, 0, 2, ## A beats D
+ 2, 1, 0, 0, ## B beats A
+ 0, 1, 2, 0), ## B beats C
+ byrow = TRUE, ncol = 4,
+ dimnames = list(NULL, LETTERS[1:4]))
R> ABCD_rankings <- as.rankings(ABCD_matrix)

Here we have defined the paired comparisons as a matrix of numeric rankings, then used

as.rankings() to create a formal rankings object (input is set to"rankings" by default).

The as.rankings() function ensures that the rankings are coded as dense rankings, i.e. con-

secutive integers with no rank skipped for tied items; sets any rankings with less than two items

to NA since these are uninformative, and adds item names if necessary.

The adjacency() function from PlackettLuce can be used to convert these rankings to an

adjacency matrix, where element (i, j) is the number of times item i is ranked higher than item

j :

R> ABCD_adjacency <- adjacency(ABCD_rankings)
R> ABCD_adjacency

A B C D
A 0 1 0 1
B 1 0 1 0
C 1 0 0 0
D 0 0 0 0
attr(,"class")
[1] "adjacency" "matrix"

Using functions from the igraph R package (Csardi and Nepusz 2006) we can visualise the

corresponding network (output shown in Fig. 2):

123

Modelling rankings in R: the PlackettLuce package 1043

Fig. 2 Network representation
of toy rankings

A

B

C D

R> library(igraph)
R> net <- graph_from_adjacency_matrix(ABCD_adjacency)
R> plot(net, edge.arrow.size = 0.5, vertex.size = 30)

A sufficient condition for the worth parameters (on the log scale) to have finite MLEs and

standard errors is that the network is strongly connected (Hunter 2004). This means there is a path

of wins and a path of losses between each pair of items. This condition is also necessary when

there are no ties in the data.

In our example data, A, B and C are strongly connected. For example, C directly loses against

B; C never directly beats B, but C does beat A and A, in turn, beats B, so C indirectly beats B.

Similar paths of wins and losses can be found for all pairs of A, B and C. On the other hand, D

is only observed to lose, therefore the MLE of its log worth would be −∞, with infinite standard

error.

If one item always wins, the MLE of its log worth would be +∞ with infinite standard error.

If the items form strongly connected clusters, that are not connected to each other, or connected

only by wins or only by losses (weakly connected), then the maximum likelihood solution cannot

be represented simply through a vector of relative worths. A variant of our artificial example

illustrates this last point, through a pair of clusters that are not connected to one another:

R> disconnected_matrix <- matrix(c(1, 2, 0, 0, ## A beats B
+ 2, 1, 0, 0, ## B beats A
+ 0, 0, 1, 2, ## C beats D
+ 0, 0, 2, 1), ## D beats C
+ byrow = TRUE, ncol = 4,
+ dimnames = list(NULL, LETTERS[1:4]))
R> print(disconnected_rankings <- as.rankings(disconnected_matrix))

[1] "A > B" "B > A" "C > D" "D > C"

In this example, there is no information that allows the relative worths of items A and C to

be estimated. While the within-cluster worth ratios αA/αB and αC/αD both have MLEs equal

to 1 here, between-cluster ratios such as αA/αC are not estimable. When PlackettLuce() is

applied to such a set of rankings, with argument npseudo = 0 to specify the use of maximum

likelihood estimation, by design the result is an error message:

R> try(PlackettLuce(disconnected_rankings, npseudo = 0))

Error in PlackettLuce(disconnected_rankings, npseudo = 0) :
Network is not fully connected - cannot estimate all item
parameters with npseudo = 0

The case of weakly connected clusters is similar. If, for example, a single further ranking “A

beats C” is added to the example just shown, then the two clusters become weakly connected. The

maximum likelihood solution in that case has α̂C/α̂A = α̂C/α̂B = α̂D/α̂A = α̂D/α̂B = 0, and

123

1044 H. L. Turner et al.

requires the notion of a “direction of recession” (Geyer 2009) to describe it fully. This is beyond

the scope of PlackettLuce(), which again by design gives an informative error message in

such situations.

The remainder of this section describes two distinct approaches to the use of PlackettLuce
with disconnected networks: first, the separate analysis by maximum likelihood of an identified

sub-network that is strongly connected within itself; and second, a general approach that uses

pseudo-rankings to fully connect the network of items being compared.

We return to the small “toy” set of rankings depicted in Fig. 2. The connectivity()
function from PlackettLuce checks how connected the items are by the wins and losses recorded

in the adjacency matrix:

R> connectivity(ABCD_adjacency)

Network of items is not strongly connected

$membership
A B C D
1 1 1 2

$csize
[1] 3 1

$no
[1] 2

If the network of wins and losses is not strongly connected, information on the clusters within

the network is returned. In this example, we might proceed by excluding item D:

R> ABC_rankings <- ABCD_rankings[, -4]

Rankings with only 1 item set to "NA"

R> ABC_rankings

[1] "A > B" "C > A" NA "B > A" "B > C"

Since ABCD_rankings is a rankings object, the subset method checks the rankings are still

valid after excluding item D. In this case, the paired comparison with item A only has one item

left in the ranking, so it is set to NA.

The handling of any rankings that are NA is determined by the na.action argument of

PlackettLuce(). This is set to "na.omit" by default, so that missing rankings are dropped.

In our example, the network corresponding to the remaining rankings is strongly connected, so

the MLEs in the Plackett–Luce model all have finite worth estimates and standard errors:

R> ABC_model <- PlackettLuce(ABC_rankings, npseudo = 0)
R> summary(ABC_model)

Call: PlackettLuce(rankings = ABC_rankings, npseudo = 0)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

A 0.0000 NA NA NA
B 0.8392 1.3596 0.617 0.537
C 0.4196 1.5973 0.263 0.793

123

Modelling rankings in R: the PlackettLuce package 1045

Residual deviance: 5.1356 on 2 degrees of freedom
AIC: 9.1356
Number of iterations: 3

However, it is not necessary to exclude item D, since PlackettLuce provides a way to handle

disconnected/weakly connected networks through the addition of pseudo-rankings. This works

by adding wins and losses between each item and a hypothetical or ghost item with fixed worth,

making the network strongly connected. This method has an interpretation as a Bayesian prior, in

particular, an exchangeable prior in which all items have equal worth.

