Newcastle University e-prints

Date deposited: 20" March 2012
Version of file: published
Peer Review Status: unknown

Citation for item:

Kleijn J, Koutny M, Rozenberg G. Modelling Reaction Systems with Petri Nets. In: BioPPN-2011, 2nd
International Workshop on Biological Processes & Petri Nets. 2011, Newcastle upon Tyne: CEUR-WS,
RWTH Aachen University.

Further information on publisher website:

http://sunsite.informatik.rwth-aachen.de

Publisher’s copyright statement:
© 2011 The Authors
Copying permitted only for private and academic purposes.

The definitive version of this article is available at:

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-724

Always use the definitive version when citing.

Use Policy:

The full-text may be used and/or reproduced and given to third parties in any format or medium,
without prior permission or charge, for personal research or study, educational, or not for profit
purposes provided that:

e Afull bibliographic reference is made to the original source
e Alink is made to the metadata record in Newcastle E-prints
e The full text is not changed in any way.

The full-text must not be sold in any format or medium without the formal permission of the
copyright holders.

Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.
NE1 7RU. Tel. 0191 222 6000




Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets (BioPPN2011)
online: http://ceur-ws.org/Vol-724 pp.36-52

Modelling Reaction Systems with Petri Nets
(Extended Abstract)

Jetty Kleijn', Maciej Koutny?, and Grzegorz Rozenberg!3

! LIACS, Leiden University, 2300 RA, The Netherlands
2 School of Computing Science, Newcastle University, NE1 7RU, UK
3 Department of Computer Science, University of Colorado at Boulder
430 UCB Boulder, CO 80309-0430, U.S.A.

Abstract. We investigate how Petri nets could be used to provide a
faithful semantics of reaction systems, a formal framework for the inves-
tigation of processes carried by biochemical reactions. We propose and
discuss possible approaches to this problem using some existing Petri
net classes and concurrency concepts, such as maximal parallelism. After
that we introduce a new class of Petri nets, called sET-nets, which provide
a computational model matching very closely that exhibited by reaction
systems. The key difference between standard Petri nets and SET-nets
is that the former support multiset-based token arithmetic, whereas the
latter support set-based operations on tokens.

Keywords: reaction system, Petri net, living cell, natural computing,
SET-net, model translation

1 Introduction

The investigation of the computational nature of biochemical reactions is a re-
search topic of Natural Computing. One of the goals of this research is to con-
tribute to a computational understanding of the functioning of the living cell.

Reaction systems [2, 3, 7-10] are a formal framework for the investigation of
processes carried out by biochemical reactions in living cells. The central idea
of this framework is that the functioning of a living cell is based on interactions
between (a large number of) individual reactions, and moreover these interac-
tions are regulated by two main mechanisms: facilitation /acceleration and inhi-
bition/retardation. These interactions determine the dynamic processes taking
place in living cells, and reaction systems form a formal framework for developing
an abstract theory of these processes.

The model of reaction systems is based on principles remarkably different
from those underlying other existing models of computation. The aim of this
paper is to develop a faithful Petri net model of reaction systems. The main
motivation behind this is to establish whether Petri net based concepts (such as
causal processes) and methods (such as synthesis of nets from a specification of
their behaviour) could be used to provide analytical tools for reaction systems.
It is not the intention of this paper to provide direct feedback to the area of
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biological applications, but to establish bridges between biology and Petri nets
through the connection provided by reaction systems.

Ag a first step, we propose and discuss four different approaches to the mod-
eling of reaction systems by using existing Petri net classes and concurrency
concepts. However, as it turns out, in order ta obtain a good match between re-
action systems and Petri nets, it is necessary to re-evaluate one of the basic net
principles, namely, token counting. This leads us to the introduction of a new
class of Petri nets, called SET-nets, which provide a net based computational
model matching very closely the computations exhibited by reaction systems.
The main difference between SET-nets and standard Petri nets is that the latter
support multiset-based token arithmetic, whereas the former support set-based
(boolean) operations on tokens. Thus, the computational ‘intuition’ originating
from reaction systems provides the inspiration to introduce a new class of nets
with intriguing and yet to discover properties. Consequently, the main contribu-
tion of this paper is more than just providing a bridge between reaction systems
and the world of Petri nets. In the future, after fully understanding and master-
ing the properties of the new SET-nets, one would hope to provide also a new
set of tools and analyses for biological applications.

The paper is organised in the following way. In the next section, we describe
basic notions of reaction systems. Section 3 describes two methods of modelling
reaction system using low-level Petri nets, and the next one does the same using
high-level Petri nets. The new class of SET-nets is introduced in Section 5, and
in Section 6 we explain why this new class of nets can faithfully and elegantly
model reaction systems. Comparison with related work is presented in Section 7.
Proofs of the results presented in this paper can be found in [16].

Notation We use the standard mathematical notions and notation. A multiset
over a set X is a function p : X — N = {0,1,2,...}, and its support is |u| =
{z € X | u(z) > 0}. The empty multiset & satisfies |&| = &. A multiset may be
represented, somewhat informally, by listing its elements with repetitions, e.g.,
w={y,y,z} is such that u(y) = 2. p(z) = 1, and p(x) = 0 otherwise. We treat
sets as multisets without repetitions.

2 Reaction systems

In this section, we explain some notions relevant to reaction systems. It is our
intention to introduce enough concepts to allow one to follow the subsequent
discussion on the relationship between reaction systems and Petri nets. For a
comprehensive description of reaction systems, including motivations, applica-
tions and examples, the reader is referred to [7-9].

Definition 1 (reaction system [7-9]). A reaction system is a pair: A =
(S, A), where S is a finite background set comprising the entities of A, and A
is the set of reactions of A. Fach reaction is a triplet of the form: a = (R, I, P),
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where the three components are finite non-empty sets: R C S is the sel of reac-
tants, I C S is the set of inhibitors, and P C S is the set of products.

The components of a reaction ¢ = (R, I, P) are denoted by R,. I, and P,,
respectively. Definition 1 describes the static structure of a reaction system. To
capture the dynamic behaviour of reaction systems, we need additional notions.

Definition 2 (state of reaction system). A state of a reaction system is
any set C of its entities. Then an initialised reaction system is a triplet A =
(S, A, Cy), where (S, A) is a reaction system and Cy C S is the initial state.

In this and in the next section, we will consider as a running example the
initialised reaction system Ao = ({w,z,v, 2}, {a,b, ¢}, {z, z}), with background
set {w,z,y, z}, initial state {z, z}, and three reactions:

a={zt{y}{y.2}) b=y} {z} {z,2}) c=({z}{w},{z}).

A reaction system with background set S has exactly 2/° potential states.
To describe possible transitions between these states, we need to say what is
meant by an occurrence of a reaction or a set of reactions.

Definition 3 (state change). A reaction a is enabled at a state C C S if
R, C C and I,NC = &; the result of a reaction a at C is defined by res,(C) = P,
if a is enabled at C and res,(C) = @ otherwise. The result of A on C, denoted
by res A(C) consists of the products of all reactions from A enabled at C, that is

resA(C) = U resq (C) .
acA

This state change is denoted by C — res 4(C).