The npseudo argument defines the number of wins and loses with the ghost item that are

added for each real item. The larger npseudo is, the stronger the influence of the prior; by default

npseudo is set to 0.5, so that each pseudo-ranking is weighted by 0.5. This fractional weight is

enough to connect the network. Note that this weight is only applied to the pseudo-rankings, the

weights argument defines the weights (frequencies) for the observed rankings.

In this toy example, when we fit the model to the full data using pseudo-rankings the parameters

for items B and C change quite considerably compared to the previous fit:

R> ABCD_model <- PlackettLuce(ABCD_rankings)
R> coef(ABCD_model)

A B C D
0.0000000 0.5184185 0.1354707 -1.1537565

This is because there are only 5 rankings, so weighting each pseudo-ranking by 0.5 gives them

relatively large weight. In more realistic examples, with many rankings, the default prior will

have a weak shrinkage effect, shrinking the items’ worth parameters towards 1/J , where J is the

number of items.

Although it is only necessary to use pseudo-rankings when the network is not strongly con-

nected, the default behaviour is always to use them (with a weight of 0.5). This is because the

shrinkage that the pseudo-rankings deliver typically reduces both the bias and the variance of the

estimators of the worth parameters.

3.3.1 NASCAR example

For a practical example of modelling rankings where the underlying network is weakly connected,

we consider the NASCAR data from Hunter (2004). The data are results of the 36 races in the

2002 NASCAR season in the United States. Each race involves 43 drivers out of a total of 87

drivers. The nascar data provided by PlackettLuce records the results as an ordering of the

drivers in each race:

R> data(nascar)
R> ncol(nascar)

[1] 43

R> nascar[1:2, 1:9]

rank1 rank2 rank3 rank4 rank5 rank6 rank7 rank8 rank9
[1,] 83 18 20 48 53 51 67 72 32
[2,] 52 72 4 82 60 31 32 66 3

For example, in the first race, driver 83 came first, followed by driver 18 and so on. The names

corresponding to the driver IDs are available as an attribute of nascar. We can provide these

names when converting the orderings to rankings via the items argument:

123

1046 H. L. Turner et al.

R> nascar_rankings <- as.rankings(nascar, input = "orderings",
+ items = attr(nascar, "drivers"))
R> nascar_rankings[1:2]

[1] "Ward Burton > Elliott Sadler > Geoff ..."
[2] "Matt Kenseth > Sterling Marlin > Bob ..."

Maximum likelihood estimation cannot be used in this example, because four drivers placed

last in each race they entered. For this reason, Hunter (2004) dropped these four drivers to fit the

Plackett–Luce model, which we can reproduce as follows:

R> driver_1_to_83_rankings <- nascar_rankings[, 1:83]
R> driver_1_to_83_model <- PlackettLuce(driver_1_to_83_rankings,
+ npseudo = 0)

In order to demonstrate the correspondence with the results from Hunter (2004), we order the

item parameters by the driver’s average rank:

R> average_rank <- apply(nascar_rankings, 2,
+ function(x) mean(x[x > 0]))
R> id <- order(average_rank)
R> ordered_drivers <- names(average_rank)[id]
R> driver_1_to_83_coef <- round(coef(driver_1_to_83_model), 2)
R> driver_1_to_83_coef[ordered_drivers[1:3]]

PJ Jones Scott Pruett Mark Martin
4.15 3.62 2.08

R> driver_1_to_83_coef[ordered_drivers[81:83]]

Dave Marcis Dick Trickle Joe Varde
0.03 -0.31 -0.15

Now we fit the Plackett–Luce model to the full data, using the default pseudo-rankings method.

R> nascar_model <- PlackettLuce(nascar_rankings)

For items that were in the previous model, we see that the log worth parameters generally

shrink towards zero:

R> nascar_coef <- round(coef(nascar_model), 2)
R> nascar_coef[ordered_drivers[1:3]]

PJ Jones Scott Pruett Mark Martin
3.20 2.77 1.91

R> nascar_coef[ordered_drivers[81:83]]

Dave Marcis Dick Trickle Joe Varde
0.02 -0.38 -0.12

The new items have relatively large negative log worth, but the estimates are nonetheless finite

with finite standard error:

R> coef(summary(nascar_model))[84:87,]

123

Modelling rankings in R: the PlackettLuce package 1047

−
6

−
4

−
2

0
2

4
6

A
b

ili
ty

 (
lo

g
)