Note that the state changes captured by Definition 3 are deterministic. More-
over, all entities in C'\ |, 4 res4(C) disappear. As a result, and unlike in other
formal models of dynamic systems, there is no persistency in a reaction system
in the sense that an entity present in a state disappears unless it is sustained by
at least one reaction.

For the example reaction system Ag. we have:

{z,z} —{y,z} and {y,z} — {z,z} and {w,z,y} — &.

One may observe that there is no conflict between reactions in the ‘classic’
sense that the occurrence of one reaction might imply that another reaction
which is also enabled at the current state, cannot occur. This, again, is a feature
not found in most other formal models of dynamic systems. In particular, it is
worthwhile to point explicitly to the ‘non-counting’ features of reaction systems:
entities are either present or not, and produced or not, and reactions can or
cannot occur based only on the presence or absence of certain entities. There
is no representation of multiple instances of entities or multiple occurrences of
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reactions. Thus reaction systems are a qualitative rather than a quantitative
model.

‘We also note that there is an alternative notion of conflict-freeness for a set
of reactions, called consistency. A set of reactions R is consistent if for any twa
reactions a,b € R, R, NI, = Ry NI, = &. Clearly, if a set of reactions is not
consistent, then the reactions it comprises cannot be executed simultaneously.

Although the goal of this paper is a faithful ‘translation’ of reaction sys-
tems into Petri nets, we conclude this section with a number of comments about
research on reaction systems. This research happens in the framework of re-
action systems where a reaction system constitutes the basic technical notion.
Depending on the goal of a specific research theme, many other constructs are
introduced and studied (see, e.g., [2,9,10]) — they form various extensions of
the basic notion of reaction system. For example, there are many biological situ-
ations where one needs to assign quantitative parameters (time, concentrations,
...) to states of a biochemical system. Although reaction systems are a qualita-
tive model (they cannot ‘count’), they can be extended so that such quantitative
parameters can be accommodated. This is done through the use of measurement
functions which lead to reaction systems with measurements (see [2,3,9,10]),
where various numerical parameters can be assigned to (calculated for) consec-
utive states of dynamic processes.

Finally, we want to point out that (because living cells are open systems)
reaction systems have an environment and they operate/evolve within a changing
context (with entities coming from the environment influencing the transitions
of dynamic processes). In this paper, however, we will consider only contezt-
independent processes defined by a reaction system with an initial state, where
each next state is obtained solely as the result of reactions taking place in the
previous state (thus assuming that the environment does not influence state
transitions).

3 Reaction systems and low-level Petri nets

In this section, we discuss two possible ways of modelling context-independent
processes of reaction systems using low-level Petri nets (PT-nets extended with
with inhibitor and activator arcs).

In addition to the standard notions of reaction systems, in order to better
explain how they relate to Petri nets, throughout the rest of this paper we will
say that a set R C A is enabled at C if each reaction of R is enabled at C. If
R C A is enabled at C. then

c= resr (C) = U P .
acR

denotes the effect of R at C.

Definition 4 (PT-nets with inhibitor and activator arcs [14]). A PT-net
with inhibitor and activator arcs (or PTiA-net) N = (Pl, Tr, Flw, Inh, Act, My)
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is a tuple such that Pl and Tr are finite, disjoint sets of respectively places and
transitions, and: Flw C (Pl x Tr) U (Tr x Pl), Inh C Pl x Tr, Act C Pl x Tr
are respectively the sets of flow, inhibitor and activator arcs. Moreover, My is
a multiset of places, the initial marking of N; in general, any multiset of places
is called @ marking.

In diagrams, places are drawn as circles and fransitions as rectangles. Mark-
ingg are the possible global configurations (states) of N. We say that a place ¢
is marked under a marking M if M(q) > 0, where M(q) denotes the number
of occurrences of ¢ in M. In diagrams, markings are indicated by putting M (q)
tokens inside the circle representing ¢. If (z,y) € Flw, then (x,y) is an arc lead-
ing from node x to node y. A double headed arrow between ¢ and ¢ indicates
that (g, t), (¢,¢) € Flw. An inhibitor arc ends with a small open circle, while an
activator arc ends with a small black circle.

Given a node z, we denote by *z the set of input nodes of x. i.e., those y
for which (y,z) € Flw, and by 2°* the set of output nodes of x, i.e., those y
for which (z,y) € Flw. For a transition ¢ we use: °t = {q | (¢,¢) € Inh} and
*t = {q| (g,t) € Act} to denote the inhibitor and activator places of t. All four
notations extend in the usual way to sets of nodes. As in the case of reaction
systems, we now formalise the notion of marking (state) change.

Definition 5 (marking change). A multiset of transitions U (also called a
step) is enabled at a marking M if °U N |M| = @, *U C |M| and, for every
place . M(q) = > ;. U(t) (recall that | M| is the set of g which occur in M,
and U (t) is the number of occurrences of t in U ).

In such a case, U can be fired with its effect on M being given by the result-
ing marking M’ such that, for every place q: M'(q) = M(q) — > e U(t) +
D otesg U(t). We denote this by M[U)M'. Moreover, if U is a mazimal (w.r.t.
multiset inclusion) step of transitions enabled at M, then we may denote this
marking change also by M[U) o M'.

Note that whenever a step U is enabled at marking M it must be the case
that all activator places of transitions in |U| are marked (are in |M]) and none
of the inhibitor places of transitions in |U| are marked.

‘We now make some general observations and assumptions about the rela-
tionship between reaction systems and nets.

— Entities can be represented by places, and reactions by net transitions.

— Since there are no conflicts between reactions, activator arcs can be used
to test for the presence of reactants (rather than claiming resources for the
exclusive use as with ordinary arcs and input places).

— All reactions that can occur in a reaction system do occur, and the only en-
tities left after a state change are the newly generated products. In the Petri
net framework, these features correspond to mazimal parallelism described
at the end of Definition 5, and place resetting [6] described later on.
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]

]

Fig. 1. Method I and II representations of the reaction system Ao.

Method I. The first attempt is illustrated in Figure 1(a) for the example reac-
tion system Ap. Method I produces a PTIA-net Ny(Ap) such that:

— Transitions a. b and c use activator arcs and inhibitor arcs to test respectively
for the presence and absence of tokens in the places w. x. y and z.

— Places ¢,. g, and ¢, ensure that the three transitions modelling reactions,
i.e., a. b and c. fire at most once in any step. This corresponds to the ‘non-
counting’ of occurrence instances of the same reaction in a reaction system.

— Transitions 7. rz. ry and 7, (in a maximal step) empty the four places
modelling entities w. x, y and z. This does not have any influence on the
firing of the transitions a. b and c.

— In a single maximal step, M[U) e, M', the net fires a maximal multiset of
transitions U enabled at marking M and then produces a new marking M.
For the net in Figure 1(a), such a firing rule gives:

{(17, Z5qa;qb, qa} [{7'1;, Tz, Q, c}>max {y’ ZyZ,4a,4b, ¢1c}
{ZE, X, T, Z,4a, b, QC} [{7"1;, TeyTxy Tz, Gy c})max {y, ZyZ,4a,4b, QC} .