A
n
d
y
 H

ill
e
n
b
u
rg

R
a
n
d
y
 R

e
n
fr

o
w

G
a
ry

 B
ra

d
b
e
rr

y
J
a
s
o
n
 H

e
d
le

s
k
y

H
id

e
o
 F

u
k
u
y
a
m

a
S

tu
a
rt

 K
ir
b
y

M
o
rg

a
n
 S

h
e
p
h
e
rd

K
e
v
in

 L
e

p
a

g
e

J
a
y
 S

a
u
te

r
J
a
s
o
n
 S

m
a
ll

D
ic

k
 T

ri
c
k
le

T
o
n
y
 R

a
in

e
s

K
ir

k
 S

h
e
lm

e
rd

in
e

C
h
ri

s
ti
a
n
 F

it
ti
p
a
ld

i
C

a
rl

 L
o
n
g

F
ra

n
k
 K

im
m

e
l

J
o
e
 V

a
rd

e
S

c
o
tt
 W

im
m

e
r

S
h
a
w

n
a
 R

o
b
in

s
o
n

A
u
s
ti
n
 C

a
m

e
ro

n
D

a
v
e
 M

a
rc

is
D

e
rr

ik
e

 C
o

p
e

M
ik

e
 W

a
lla

c
e

G
e
o
ff

re
y
 B

o
d
in

e
S

ta
c
y
 C

o
m

p
to

n
R

o
n
 H

o
rn

a
d
a
y

H
e
rm

ie
 S

a
d
le

r
T

im
 S

a
u
te

r
J
o
e
 N

e
m

e
c
h
e
k

R
ic

k
 M

a
s
t

T
o
d
d
 B

o
d
in

e
W

a
rd

 B
u
rt

o
n

C
a
s
e
y
 A

tw
o
o
d

B
re

tt
 B

o
d
in

e
S

te
v
e
 G

ri
s
s
o
m

J
a
c
k
 S

p
ra

g
u
e

J
a
s
o
n
 L

e
ff

le
r

B
o
ri

s
 S

a
id

B
u
c
k
s
h
o
t
J
o
n
e
s

C
h
a
d
 L

it
tl
e

H
a
n
k
 P

a
rk

e
r,

 J
r

H
u
t
S

tr
ic

k
lin

J
e
rr

y
 N

a
d
e
a
u

K
e
n
 S

c
h
ra

d
e
r

M
ik

e
 S

k
in

n
e
r

S
te

v
e
 P

a
rk

J
o
h
n
 A

n
d
re

tt
i

L
a
n
c
e
 H

o
o
p
e
r

J
im

 I
n
g
le

b
ri

g
h
t

E
lli

o
tt

 S
a
d
le

r
G

re
g
 B

if
fl
e

B
o
b
b
y
 H

a
m

ilt
o
n

J
e
re

m
y
 M

a
y
fi
e
ld

K
e
n
n
y
 W

a
lla

c
e

K
e
v
in

 H
a
rv

ic
k

J
im

m
y
 S

p
e
n
c
e
r

J
o
h
n
n
y
 B

e
n
s
o
n

J
a
m

ie
 M

c
M

u
rr

a
y

T
e
rr

y
 L

a
b
o
n
te

K
y
le

 P
e

tt
y

T
e
d
 M

u
s
g
ra

v
e

R
o
n
 F

e
llo

w
s

B
o
b
b
y
 L

a
b
o
n
te

R
o
b
b
y
 G

o
rd

o
n

J
e
ff
 G

re
e
n

T
o
m

 H
u
b
e
rt

M
ic

h
a
e
l
W

a
lt
ri

p
R

o
b
e
rt

 P
re

s
s
le

y
R

ic
k
y
 C

ra
v
e
n

D
a
v
e
 B

la
n
e
y

R
y
a
n
 N

e
w

m
a
n

B
ill

 E
lli

o
tt

D
a
le

 E
a
rn

h
a
rd

t
J
r.

D
a
le

 J
a
rr

e
tt

M
a
tt
 K

e
n
s
e
th

K
u
rt

 B
u
s
c
h

J
e
ff
 B

u
rt

o
n

R
ic

k
y
 R

u
d
d

S
te

rl
in

g
 M

a
rl

in
J
e
ff
 G

o
rd

o
n

T
o
n
y
 S

te
w

a
rt

M
ik

e
 B

lis
s

J
im

m
ie

 J
o
h
n
s
o
n

R
u
s
ty

 W
a
lla

c
e

M
a
rk

 M
a
rt

in
S

c
o
tt
 P

ru
e
tt

P
J
 J

o
n
e
s

Fig. 3 Ability of drivers based on NASCAR 2002 season. Intervals based on quasi standard errors

Estimate Std. Error z value Pr(>|z|)
Andy Hillenburg -2.171065 1.812994 -1.1975028 0.2311106
Gary Bradberry -1.744754 1.855365 -0.9403828 0.3470212
Jason Hedlesky -1.590764 1.881708 -0.8453828 0.3978972
Randy Renfrow -1.768629 1.904871 -0.9284767 0.3531604

We can plot the quasi-variances to visualise the relative ability of all drivers (output shown in

Fig. 3):

R> nascar_qv <- qvcalc(nascar_model)
R> nascar_qv$qvframe <- nascar_qv$qvframe[order(coef(nascar_model)),]
R> plot(nascar_qv, xlab = NULL, ylab = "Ability (log)", main = NULL,
+ xaxt = "n", xlim = c(3, 85))
R> axis(1, at = seq_len(87), labels = rownames(nascar_qv$qvframe),
+ las = 2, cex.axis = 0.6)

As in the pudding example, we can use summary(nascar_qv) to see a report on the

accuracy of the quasi-variance approximation. In this example the error of approximation, across

the standard errors of all 3741 possible simple contrasts (contrasts between pairs of the 87 driver-

specific parameters), ranges between -0.7% and +6.7%. This is still remarkably accurate and

means that the plot of comparison intervals is a good visual guide to the uncertainty about drivers’

relative abilities. The results of using summary(nascar_qv) are not shown here, as they

would occupy too much space.

4 Plackett–Luce trees

A Plackett–Luce model that assumes the same worth parameters across all rankings may some-

times be an over-simplification. For example, if rankings are made by different judges, the worth

parameters may vary between groups of judges with different characteristics. Alternatively, the

worth parameters may vary by conditions in which the ranking took place, such as the weather at

the time of a race.

Model-based partitioning provides an automatic way to determine subgroups with significantly

different sets of worth parameters. The rankings are recursively split into two groups according

123

1048 H. L. Turner et al.

to their value on covariates whose values vary between rankings, and a Plackett–Luce model is

fitted to each subgroup formed. The method proceeds as follows:

1. Fit a Plackett–Luce model to the full data.

2. Assess the stability of the worth parameters with respect to each covariate. That is, test for a

structural change in the ranking-level contributions to the first derivatives of the log-likelihood,

when these contributions are ordered by covariate values.

3. If there is significant instability, split the full data by the covariate with the strongest instability,

using the cut-point that gives the highest improvement in model fit.

4. Repeat steps 1-3 for each subgroup until there are no more significant instabilities, or a split

produces a subgroup below a given size threshold.

The result is a Plackett–Luce tree, since the recursive binary splits may be represented in a tree

diagram and a Plackett–Luce model is fitted to the subgroups defined by each branch. This is an

extension of Bradley–Terry trees, implemented in the R package psychotree (Zeileis et al. 2018)

and described in more detail by Strobl et al. (2011).

4.1 Beans example

To illustrate Plackett–Luce trees, we consider data from a trial in Nicaragua of ten different

varieties of bean, run by Bioversity International (Van Etten et al. 2016). Farmers were asked to

grow three out of the ten trial varieties in one of the growing seasons, Primera (May–August),

Postrera (September–October) or Apante (November–January). At the end of the season, they

were asked which variety they thought was best and which variety they thought was worst, to give

a ranking of the three varieties. In addition, they were asked to compare each trial variety to the

standard local variety and say whether it was better or worse.

The data are provided as the datasetbeans in PlackettLuce. The data require some preparation

to collate the rankings, which is detailed in “Appendix 2”. The same code is provided in the

examples section of the help file of beans

R> example("beans", package = "PlackettLuce")

The result is a rankings object R with all rankings of the three trial varieties and the output

of their comparison with the local variety.

In order to fit a Plackett–Luce tree, we need to create a "grouped_rankings" object, that

defines how the rankings map to the covariate values. In this case we wish to group by each record

in the original data set. So we group by an index that identifies the record number for each of the

four rankings from each farmer (one ranking of order three plus three pairwise rankings with the

local variety):

R> n <- nrow(beans)
R> beans_grouped_rankings <- group(R, index = rep(1:n, times = 4))
R> format(head(beans_grouped_rankings, 2), width = 45)

1
"PM2 Don Rey > SJC 730-79 > BRT 103-182, Local > BRT 103-182, ..."
2
"INTA Centro Sur > INTA Sequia > INTA Rojo, Local > INTA Rojo, ..."

For each record in the original data, we have three covariates: season the season-year the

beans were planted, year the year of planting, and maxTN the maximum temperature at night

during the vegetative cycle. The following code fits a Plackett–Luce tree with up to three nodes

and at least 5% of the records in each node:

123

Modelling rankings in R: the PlackettLuce package 1049

R> beans$year <- factor(beans$year)
R> beans_tree <- pltree(beans_grouped_rankings ˜ .,
+ data = beans[c("season", "year", "maxTN")],
+ minsize = 0.05*n, maxdepth = 3)
R> beans_tree

Plackett-Luce tree

Model formula:

G ˜ .

Fitted party:

[1] root

| [2] maxTN <= 18.7175

| | [3] season in Pr - 16: n = 47

| | ALS 0532-6 BRT 103-182 INTA Centro Sur INTA Ferroso

| | 0.0000000000 -1.1402562056 -0.7356643306 -1.1986768665

| | INTA Matagalpa INTA Precoz INTA Rojo INTA Sequia

| | -0.8016667298 0.1226994334 0.6378654995 0.0003316762

| | Local PM2 Don Rey SJC 730-79

| | 0.4788504910 -1.0636844356 -1.2405493189

| | [4] season in Po - 15, Ap - 15, Po - 16, Ap - 16: n = 489

| | ALS 0532-6 BRT 103-182 INTA Centro Sur INTA Ferroso

| | 0.00000000 0.12989016 0.21133555 0.08487525

| | INTA Matagalpa INTA Precoz INTA Rojo INTA Sequia

| | 0.14435409 -0.16024617 0.11497038 0.50611822

| | Local PM2 Don Rey SJC 730-79

| | 0.63702034 -0.11244954 0.15430957

| [5] maxTN > 18.7175: n = 306

| ALS 0532-6 BRT 103-182 INTA Centro Sur INTA Ferroso

| 0.00000000 0.38374777 0.43829266 0.01041950

| INTA Matagalpa INTA Precoz INTA Rojo INTA Sequia

| 0.16107300 0.02310481 0.10892957 0.49692201

| Local PM2 Don Rey SJC 730-79

| 0.26238130 0.26594548 -0.07345855

Number of inner nodes: 2

Number of terminal nodes: 3

Number of parameters per node: 11

Objective function (negative log-likelihood): 3152.027

The algorithm identifies three nodes, with the first split defined by high night-time temperatures

and the second split separating the single Primera season from the others. So for early planting

in regions where the night-time temperatures were not too high, INTA Rojo (variety 7) was most

preferred, closely followed by the local variety. During the regular growing seasons (Postrera and

Apante) in regions where the night-time temperatures were not too high, the local variety was

most preferred, closely followed by INTA Sequia (8). Finally in regions where the maximum

night-time temperature was high, INTA Sequia (8) was most preferred, closely followed by BRT

103-182 (2) and INTA Centro Sur (3). A plot method is provided to visualise the tree (output

shown in Fig. 4):

R> plot(beans_tree, names = FALSE, abbreviate = 2, ylines = 2)

Note that when working with high dimensional data in particular, tree models can be quite

unstable. For a more robust model, an ensemble method such as bagging or random forests could

be employed (Strobl et al. 2009).