Formally. given an initialised reaction system A = (S, A), Method T yields
a PTIA-net Ny(A) such that the places, transitions and the initial marking are,
respectively: Pl = {q, |a € Ay US, Tr={rs | s€ StUA and My ={q, | a €
A}+Cy. Moreover, the sets of flow, inhibitor and activator arcs are, respectively:

Flw ={(s,75) | s € S} U{(a,¢a),(ga,a) |a € A} U{(a,s) |a € ANs€E P,}
Inh ={(s,a) lac Ansel,} Act ={(s,a) |la€ ANs€ Ry} .

Note that this kind of modelling in combination with the ‘resetting’ of places
w. . y and z in each fired step, implemented by the auxiliary transitions r,,.
rz. Ty and r,. means that the resulting Petri net is bounded (in every reachable
marking the multiplicity of each place is never more than the number of reactions
of A if A has at least one reaction).

In order to relate the behaviour of the original reaction system A and its
PTIA-net representation Ny(A) just introduced, we need two mappings. The first
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one takes a marking M of N;(A) and returns a state of A, and the other takes
a step U of transitions of N;(A) and returns a set of reactions of A, as follows
vi(M) = SN |M| and ¢ (U) = AN |U|. Tt is then possible to show a number
of results, where a marking M of the pTiA-net N;(A) is called well-formed if
M(qa) =1, for every a € A.

First, My is a well-formed marking satisfying v(My) = Cop. and if M is a
well-formed marking and M[U)M’, then M’ is also well-formed. Second, if M is
a well-formed marking, then for every reaction a € A, a is enabled at M iff {a}
is enabled at state v;(M). We then can show that the translation is sound.

Theorem 1. If M is a well-formed marking then:

1. MIUYM' implies vr(M) 25 1 (M?). Moreover, if MU ) as M', then or(U)
comprises all reactions enabled at vi(M).

2. vi(M) 2 c implies M[UYM' for some U and M’ satisfying: o1(U) =R
and vi(M') = C. Moreover, if R comprises all reactions enabled at vi(M),
then M[U)pmarM'.

Thus, each maximal computational step in the Petri net corresponds to a
unique execution of the reaction system, and each execution in the reaction
system corresponds to at least one maximal step in the Petri net. For example,
the two executions given above for the Petri net in Figure 1(a) both correspond

to {z,z} lag) {y, z} in the reaction system Ap.

Note that in Figure 1(a) one cannot simply delete the auxiliary places of the
form ¢, as then each of the transitions representing reactions could be unbound-
edly enabled. To address this problem one could change the activator arcs from
places representing entities into flow arcs. Then, however, it would be necessary
to add weights |R| to the arcs corresponding to the production of new entities
in order to avoid conflicts on the places representing the reactants.

Method II. The first attempt to model context-independent reaction systermns
provides a sound translation, but it is not simple as it employs features which
can make formal analysis and verification far from easy. One way of improving
Method T could be to replace multisets of fired transitions by sets of fired tran-
sitions leading to a mazimal set-semantics. This can be achieved by using reset
arcs |6], connecting places to transitions and indicated by *’s in the diagrams,
which always empty their source place. Formally, reset arcs Reset C Pl x Tr do
not have any influence on the enabledness of a step U, but the calculation of the
marking of a place g after the firing of U (now a set) at marking M changes to:

M'(q) = M(q) = |g* NU[+[*¢nU| if ({g} x U) N Reset = &
*¢ N U] otherwise .

The resulting PTIA-net with reset arcs N (Ao) is shown in Figure 1(b). Tran-

sition r is always enabled and, when fired. removes all the tokens from the
places modelling the entities. For the net in Figure 1(b), the new firing rule gives
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{z, 2} [{r, a; ¢} max {¥, 2,2} and {z, z, 2, 2} [{r, @, ¢})maz {¥, 2, 2}. One can then
show that a counterpart of Theorem 1 holds also in this case, with vy defined as
vr before and ¢ (U) = U\ {r}. As transition r is always enabled, we now have a
one-to-one correspondence between groups of executed reactions and transitions,
at the price of introducing non-standard reset arcs.

To remove the need to have reset arcs or, equivalently, to obtain a one-to-
one correspondence between states and markings, one could change the rules for
inserting tokens into places, by basically applying an OR-treatment for arriving
tokens. This would, of course, be a radical departure from the standard Petri
net approach, but one worth investigating. The resulting model of SET-nets will
be described in Section 5.

4 Reaction systems and high-level Petri nets

The two translations described in the previous section use low-level PT-nets ex-
tended with reset arcs in addition to inhibitor and activator arcs as well as
maximal parallelism. Reset arcs are a non-standard mechanism and, in particu-
lar, they do not as yet support a causal process semantics. Moreover, the effect of
a reset arc depends on the current marking rather than on a fixed input/output
relation with its neighbourhood. To cope with this problem, we will now outline
two translations from context-independent reaction systems to high-level Petri
nets. We assume familiarity with the basic concepts of high-level nets [13], in
particular, arc inscriptions, activator and inhibitor arcs, and simple transition
guards.

Method IIT. The first translation is illustrated by the high-level net Ny (Ap)
shown in Figure 2(a). In this case, tokens are positive integers acting as though
they were time-stamps. Intuitively, a token n is active only in the n-th execution
cycle of the reaction system. Because the same token cannot be accessed more
than once in a step sequence evolution, reset arcs are not needed anymore. Since
the v transition fires in each maximal step, the cycle number n held in the
‘clock’ place clk is known to all transitions representing reactions. In the places
representing entities, they check only for tokens n. ignoring all the other tokens
produced in previous cycles, and then produce tokens with value n+1 to be used
in the next cycle. The initial marking M, is formed by inserting a single token 1
into place clk and all the places s such that s € Cy. Note that the resulting net
may be unbounded as the tokens in places representing entities are not ‘garbage
collected’. For the high-level net Nyjr(Ao) in Figure 2(b), we have:

{z—{1},y— 2,z {1}, w— &, clk — {1}}
[{an»—A, Cni—1, \/n»—>1 }>maz
{z— {1},y— {2}, 2= {1,2,2},w— &, clk — {2}}
[{bnn—>27 Cni—2, ‘/n»—>2}>maz
{x—{1,3}y—{2},2—{1,2,2,3,3}, w— &, clk — {3}} .
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Fig. 2. Method III and IV representations of reaction system Ao. Note that n and
m are net variables, and that to avoid clutter not all arcs have been annotated: all
the flow (thicker) arcs to places z, y, z are in fact annotated with n + 1, and all the
unannotated inhibitor and activator arcs are annotated with n. In (), the auxiliary
places for transitions b and c¢ are omitted. Note that (m > n) is the guard of transition
aq. and all other transitions have the trivial ¢rue guard.

As in the case of Method I, not every marking M of Ny (A) can represent a
valid state of the reaction system A. We say that M is clock-consistent if there
is a single token k in place clk. and all the tokens [ in other places satisfy [ < k.

Relating the resulting net and the original reaction system can be done using
the following two mappings: vip(M) = {s € S | |M(clk)| N |M(s)| # @}
and @ (U) = U \ {v'}. One can show that My is a clock-consistent marking
satisfying v(My) = Cp. and if M is a clock-consistent marking and M[U) 4. M’
then M’ is also clock-consistent.

Theorem 2. If M is a clock-consistent marking then:

1. M[U)mm;M/ *.imph'es VH[(M) (pg(U) VH[(MI).

2. v (M) 2 implies M[U) o M’ for some U and M’ satisfying: o1 (U) =
R and V[H(M/) =C.

Method TIV. In the second high-level net construction the aim is to eliminate
the need for maximal parallelism using information present in the time-stamped
tokens. We replace the global clk place by individual clk, places, which are incre-
mented by transitions a representing reactions. Moreover. whenever a is blocked
from firing in a certain cycle one of the auxiliary transitions corresponding to
the possible ‘reasons’ for the blocking « is fired to increment the token in clk,.
This results in an increment of the cycle number for this transition (in case
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there is more than one reason for blocking, an auxiliary transition is chosen
non-deterministically).

There are two possible reasons why a might be blocked in cycle n. One is the
presence of a token n in the place representing an inhibitor of a. and to check for
this we use a transition with an activator arc, e.g., a, in Figure 2(b). The other is
more complicated as it is a lack of token n in the place representing a reactant s
for a. and to check for this we use a transition with an inhibitor arc. However, we
also need to ensure that all transitions which feed tokens to s have already had
a chance to do so, and we check this using extra activator arcs together with a
transition guard which evaluates to true if all such feeding transitions have their
local cycle sufficiently high, e.g., transition a, in Figure 2(b). The overall result
for the reaction system Ay is a high-level net Ny (Ao) shown in Figure 2(b).

The resulting high-level net is executed according to the standard sequential
(interleaving) firing rule and its behaviour closely simulates that of the net ob-
tained by Method III, and so also the behaviour of the original reaction system.
We skip the full description of the relationship between these two nets. Intu-
itively, a marking M of the second translation corresponds directly to a marking
of the first one if all the places of the form clk, contain the same single token
k. and all the tokens { in other places satisfy { < k. (Note that from each reach-
able marking of the second translation one can execute a sequence of transitions
leading to a marking with this property.)

5 Set-nets

In our attempts to obtain a direct and elegant translation from reaction systems
into Petri nets, a major and as far as we can tell insurmountable problem was
the fact that several transitions may insert tokens into a place representing
the presence of a single entity. In this section, we introduce SET-nets, a model
that resulted from closer investigations into the possibilities of an OR-treatment
of arriving tokens representing the production of entities by reactions. Note
that OR-treatment of causality has been considered in [20], but the underlying
principle there was completely different from what we are going to propose.

The main idea is that in a SET-net there is no concept of counting. Places
are marked or not marked and arcs have no weights. Set-nets resemble elemen-
tary net systems (EN-systems) [19] which is a fundamental model to study basic
features of concurrent systems, including conflict, causality and independence.
However, their execution semantics is different. In SET-nets, a marked place in-
dicates the presence of a resource without any quantification. Hence any number
of transitions that take input from this place can be fired at the same time.
Moreover, firing a transition empties all its input places. Thus there are no con-
flicts over tokens in SET-nets, unlike in EN-systems or PT-nets. Similarly, places
do not count the tokens, and the firing of a transition simply marks each of its
output places (whether or not they were already marked). We will build up the
new model in two stages, introducing first SET-nets with only flow arcs.
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Fig. 3. A sET-net representing reaction system A; (a); and an occurrence net con-
structed for its step sequence {b,qy, s, }{a,b,7,,q,} (b) .

Definition 6 (basic SET-net). A tuple SN = (Pl, Tr, Flw, My) is a (basic)
SET-net if the first three components are as in Definition 4, and Mo C Pl is the
initial marking (in general, any set of places is a marking).

The graphical representation of SET-nets is the same as in the case of Petri
nets. We now formalise the firing rule for SET-nets.

Definition 7 (marking change). A set of transitions U (also called a step)
is enabled at a marking M if *°U C M. In such a case, U can be fired with its
effect on M being given by the resulting marking M’ = (M\*U)UU®. We denote
this by M|U)YM'. Moreover, if U is the set of all transitions enabled at M (i.e.,
all transitions t satisfying *t C M ), then we may write M[U)pmas M.

Hence a step U enabled at a marking M may contain two distinct transitions
t and wu for which *tN®u # @ or t* Nu® # & and yet the common places will
never contain more than one token. Since tokens are manipulated using set-based
arithmetic we have chosen the name ‘SET-nets’ for the new class of Petri nets.

We have introduced first basic SET-nets (without inhibitor and activator
arcs), as it seems that one can attempt to develop for them a counterpart of
‘structure theory’ of PT-nets. To illustrate our point, let us consider a basic SET-
net SN = (P, Tr, Flw, My) with at least one transition. A non-empty set of
places Sphn C Pl is called a siphon if *Sphn C Sphn®. Similarly, a non-empty
set of places Trap C Pl is called a trap if Trap® C ® Trap. It can be easily seen
that an empty siphon cannot acquire a token by firing any transition, and a
marked trap cannot become empty by firing any transition. Both type of sets
of places can be used to provide a sufficient condition for deadlock-freeness in
PT-nets which was a major motivation behind the development of their structure
theory. As it turns out, the same can be done in case of SET-nets.

Theorem 3. If in the initial marking, every siphon contains a marked trap,
then the SET-net is deadlock free.

‘We next introduce SET-nets with inhibitor and activator arcs.
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Definition 8 (SET-net). A tuple SNIA = (Pl, Tr, Flw, Inh, Act, My) is a SET-
net if the first five components are as in Definition 4, and the last one as in
Definition 6.

The definitions and notations concerning the marking change in SNIA are the
same as for SN in Definition 7 with one exception, namely a set of transitions U
is enabled at a marking M if *UU®U C M and °UNM = @. Tt is interesting to
observe that an enabled step U is always consistent in the sense that (*UU*U)N
°U = @. Such a property has a natural and direct (as we will see) connection
with the notion of consistency introduced for reaction systems.

As before, given a transition ¢ representing a reaction, the sets *¢. °t and *¢
correspond to the reactants, inhibitors and products of this reaction. However,
we do not require that these sets be non-empty in a SET-net (at least at this
point) as such an assumption is not necessary.

6 Reaction systems and SET-nets

Reaction systems and sET-nets fit together well in the sense that both do not
count tokens and both change states on the basis of the presence/absence of
resources, represented by sets. Moreover. under the SET-net semantics, ordinary
arcs (transitions) can be used to empty places. In this semantics, reset arcs with
their effect depending on the current number of tokens in a place are meaningless.
Finally, following the assumption that all reactions that can take place do take
place, the maximal set-semantics can be employed.

Figure 3(a) depicts a SET-net corresponding to a context-independent ini-
tialised reaction system A; = ({r,q, s}, {a,b},{q, s}). where a = ({r,q}, @, {r})
and b = ({¢}, @, {r, ¢}). (For reasons of clarity, we allow in this section reactions
without any inhibitors.) As before, places represent entities. Transitions 7. ¢
and s ensure that once the SET-net is active only tokens produced in the last
maximal step are present in the current marking. For example, we have:

{Qa 8} [{b? ql, 3¢}>maﬂﬂ {7”, Q} [{aa b? Tl q¢}>maw {’I’, Q} )

and so o = {b,q;, s; }{a,b, 7, q } is a max-step sequence. Relating the behaviour
of the sET-net model and the original reaction system is easy and we obtain a
counterpart of Theorem 1 with v(M) =M and v(U) =U \ {s; | s € S}.