123

1050 H. L. Turner et al.

maxTN

p < 0.001

1

≤ 18.718 > 18.718

season

p < 0.001

2

Pr − 16 Po − 15, Ap − 15, Po − 16, Ap − 16

Node 3 (n = 47)

1 2 3 4 5 6 7 8 9 10 11

0.02

0.23
Node 4 (n = 489)

1 2 3 4 5 6 7 8 9 10 11

0.02

0.23
Node 5 (n = 306)

1 2 3 4 5 6 7 8 9 10 11

0.02

0.23

Fig. 4 Worth parameters for the ten trial varieties and the local variety for each node in the Plackett–
Luce tree. Varieties are 1: ALS 0532-6, 2: BRT 103-182, 3: INTA Centro Sur, 4: INTA Ferroso, 5: INTA
Matagalpa, 6: INTA Precoz, 7: INTA Rojo, 8: INTA Sequia, 9: Local, 10: PM2 Don Rey, 11: SJC 730-79

5 Discussion

PlackettLuce is a feature-rich package for the analysis of ranking data. The package provides

methods for importing and handling partial rankings data, and for estimation and inference from

a generalization of the Plackett–Luce model that can handle subset rankings and ties of arbi-

trary order. Disconnected item networks are handled by appropriately augmenting the data with

pseudo-rankings for a hypothetical item. The package also facilitates the construction of Plackett–

Luce trees, which allow item worth parameters to vary between rankings, according to available

covariate information on the rankings.

A disadvantage of modelling ties explicitly is that the normalising constant in Eq. (2), that nor-

malises over all possible choices for a given rank, involves a number of terms that increases rapidly

with the tie order D. This causes a corresponding increase in the run time of PlackettLuce().

Also, as noted in Sect. 2.2.3, our current method for estimating the variance-covariance matrix

relies on the technique of expanding rankings into counts. When this expansion is large, estimating

the standard errors for the model parameters can take almost as long as fitting the model, or can

even become infeasible due to memory limits. Improving the efficiency of both the model-fitting

and the variance-covariance estimation is a focus of current work.

Meanwhile, we expect that PlackettLuce() and all its methods work well on data with

ties up to order 4, for moderate numbers of items and unique rankings. As a guide, for 5000 sub-

rankings of 10 items, out of 100 items in total, with ties up to order 4, a test model fit took 18.1 s

and variance-covariance estimation took 14.8 s on the same machine used in the performance

evaluation of Sect. 2.1.4. This makes PlackettLuce suitable for applications such as sport, where

ties of order greater than 3 are typically extremely rare. For data with higher-order ties, a method

that does not explicitly model tied events, such as the rank-ordered logit model or the Mallows

distance-based model, may be more suitable.

Our plans for future development of PlackettLuce include support for online estimation from

streams of partial rankings and formally accounting for spatio-temporal heterogeneity in worth

parameters. Algorithms for online estimation will be more efficient, enabling the package to

handle larger data sets. To realise this potential, alternative data structures may be required for

partial rankings, which are currently represented as full rankings with some zero ranks.

123

Modelling rankings in R: the PlackettLuce package 1051

Other potential directions for future work include implementing some of the features offered

by other software. In particular, top n rankings often arise in practice and are compatible with

the algorithms that are currently implemented. Modelling top n rankings is more computationally

demanding than modelling subset rankings of the same length, since each choice in the ranking

selects from a wider set of alternatives. So supporting top n rankings will have wider practical

application if it is paired with a more efficient algorithm and/or a more efficient implementation

using compiled code.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Evaluation of run times to fit the Plackett–Lucemodel

Data for the package comparison in Table 1 was downloaded from PrefLib (Mattei and Walsh

2013) using the read.soc function provided in PlackettLuce to read in files with the “Strict

Orders - Complete List” format.

R> library(PlackettLuce)
R> # read in example data sets
R> pref <- "http://www.preflib.org/data/election/"
R> netflix <- read.soc(file.path(pref,
+ "netflix/ED-00004-00000101.soc"))
R> tshirt <- read.soc(file.path(pref,
+ "shirt/ED-00012-00000001.soc"))
R> sushi <- read.soc(file.path(pref,
+ "sushi/ED-00014-00000001.soc"))

A wrapper was defined for each function in the comparison, to prepare the rankings and

run each function with reasonable defaults. The Plackett–Luce model was fitted to aggregated

rankings where possible (with PlackettLuce(), hyper2(), and pmr()). Arguments were

set to obtain the MLE, with the default convergence criteria. The default iterative scaling algorithm

was used for PlackettLuce().

R> pl <- function(dat, ...){
+ # convert ordered items to ranking
+ R <- as.rankings(dat[,-1], "ordering")
+ # fit without adding pseudo-rankings, weight by count
+ PlackettLuce(R, npseudo = 0, weights = dat$Freq)
+ }
R> hyper2 <- function(dat, ...){
+ requireNamespace("hyper2")
+ # create likelihood object based on ordered items & counts
+ H <- hyper2::hyper2(pnames =
+ paste0("p", seq_len(ncol(dat) - 1)))
+ for (i in seq_len(nrow(dat))){

123

http://creativecommons.org/licenses/by/4.0/

1052 H. L. Turner et al.

+ x <- dat[i, -1][dat[i, -1] > 0]
+ H <- H + hyper2::order_likelihood(x, times = dat[i, 1])
+ }
+ # find parameters to maximise likelihood
+ p <- hyper2::maxp(H)
+ structure(p, loglik = hyper2::loglik(H, p[-length(p)]))
+ }
R> plmix <- function(dat, ...){
+ requireNamespace("PLMIX")
+ # disaggregate data (no functionality for weights or counts)
+ r <- rep(seq_len(nrow(dat)), dat$Freq)
+ # maximum a posteriori estimate, with non-informative prior
+ # K items in each ranking, single component distribution
+ # default init values do not always work; specify as uniform
+ K <- ncol(dat) - 1
+ PLMIX::mapPLMIX(as.matrix(dat[r, -1]), K = K, G = 1,
+ init = list(p = rep.int(1/K, K)),
+ plot_objective = FALSE)
+ }
R> pmr <- function(dat, ...){
+ requireNamespace("pmr")
+ # convert ordered items to ranking
+ R <- as.rankings(dat[,-1], "ordering")
+ # create data frame with counts as required by pl
+ X <- as.data.frame(unclass(R))
+ X$n <- dat$Freq
+ capture.output(res <- pmr::pl(X))
+ res
+ }
R> statrank <- function(dat, iter){
+ requireNamespace("StatRank")
+ # disaggregate data (no functionality for weights or counts)
+ r <- rep(seq_len(nrow(dat)), dat$Freq)
+ capture.output(res <- StatRank::Estimation.PL.MLE(
+ as.matrix(dat[r, -1]), iter = iter))
+ res
+ }

R> rologit <- function(dat, ...){
+ requireNamespace("ROlogit")
+ # disaggregate data (no functionality for weights or counts)
+ r <- rep(seq_len(nrow(dat)), dat$Freq)
+ # convert ordered items to ranking
+ R <- as.rankings(dat[r,-1], "ordering")
+ # set up variables for cox PH model and fit
+ nc <- ncol(R)
+ nr <- nrow(R)
+ mf <- data.frame(rank = nc - c(t(R)) + 1,
+ item = factor(rep(seq_len(nc), nr)),
+ ranking = factor(rep(seq_len(nr),
+ each = nc)))
+ ROlogit::rologit("rank", "item", svar = "ranking", dat = mf,
+ plot = FALSE)
+ }
R> mm <- function(dat, ...){

123

Modelling rankings in R: the PlackettLuce package 1053

+ requireNamespace("mixedMem")
+ # disaggregate data (no support for weights or counts)
+ r <- rep(seq_len(nrow(dat)), dat$Freq)
+ X <- as.matrix(dat[r,-1])
+ nitems <- ncol(X)
+ n <- nrow(X)
+ # Set up parameters for each outcome and repeated measure
+ # - here just one outcome (ranking) and one measure.
+ # Nijr = number of items in each ranking
+ # - as complete rankings here always nitems
+ Nijr <- array(nitems, dim = c(n, 1, 1))
+ # inital values for worth parameters
+ theta <- array(rep(1/nitems, nitems),
+ dim = c(1, 1, nitems))
+ # mixedMemModel assumes items labelled 0 to (nitems -1)
+ X2 <- array(X - 1, dim = c(n, 1, 1, nitems))
+ model <- mixedMem::mixedMemModel(
+ Total = n, # no. observations
+ J = 1, # n of outcomes
+ Rj = 1, # n of repeated measures
+ Nijr= Nijr, # number of items ranked
+ K = 1, # sub-populations, fix to 1
+ Vj = nitems, # total number of items
+ dist = "rank", # type of outcome
+ obs = X2, # ordering of items
+ alpha = 0.5, # hyperparameter for membership
+ theta = theta)
+ # gives warnings, but solution is correct
+ mixedMem::mmVarFit(model)
+ }

Run times were recorded on a Linux machine with a 2.10 GHz Intel Core i7 CPU and 16 GB

RAM. When recording run times, the number of iterations for Estimation.PL.MLE(), the

model-fitting function from StatRank, was set so that the log-likelihood on exit was equal to the

log-likelihood returned by the other functions with relative tolerance 1 × 10−6.

R> timings <- function(dat, iter = NULL,
+ fun = c("pl", "hyper2", "plmix", "pmr",
+ "statrank", "rologit", "mm")){
+ res <- list()
+ for (nm in c("pl", "hyper2", "plmix", "pmr", "statrank",
+ "rologit", "mm")){
+ if (nm %in% fun){
+ res[[nm]] <- suppressWarnings(
+ system.time(
+ do.call(nm, list(dat, iter)))[["elapsed"]])
+ } else res[[nm]] <- NA
+ }
+ res
+ }
R> no_pmr <- c("pl", "hyper2", "plmix", "statrank",
+ "rologit", "mm")
R> netflix_timings <- timings(netflix, 6)

123

1054 H. L. Turner et al.

R> # pmr excluded here as takes a long time to fail
R> tshirt_timings <- timings(tshirt, 341, fun = no_pmr)
R> sushi_timings <- timings(sushi, 5, fun = no_pmr)

beans data preparation

First we handle the best and worst rankings. These give the variety the farmer thought was best or

worst, coded as A, B or C for the first, second or third variety assigned to the farmer, respectively.

R> data(beans)
R> head(beans[c("best", "worst")], 2)

best worst
1 C A
2 B A

We fill in the missing item using the complete() function from PlackettLuce:

R> beans$middle <- complete(beans[c("best", "worst")],
+ items = c("A", "B", "C"))
R> head(beans[c("best", "middle", "worst")], 2)

best middle worst
1 C B A
2 B C A

This gives an ordering of the three varieties the farmer was given. The names of these varieties

are stored in separate columns of beans:

R> head(beans[c("variety_a", "variety_b", "variety_c")], 2)

variety_a variety_b variety_c
1 BRT 103-182 SJC 730-79 PM2 Don Rey
2 INTA Rojo INTA Centro Sur INTA Sequia

We can use the decode() function from PlackettLuce to decode the orderings, replacing

the coded values with the actual varieties:

R> order3 <- decode(beans[c("best", "middle", "worst")],
+ items = beans[c("variety_a", "variety_b",
+ "variety_c")],
+ code = c("A", "B", "C"))

The pairwise comparisons with the local variety are stored in another set of columns

R> head(beans[c("var_a", "var_b", "var_c")], 2)

var_a var_b var_c
1 Worse Worse Better
2 Worse Better Better

To convert these data to orderings we first create vectors of the trial variety and the outcome

in each paired comparison:

R> trial_variety <- unlist(beans[c("variety_a", "variety_b",
+ "variety_c")])
R> outcome <- unlist(beans[c("var_a", "var_b", "var_c")])

123

Modelling rankings in R: the PlackettLuce package 1055

We can then derive the winner and loser in each comparison:

R> order2 <- data.frame(Winner = ifelse(outcome == "Worse",
+ "Local", trial_variety),
+ Loser = ifelse(outcome == "Worse",
+ trial_variety, "Local"),
+ stringsAsFactors = FALSE, row.names = NULL)
R> head(order2, 2)

Winner Loser
1 Local BRT 103-182
2 Local INTA Rojo

Finally we covert each set of orderings to rankings and combine them:

R> R <- rbind(as.rankings(order3, input = "orderings"),
+ as.rankings(order2, input = "orderings"))
R> head(R)

[1] "PM2 Don Rey > SJC 730-79 > BRT 103-182"
[2] "INTA Centro Sur > INTA Sequia > INTA ..."
[3] "INTA Ferroso > INTA Matagalpa > BRT ..."
[4] "INTA Rojo > INTA Centro Sur > ALS 0532-6"
[5] "PM2 Don Rey > INTA Sequia > SJC 730-79"
[6] "ALS 0532-6 > INTA Matagalpa > INTA Rojo"

R> tail(R)

[1] "INTA Sequia > Local" "INTA Sequia > Local"
[3] "BRT 103-182 > Local" "Local > INTA Matagalpa"
[5] "Local > INTA Rojo" "Local > SJC 730-79"

References

Allison PD, Christakis NA (1994) Logit models for sets of ranked items. Sociol Methodol 24:199. https://
doi.org/10.2307/270983

Baker SG (1994) The multinomial-Poisson transformation. J R Stat Soc Ser D (Stat) 43(4):495–504. https://
doi.org/10.2307/2348134

Bennett J, Lanning S (2007) The Netflix prize. In: Proceedings of the KDD cup workshop 2007, ACM, pp
3–6

Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs I: the method of paired compar-
isons. Biometrika 39:324–45

Coppola A, Stewart B, Okazaki N (2014) lbfgs: limited-memory BFGS optimization. https://CRAN.R-
project.org/package=lbfgs, R package version 1.2.1

Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex
Syst 1695:1–9

Davidson RR (1970) On extending the Bradley–Terry model to accommodate ties in paired comparison
experiments. J Am Stat Assoc 65(329):317–328. https://doi.org/10.1080/01621459.1970.10481082

Firth D (2003) Overcoming the reference category problem in the presentation of statistical models. Sociol
Methodol 33(1):1–18. https://doi.org/10.1111/j.0081-1750.2003.t01-1-00125.x

Firth D, De Menezes RX (2004) Quasi-variances. Biometrika 91(1):65–80. https://doi.org/10.1093/biomet/
91.1.65

Firth D, Kosmidis I, Turner H (2019) Davidson–Luce model for multi-item choice with ties.
arXiv:1909.07123

123

https://doi.org/10.2307/270983
https://doi.org/10.2307/270983
https://doi.org/10.2307/2348134
https://doi.org/10.2307/2348134
https://CRAN.R-project.org/package=lbfgs
https://CRAN.R-project.org/package=lbfgs
https://doi.org/10.1080/01621459.1970.10481082
https://doi.org/10.1111/j.0081-1750.2003.t01-1-00125.x
https://doi.org/10.1093/biomet/91.1.65
https://doi.org/10.1093/biomet/91.1.65
http://arxiv.org/abs/1909.07123

1056 H. L. Turner et al.

Geyer CJ (2009) Likelihood inference in exponential families and directions of recession. Electron J Stat
3:259–289

Grimonprez Q, Jacques J (2016) Rankcluster: model-based clustering for multivariate partial ranking data.
https://CRAN.R-project.org/package=Rankcluster, R package version 0.94

Hankin RKS (2019) hyper2: the hyperdirichlet distribution, mark 2. https://CRAN.R-project.org/
package=hyper2, R package version 1.0-7

Hatzinger R, Dittrich R (2012) prefmod: an R package for modeling preferences based on paired compar-
isons, rankings, or ratings. J Stat Softw 48(10):1–31

Hunter DR (2004) MM algorithms for generalized Bradley–Terry models. Ann Stat 32(1):384–406. https://
doi.org/10.1214/aos/1079120141

Irurozki E, Calvo B, Lozano JA (2016) PerMallows: an R package for Mallows and generalized Mallows
models. J Stat Softw 71(12):1–30. https://doi.org/10.18637/jss.v071.i12

Lee PH, Yu PLH (2015) pmr: probability models for ranking data. https://CRAN.R-project.org/
package=pmr, R package version 1.2.5

Luce RD (1959) Individual choice behavior: a theoretical analysis. Wiley, New York
Luce RD (1977) The choice axiom after twenty years. J Math Psychol 15(3):215–233. https://doi.org/10.

1016/0022-2496(77)90032-3
Mallows CL (1957) Non-null ranking models. I. Biometrika 44(1–2):114–130. https://doi.org/10.1093/

biomet/44.1-2.114
Mattei N, Walsh T (2013) Preflib: a library of preference data. In: Proceedings of the 3rd international con-

ference on algorithmic decision theory (ADT 2013), Lecture notes in artificial intelligence. Springer.
http://preflib.org

Maystre L (2018) choix: inference algorithms for models based on Luce’s choice axiom. https://pypi.python.
org/pypi/choix, Python package version 0.3.2

Maystre L, Grossglauser M (2015) Fast and accurate inference of Plackett–Luce models. In: Cortes C,
Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing
systems 28, Curran Associates, Inc., pp 172–180. http://papers.nips.cc/paper/5681-fast-and-accurate-
inference-of-plackettluce-models.pdf

Mollica C, Tardella L (2014) Epitope profiling via mixture modeling for ranked data. Stat Med 33(21):3738–
3758. https://doi.org/10.1002/sim.6224

Mollica C, Tardella L (2017) Bayesian Plackett–Luce mixture models for partially ranked data. Psychome-
trika 82(2):442–458. https://doi.org/10.1007/s11336-016-9530-0

Mollica C, Tardella L (2020). PLMIX: An R package for modelling and clustering partially ranked data. J
Stat Comput Simul. https://doi.org/10.1080/00949655.2020.1711909

Nievergelt Y (1991) Aitken’s and Steffensen’s accelerations in several variables. Numerische Mathematik
59(1):295–310

Plackett RL (1975) The analysis of permutations. Appl Stat 24(2):193–202. https://doi.org/10.2307/
2346567