For a sET-net without inhibitor and activator arcs as in Figure 3(a), one
can investigate the causality semantics of reaction systems based on the un-
foldings of the corresponding SET-nets. Figure 3(b) shows how such an occur-
rence net could be derived for the SET-net in Figure 3(a) and its step sequence
{b,qy,s,}{a,b,r,q} which corresponds of the state sequence {b}{a,b} of the
original reaction system. It is worth observing that the process has branching
places which is not possible, in the case of processes of EN-systems or PT-nets.
This, however, is fully consistent with the execution semantics of SET-nets.
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Modelling inhibition aspects of reactions is rather straightforward using in-
hibitor arcs, as illustrated by the SET-net in Figure 4(a), representing the context-
independent initialised reaction system A, = ({r,q, s},{a,b},{q}). where:

a= ({Ta q},@,{r}) and b= ({Q}v {3}7 {7“, Q}) and ¢ = ({q},@, {3}) .

Using inhibitor arcs gives a compact translation of reaction systems which is
in a sense minimal w.r.t. the number of places, arcs and transitions. Moreover,
relating the behaviour of the resulting SET-nets and the original reaction systems
can be done as before. Formally, the places, transitions and initial marking of
the translation are given by: Pl =S, Tr = AU{s) | s € S} and M, = Cy. There
are no activator arcs, and the flow and inhibitor arcs are as follows:

Flw ={(s,s)) | s€ StU{(s,a) |laec ANse R} U{(a,s) |a€e ANs € P,}
Inh ={(s,a) lac ANs€el,}.

The development of a causal process semantics of SET-nets with inhibitor arcs is
more difficult. Tt is therefore interesting to consider models of reaction systems
using SET-nets without any inhibitor arcs, as outlined next.

Figure 4(b) shows a SET-net without inhibitor arcs modelling As. The way in
which it does it is now more involved. More precisely, each execution step of the
reaction system is simulated in two phases by the SET-net operating according to
the maximal parallelism execution semantics. To keep these two phases clearly
separated, they are controlled by an additional cyclic subnet with twao places. The
key aspect of the construction is the use of a ‘complement’ s°?! of the ‘regular’
place s which at the time of checking whether s is empty by reaction b contains
a token iff s is empty.

Figure 4(c) provides a generic picture of how, in the proposed construction,
a SET-net (without inhibitor arcs) handles an entity r in its role as a reactant,
inhibitor, and product. Note that r is represented by two places, r and 7°P!, and
if 7°P! is marked then the entity r in absent in the current state. Moreover, each
reaction d is represented by two transitions, d and d’. The first corresponds to
the enabling stage of d. and the second to the generation of its products.

The first phase of the simulation always starts in a consistent marking M
in which there is a token in place phl; for every s € S. s € M < 5P\ ¢ M,
and otherwise all places are empty. In this phase transitions corresponding to
reactions become active on the basis of the presence and absence of their reac-
tants and inhibitors. Simultaneously, transitions of the form 7| and ry take care
that all the entities present in the current state cease to exist (their correspond-
ing places are emptied and the complement places filled). In the second phase,
each enabled transition d’ finishes the execution of the corresponding reaction,
and marks the places corresponding to the entities produced by reaction d and
empties their complements.

Relating the behaviour of the SET-net model and the original reaction system
is more complicated, using the following two mappings:

v(M) = M\({phI}U{s" | s € S}) @(U) = U\({T}U{s, | s € S}U{st | s € S}) .
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Fig. 4. Two SET-nets representing As (a, b). Generic translation without inhibitor arcs:
here r is a reactant for reaction a. product for b, and inhibitor for ¢ (c). Note that not
all places and arcs are shown; in particular, each reaction has at least one reactant and
hence transitions like ¢ can only fire in the first phase.

One can then show that M) is consistent and satisfying v(My) = Cy. and if M
is a consistent marking and M[U)0: M [U"Y ez M’ then M’ is also consistent.

Theorem 4. If M is a consistent marking then:

1. MIUYM"[U"YM" implies v(M) 2% v(M").

2. v(M) E. C implies M[UYM"[UYM'" for some U, U', M' and M" satisfy-
ing: o(U) =R andv(M') =C

7 Related work and concluding remarks

When introducing a new class of Petri nets, especially a fundamental one, it is
necessary to put it in the context of existing formalisations. To make comparison
fair, we will now drop the assumption about maximal parallelism in the execution
of sET-nets (which is implied by the execution mode of reaction systems), and
consider semantics which allows any set of enabled transitions to be fired.

Set-nets are so simple when it comes to their definition, that it is reasonable
to expect that there were in the past net classes with similar features. Indeed, the
fundamental class of EN-systems [19] extended with inhibitor as well as activator
arcs [12,17,18] basically have the same static structure as sET-nets. However,
their treatment of conflicts between transitions accessing the same token, as
well blocking a transition which could add a token to a marked place, are totally
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q
()

Fig. 5. Boolean net (SET-net with sequential semantics) (a), and 1-safe PT-net simu-
lating its (sequential] behaviour (b).

different. The latter issue has been noted in the past, and the constraint relaxed.
For example, there are variations of Petri nets, such as Boolean Petri nets, where
adding a token to an already marked place does not add another token [4, 5, 11].
Also, behaviour of this kind was mentioned in [1] in the context of net synthesis.
Having said that, the semantics considered in prior works known to us was
based on single transition firings, rather than (maximal) steps as is the case
for sET-nets. Therefore, the previous models were not concerned with multiple
inputs of tokens to a single place something which is essential if one wants to
faithfully model reaction systems. Furthermore, by aiming at a set-semantics,
we had to introduce the non-conflict feature on the flow arcs consuming the
tokens. Therefore, as far as we are aware, the model of SET-nets is an original
contribution to the field of Petri nets.

As we already mentioned, SET-nets with interleaving semantics are nothing
but Boolean nets used, for instance, in [3]. In such a case, the lack of conflict
when firing two transitions sharing an input place is an irrelevant issue, and the
only non-standard aspects is that firing a transition with a marked output place
does not increase the token count in that place. Such a feature, moreover, can
easily be modelled using ordinary 1-safe PT-nets, according to the following idea.
First, one splits each place ¢ into places ¢° and ¢'. respectively representing
the lack and presence of a token in g. Then, each transition ¢ adding tokens
to place ¢ is split into t° and ¢! to account for two different states the place
g can be in represented by ¢° and ¢'. Figure 5 illustrates this construction.
It can be easily seen that both nets generate the same sequential reachability
graphs assuming that ¢ and a! are instances of a. and b° and b' are instances
of a. However, once we start treating the net in Figure 5(a) as SET-net, the
situation changes radically. The reason is that we then have three firings of
the following form: @[{a}){q}. @[{b}){¢} and &[{a,b}){q}. Now, the standard
classes of Petri nets enjoy the so-called subset property which means that if a
step U is enabled at marking M. then also any of its subsets is enabled as well.
Suppose, then, that there is a Petri net N satisfying this property and such that
its step reachability graph is the same as that of the sET-net in Figure 5(a),
perhaps after renaming A\ being applied to the transitions of the former. Then
we have to have two transitions, ¢ and u, in N such that \(¢) = a, A(v) = b and
My[{t,u})M. Then, by the subset closure property, we also have My[{t})M’
and My[{u})M". Hence, by the reachability graph isomorphism, we must have
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M = M'"= M" as well as My # M. Hence we have: My[{¢,u})M and My[{t})M
and My[{u})M and My # M. In the standard Petri nets, including various
extensions of PT-nets, Mo[{¢t,u})M and My[{t})M would imply that u does not
change the current marking. Similarly, Mo[{t,u})M and Mo[{u})M would imply
that ¢ does not change the current marking. Yet the simultaneous firing of ¢t and
u does change the marking as My # M. This would produce a contradiction.
What we just presented is intuition rather than proof, however, we expect that
detailed arguments can be developed for any of the standard net classes. An
important consequence, however, is that SET-nets are semantically different from
the existing net classes and therefore deserve to be recognised as an original
contribution.

8 Conclusions

The main initial motivation of our investigation was to see how Petri net based
concepts could be deployed to analyse reaction systems. In particular, we wanted
to discover methods for checking properties of reaction systems by relating them
to the properties of the corresponding Petri nets and causal processes.

‘We proposed modelling methods resulting both in low-level and high-level
nets. In all four cases, we established a close correspondence between the mark-
ings of Petri nets and states of the original reaction systems. The same was true
of the evolutions of two corresponding models. In fact, we established that they
have essentially isomorphic state spaces. All these net models, however, exhibited
deficiencies w.r.t. simplicity and/or elegance and/or tractability of the transla-
tion. For example, both high-level net models are intrinsically unbounded, and
the second of the low-level translations uses reset arcs. We therefore proposed
a new class of Petri nets, called SET-nets, which we feel provide a strong match
with the reaction systems and their semantics.

In this way we think we derived new interesting notions and contributions to
Petri net theory based on our experiences with reaction systems in a similar way
as the concepts of localities and locally maximal concurrency were derived from
our previous investigation of a Petri net semantics of membrane systems [15].
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Abstract. We investigate how Petri nets could be used to provide a
faithful semantics of reaction systems, a formal framework for the inves-
tigation of processes carried by biochemical reactions. We propose and
discuss possible approaches to this problem using some existing Petri
net classes and concurrency concepts, such as maximal parallelism. After
that we introduce a new class of Petri nets, called sET-nets, which provide
a computational model matching very closely that exhibited by reaction
systems. The key difference between standard Petri nets and SET-nets
is that the former support multiset-based token arithmetic, whereas the
latter support set-based operations on tokens.

Keywords: reaction system, Petri net, living cell, natural computing,
SET-net, model translation

1 Introduction

The investigation of the computational nature of biochemical reactions is a re-
search topic of Natural Computing. One of the goals of this research is to con-
tribute to a computational understanding of the functioning of the living cell.

Reaction systems [2, 3, 7-10] are a formal framework for the investigation of
processes carried out by biochemical reactions in living cells. The central idea
of this framework is that the functioning of a living cell is based on interactions
between (a large number of) individual reactions, and moreover these interac-
tions are regulated by two main mechanisms: facilitation /acceleration and inhi-
bition/retardation. These interactions determine the dynamic processes taking
place in living cells, and reaction systems form a formal framework for developing
an abstract theory of these processes.

The model of reaction systems is based on principles remarkably different
from those underlying other existing models of computation. The aim of this
paper is to develop a faithful Petri net model of reaction systems. The main
motivation behind this is to establish whether Petri net based concepts (such as
causal processes) and methods (such as synthesis of nets from a specification of
their behaviour) could be used to provide analytical tools for reaction systems.
It is not the intention of this paper to provide direct feedback to the area of
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biological applications, but to establish bridges between biology and Petri nets
through the connection provided by reaction systems.

Ag a first step, we propose and discuss four different approaches to the mod-
eling of reaction systems by using existing Petri net classes and concurrency
concepts. However, as it turns out, in order ta obtain a good match between re-
action systems and Petri nets, it is necessary to re-evaluate one of the basic net
principles, namely, token counting. This leads us to the introduction of a new
class of Petri nets, called SET-nets, which provide a net based computational
model matching very closely the computations exhibited by reaction systems.
The main difference between SET-nets and standard Petri nets is that the latter
support multiset-based token arithmetic, whereas the former support set-based
(boolean) operations on tokens. Thus, the computational ‘intuition’ originating
from reaction systems provides the inspiration to introduce a new class of nets
with intriguing and yet to discover properties. Consequently, the main contribu-
tion of this paper is more than just providing a bridge between reaction systems
and the world of Petri nets. In the future, after fully understanding and master-
ing the properties of the new SET-nets, one would hope to provide also a new
set of tools and analyses for biological applications.

The paper is organised in the following way. In the next section, we describe
basic notions of reaction systems. Section 3 describes two methods of modelling
reaction system using low-level Petri nets, and the next one does the same using
high-level Petri nets. The new class of SET-nets is introduced in Section 5, and
in Section 6 we explain why this new class of nets can faithfully and elegantly
model reaction systems. Comparison with related work is presented in Section 7.
Proofs of the results presented in this paper can be found in [16].

Notation We use the standard mathematical notions and notation. A multiset
over a set X is a function p : X — N = {0,1,2,...}, and its support is |u| =
{z € X | u(z) > 0}. The empty multiset & satisfies |&| = &. A multiset may be
represented, somewhat informally, by listing its elements with repetitions, e.g.,
w={y,y,z} is such that u(y) = 2. p(z) = 1, and p(x) = 0 otherwise. We treat
sets as multisets without repetitions.

2 Reaction systems

In this section, we explain some notions relevant to reaction systems. It is our
intention to introduce enough concepts to allow one to follow the subsequent
discussion on the relationship between reaction systems and Petri nets. For a
comprehensive description of reaction systems, including motivations, applica-
tions and examples, the reader is referred to [7-9].

Definition 1 (reaction system [7-9]). A reaction system is a pair: A =
(S, A), where S is a finite background set comprising the entities of A, and A
is the set of reactions of A. Fach reaction is a triplet of the form: a = (R, I, P),
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where the three components are finite non-empty sets: R C S is the sel of reac-
tants, I C S is the set of inhibitors, and P C S is the set of products.

The components of a reaction ¢ = (R, I, P) are denoted by R,. I, and P,,
respectively. Definition 1 describes the static structure of a reaction system. To
capture the dynamic behaviour of reaction systems, we need additional notions.

Definition 2 (state of reaction system). A state of a reaction system is
any set C of its entities. Then an initialised reaction system is a triplet A =
(S, A, Cy), where (S, A) is a reaction system and Cy C S is the initial state.