Qian Z, Yu PLH (2019) Weighted distance-based models for ranking data using the R package rankdist. J
Stat Softw 90(5):1–31. https://doi.org/10.18637/jss.v090.i05

Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application, and
characteristics of classification and regression trees, bagging, and random forests. Psychol Methods
14(4):323–48. https://doi.org/10.1037/a0016973

Strobl C, Wickelmaier F, Zeileis A (2011) Accounting for individual differences in Bradley-Terry mod-
els by means of recursive partitioning. J Educ Behav Stat 36(2):135–153. https://doi.org/10.3102/
1076998609359791

Tan CS, Stoer N, Chen Y, Andersson M, Ning Y, Wee HL, Khoo EYH, Tai ES, Kao SL, Reilly M (2017) A
stratification approach using logit-based models for confounder adjustment in the study of continuous
outcomes. Stat Methods Med Res. https://doi.org/10.1177/0962280217747309

Turner H, Firth D (2018) Generalized nonlinear models in R: an overview of the gnm package. http://
CRAN.R-project.org/package=gnm, R package version 1.1-0

Turner H, Kosmidis I, Firth D (2019) PlackettLuce: Plackett–Luce models for rankings. https://CRAN.R-
project.org/package=PlackettLuce, R package version 0.2-9

Van Etten J, Beza E, Calderer L, van Duijvendijk K, Fadda C, Fantahun B, Kidane YG, van de Gevel J,
Gupta A, Mengistu DK, Kiambi D, Mathur PN, Mercado L, Mittra S, Mollel MJ, Rosas JC, Steinke
J, Suchini JG, Zimmerer KS (2016) First experiences with a novel farmer citizen science approach:

123

https://CRAN.R-project.org/package=Rankcluster
https://CRAN.R-project.org/package=hyper2
https://CRAN.R-project.org/package=hyper2
https://doi.org/10.1214/aos/1079120141
https://doi.org/10.1214/aos/1079120141
https://doi.org/10.18637/jss.v071.i12
https://CRAN.R-project.org/package=pmr
https://CRAN.R-project.org/package=pmr
https://doi.org/10.1016/0022-2496(77)90032-3
https://doi.org/10.1016/0022-2496(77)90032-3
https://doi.org/10.1093/biomet/44.1-2.114
https://doi.org/10.1093/biomet/44.1-2.114
http://preflib.org
https://pypi.python.org/pypi/choix
https://pypi.python.org/pypi/choix
http://papers.nips.cc/paper/5681-fast-and-accurate-inference-of-plackettluce-models.pdf
http://papers.nips.cc/paper/5681-fast-and-accurate-inference-of-plackettluce-models.pdf
https://doi.org/10.1002/sim.6224
https://doi.org/10.1007/s11336-016-9530-0
https://doi.org/10.1080/00949655.2020.1711909
https://doi.org/10.2307/2346567
https://doi.org/10.2307/2346567
https://doi.org/10.18637/jss.v090.i05
https://doi.org/10.1037/a0016973
https://doi.org/10.3102/1076998609359791
https://doi.org/10.3102/1076998609359791
https://doi.org/10.1177/0962280217747309
http://CRAN.R-project.org/package=gnm
http://CRAN.R-project.org/package=gnm
https://CRAN.R-project.org/package=PlackettLuce
https://CRAN.R-project.org/package=PlackettLuce

Modelling rankings in R: the PlackettLuce package 1057

crowdsourcing participatory variety selection through on-farm triadic comparisons of technologies
(tricot). Exp Agric. https://doi.org/10.1017/S0014479716000739

Vitelli V, SØystein S, Crispino M, Frigessi A, Arjas E (2018) Probabilistic preference learning with the
Mallows rank model. J Mach Learn Res 18(158):1–49

Wang YS, Erosheva EA (2015) mixedMem: Tools for discrete multivariate mixed membership models.
https://CRAN.R-project.org/package=mixedMem, R package version 1.1.0

Wickelmaier F, Schmid C (2004) A Matlab function to estimate choice model parameters from
paired-comparison data. Behav Res Methods Instrum Comput 36(1):29–40. https://doi.org/10.3758/
BF03195547

Zeileis A, Strobl C, Wickelmaier F, Komboz B, Kopf J (2018) psychotree: Recursive partitioning based on
psychometric models. https://CRAN.R-project.org/package=psychotree, R package version 0.15-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1017/S0014479716000739
https://CRAN.R-project.org/package=mixedMem
https://doi.org/10.3758/BF03195547
https://doi.org/10.3758/BF03195547
https://CRAN.R-project.org/package=psychotree

	Modelling rankings in R: the PlackettLuce package
	Abstract
	1 Introduction
	2 Software for modelling rankings
	2.1 Fitting the Plackett–Luce model
	2.1.1 Fitting as a log-linear model
	2.1.2 Fitting as a Cox proportional hazards model
	2.1.3 Specialized software
	2.1.4 Performance of software to fit the Plackett–Luce model

	2.2 Features beyond fitting the standard model
	2.2.1 Partial rankings
	2.2.2 Tied ranks
	2.2.3 Inference
	2.2.4 Disconnected or weakly connected networks
	2.2.5 Heterogeneity
	2.2.6 Summary of software features

	2.3 Other software for modelling rankings
	2.3.1 Mallows' Bradley–Terry model
	2.3.2 Mallows distance-based model
	2.3.3 Insertion sorting rank model
	2.3.4 Summary

	3 Plackett–Luce model with ties
	3.1 Modelling partial rankings with ties
	3.1.1 Pudding example
	3.1.2 Choice of algorithm

	3.2 Inference
	3.2.1 Standard errors and Z tests
	3.2.2 Quasi standard errors

	3.3 Disconnected or weakly connected networks
	3.3.1 NASCAR example

	4 Plackett–Luce trees
	4.1 Beans example

	5 Discussion
	Appendix
	Evaluation of run times to fit the Plackett–Luce model
	beans data preparation

	References