In this and in the next section, we will consider as a running example the
initialised reaction system Ao = ({w,z,v, 2}, {a,b, ¢}, {z, z}), with background
set {w,z,y, z}, initial state {z, z}, and three reactions:

a={zt{y}{y.2}) b=y} {z} {z,2}) c=({z}{w},{z}).

A reaction system with background set S has exactly 2/° potential states.
To describe possible transitions between these states, we need to say what is
meant by an occurrence of a reaction or a set of reactions.

Definition 3 (state change). A reaction a is enabled at a state C C S if
R, C C and I,NC = &; the result of a reaction a at C is defined by res,(C) = P,
if a is enabled at C and res,(C) = @ otherwise. The result of A on C, denoted
by res A(C) consists of the products of all reactions from A enabled at C, that is

resA(C) = U resq (C) .
acA

This state change is denoted by C — res 4(C).

Note that the state changes captured by Definition 3 are deterministic. More-
over, all entities in C'\ |, 4 res4(C) disappear. As a result, and unlike in other
formal models of dynamic systems, there is no persistency in a reaction system
in the sense that an entity present in a state disappears unless it is sustained by
at least one reaction.

For the example reaction system Ag. we have:

{z,z} —{y,z} and {y,z} — {z,z} and {w,z,y} — &.

One may observe that there is no conflict between reactions in the ‘classic’
sense that the occurrence of one reaction might imply that another reaction
which is also enabled at the current state, cannot occur. This, again, is a feature
not found in most other formal models of dynamic systems. In particular, it is
worthwhile to point explicitly to the ‘non-counting’ features of reaction systems:
entities are either present or not, and produced or not, and reactions can or
cannot occur based only on the presence or absence of certain entities. There
is no representation of multiple instances of entities or multiple occurrences of
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reactions. Thus reaction systems are a qualitative rather than a quantitative
model.

‘We also note that there is an alternative notion of conflict-freeness for a set
of reactions, called consistency. A set of reactions R is consistent if for any twa
reactions a,b € R, R, NI, = Ry NI, = &. Clearly, if a set of reactions is not
consistent, then the reactions it comprises cannot be executed simultaneously.

Although the goal of this paper is a faithful ‘translation’ of reaction sys-
tems into Petri nets, we conclude this section with a number of comments about
research on reaction systems. This research happens in the framework of re-
action systems where a reaction system constitutes the basic technical notion.
Depending on the goal of a specific research theme, many other constructs are
introduced and studied (see, e.g., [2,9,10]) — they form various extensions of
the basic notion of reaction system. For example, there are many biological situ-
ations where one needs to assign quantitative parameters (time, concentrations,
...) to states of a biochemical system. Although reaction systems are a qualita-
tive model (they cannot ‘count’), they can be extended so that such quantitative
parameters can be accommodated. This is done through the use of measurement
functions which lead to reaction systems with measurements (see [2,3,9,10]),
where various numerical parameters can be assigned to (calculated for) consec-
utive states of dynamic processes.

Finally, we want to point out that (because living cells are open systems)
reaction systems have an environment and they operate/evolve within a changing
context (with entities coming from the environment influencing the transitions
of dynamic processes). In this paper, however, we will consider only contezt-
independent processes defined by a reaction system with an initial state, where
each next state is obtained solely as the result of reactions taking place in the
previous state (thus assuming that the environment does not influence state
transitions).

3 Reaction systems and low-level Petri nets

In this section, we discuss two possible ways of modelling context-independent
processes of reaction systems using low-level Petri nets (PT-nets extended with
with inhibitor and activator arcs).

In addition to the standard notions of reaction systems, in order to better
explain how they relate to Petri nets, throughout the rest of this paper we will
say that a set R C A is enabled at C if each reaction of R is enabled at C. If
R C A is enabled at C. then

c= resr (C) = U P .
acR

denotes the effect of R at C.

Definition 4 (PT-nets with inhibitor and activator arcs [14]). A PT-net
with inhibitor and activator arcs (or PTiA-net) N = (Pl, Tr, Flw, Inh, Act, My)
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is a tuple such that Pl and Tr are finite, disjoint sets of respectively places and
transitions, and: Flw C (Pl x Tr) U (Tr x Pl), Inh C Pl x Tr, Act C Pl x Tr
are respectively the sets of flow, inhibitor and activator arcs. Moreover, My is
a multiset of places, the initial marking of N; in general, any multiset of places
is called @ marking.

In diagrams, places are drawn as circles and fransitions as rectangles. Mark-
ingg are the possible global configurations (states) of N. We say that a place ¢
is marked under a marking M if M(q) > 0, where M(q) denotes the number
of occurrences of ¢ in M. In diagrams, markings are indicated by putting M (q)
tokens inside the circle representing ¢. If (z,y) € Flw, then (x,y) is an arc lead-
ing from node x to node y. A double headed arrow between ¢ and ¢ indicates
that (g, t), (¢,¢) € Flw. An inhibitor arc ends with a small open circle, while an
activator arc ends with a small black circle.

Given a node z, we denote by *z the set of input nodes of x. i.e., those y
for which (y,z) € Flw, and by 2°* the set of output nodes of x, i.e., those y
for which (z,y) € Flw. For a transition ¢ we use: °t = {q | (¢,¢) € Inh} and
*t = {q| (g,t) € Act} to denote the inhibitor and activator places of t. All four
notations extend in the usual way to sets of nodes. As in the case of reaction
systems, we now formalise the notion of marking (state) change.

Definition 5 (marking change). A multiset of transitions U (also called a
step) is enabled at a marking M if °U N |M| = @, *U C |M| and, for every
place . M(q) = > ;. U(t) (recall that | M| is the set of g which occur in M,
and U (t) is the number of occurrences of t in U ).

In such a case, U can be fired with its effect on M being given by the result-
ing marking M’ such that, for every place q: M'(q) = M(q) — > e U(t) +
D otesg U(t). We denote this by M[U)M'. Moreover, if U is a mazimal (w.r.t.
multiset inclusion) step of transitions enabled at M, then we may denote this
marking change also by M[U) o M'.

Note that whenever a step U is enabled at marking M it must be the case
that all activator places of transitions in |U| are marked (are in |M]) and none
of the inhibitor places of transitions in |U| are marked.

‘We now make some general observations and assumptions about the rela-
tionship between reaction systems and nets.

— Entities can be represented by places, and reactions by net transitions.

— Since there are no conflicts between reactions, activator arcs can be used
to test for the presence of reactants (rather than claiming resources for the
exclusive use as with ordinary arcs and input places).

— All reactions that can occur in a reaction system do occur, and the only en-
tities left after a state change are the newly generated products. In the Petri
net framework, these features correspond to mazimal parallelism described
at the end of Definition 5, and place resetting [6] described later on.
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]

]

Fig. 1. Method I and II representations of the reaction system Ao.

Method I. The first attempt is illustrated in Figure 1(a) for the example reac-
tion system Ap. Method I produces a PTIA-net Ny(Ap) such that:

— Transitions a. b and c use activator arcs and inhibitor arcs to test respectively
for the presence and absence of tokens in the places w. x. y and z.

— Places ¢,. g, and ¢, ensure that the three transitions modelling reactions,
i.e., a. b and c. fire at most once in any step. This corresponds to the ‘non-
counting’ of occurrence instances of the same reaction in a reaction system.

— Transitions 7. rz. ry and 7, (in a maximal step) empty the four places
modelling entities w. x, y and z. This does not have any influence on the
firing of the transitions a. b and c.

— In a single maximal step, M[U) e, M', the net fires a maximal multiset of
transitions U enabled at marking M and then produces a new marking M.
For the net in Figure 1(a), such a firing rule gives:

{(17, Z5qa;qb, qa} [{7'1;, Tz, Q, c}>max {y’ ZyZ,4a,4b, ¢1c}
{ZE, X, T, Z,4a, b, QC} [{7"1;, TeyTxy Tz, Gy c})max {y, ZyZ,4a,4b, QC} .

Formally. given an initialised reaction system A = (S, A), Method T yields
a PTIA-net Ny(A) such that the places, transitions and the initial marking are,
respectively: Pl = {q, |a € Ay US, Tr={rs | s€ StUA and My ={q, | a €
A}+Cy. Moreover, the sets of flow, inhibitor and activator arcs are, respectively:

Flw ={(s,75) | s € S} U{(a,¢a),(ga,a) |a € A} U{(a,s) |a € ANs€E P,}
Inh ={(s,a) lac Ansel,} Act ={(s,a) |la€ ANs€ Ry} .

Note that this kind of modelling in combination with the ‘resetting’ of places
w. . y and z in each fired step, implemented by the auxiliary transitions r,,.
rz. Ty and r,. means that the resulting Petri net is bounded (in every reachable
marking the multiplicity of each place is never more than the number of reactions
of A if A has at least one reaction).

In order to relate the behaviour of the original reaction system A and its
PTIA-net representation Ny(A) just introduced, we need two mappings. The first
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one takes a marking M of N;(A) and returns a state of A, and the other takes
a step U of transitions of N;(A) and returns a set of reactions of A, as follows
vi(M) = SN |M| and ¢ (U) = AN |U|. Tt is then possible to show a number
of results, where a marking M of the pTiA-net N;(A) is called well-formed if
M(qa) =1, for every a € A.

First, My is a well-formed marking satisfying v(My) = Cop. and if M is a
well-formed marking and M[U)M’, then M’ is also well-formed. Second, if M is
a well-formed marking, then for every reaction a € A, a is enabled at M iff {a}
is enabled at state v;(M). We then can show that the translation is sound.

Theorem 1. If M is a well-formed marking then:

1. MIUYM' implies vr(M) 25 1 (M?). Moreover, if MU ) as M', then or(U)
comprises all reactions enabled at vi(M).

2. vi(M) 2 c implies M[UYM' for some U and M’ satisfying: o1(U) =R
and vi(M') = C. Moreover, if R comprises all reactions enabled at vi(M),
then M[U)pmarM'.

Thus, each maximal computational step in the Petri net corresponds to a
unique execution of the reaction system, and each execution in the reaction
system corresponds to at least one maximal step in the Petri net. For example,
the two executions given above for the Petri net in Figure 1(a) both correspond

to {z,z} lag) {y, z} in the reaction system Ap.

Note that in Figure 1(a) one cannot simply delete the auxiliary places of the
form ¢, as then each of the transitions representing reactions could be unbound-
edly enabled. To address this problem one could change the activator arcs from
places representing entities into flow arcs. Then, however, it would be necessary
to add weights |R| to the arcs corresponding to the production of new entities
in order to avoid conflicts on the places representing the reactants.

Method II. The first attempt to model context-independent reaction systermns
provides a sound translation, but it is not simple as it employs features which
can make formal analysis and verification far from easy. One way of improving
Method T could be to replace multisets of fired transitions by sets of fired tran-
sitions leading to a mazimal set-semantics. This can be achieved by using reset
arcs |6], connecting places to transitions and indicated by *’s in the diagrams,
which always empty their source place. Formally, reset arcs Reset C Pl x Tr do
not have any influence on the enabledness of a step U, but the calculation of the
marking of a place g after the firing of U (now a set) at marking M changes to:

M'(q) = M(q) = |g* NU[+[*¢nU| if ({g} x U) N Reset = &
*¢ N U] otherwise .

The resulting PTIA-net with reset arcs N (Ao) is shown in Figure 1(b). Tran-

sition r is always enabled and, when fired. removes all the tokens from the
places modelling the entities. For the net in Figure 1(b), the new firing rule gives
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{z, 2} [{r, a; ¢} max {¥, 2,2} and {z, z, 2, 2} [{r, @, ¢})maz {¥, 2, 2}. One can then
show that a counterpart of Theorem 1 holds also in this case, with vy defined as
vr before and ¢ (U) = U\ {r}. As transition r is always enabled, we now have a
one-to-one correspondence between groups of executed reactions and transitions,
at the price of introducing non-standard reset arcs.

To remove the need to have reset arcs or, equivalently, to obtain a one-to-
one correspondence between states and markings, one could change the rules for
inserting tokens into places, by basically applying an OR-treatment for arriving
tokens. This would, of course, be a radical departure from the standard Petri
net approach, but one worth investigating. The resulting model of SET-nets will
be described in Section 5.

4 Reaction systems and high-level Petri nets

The two translations described in the previous section use low-level PT-nets ex-
tended with reset arcs in addition to inhibitor and activator arcs as well as
maximal parallelism. Reset arcs are a non-standard mechanism and, in particu-
lar, they do not as yet support a causal process semantics. Moreover, the effect of
a reset arc depends on the current marking rather than on a fixed input/output
relation with its neighbourhood. To cope with this problem, we will now outline
two translations from context-independent reaction systems to high-level Petri
nets. We assume familiarity with the basic concepts of high-level nets [13], in
particular, arc inscriptions, activator and inhibitor arcs, and simple transition
guards.

Method IIT. The first translation is illustrated by the high-level net Ny (Ap)
shown in Figure 2(a). In this case, tokens are positive integers acting as though
they were time-stamps. Intuitively, a token n is active only in the n-th execution
cycle of the reaction system. Because the same token cannot be accessed more
than once in a step sequence evolution, reset arcs are not needed anymore. Since
the v transition fires in each maximal step, the cycle number n held in the
‘clock’ place clk is known to all transitions representing reactions. In the places
representing entities, they check only for tokens n. ignoring all the other tokens
produced in previous cycles, and then produce tokens with value n+1 to be used
in the next cycle. The initial marking M, is formed by inserting a single token 1
into place clk and all the places s such that s € Cy. Note that the resulting net
may be unbounded as the tokens in places representing entities are not ‘garbage
collected’. For the high-level net Nyjr(Ao) in Figure 2(b), we have:

{z—{1},y— 2,z {1}, w— &, clk — {1}}
[{an»—A, Cni—1, \/n»—>1 }>maz
{z— {1},y— {2}, 2= {1,2,2},w— &, clk — {2}}
[{bnn—>27 Cni—2, ‘/n»—>2}>maz
{x—{1,3}y—{2},2—{1,2,2,3,3}, w— &, clk — {3}} .
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Fig. 2. Method III and IV representations of reaction system Ao. Note that n and
m are net variables, and that to avoid clutter not all arcs have been annotated: all
the flow (thicker) arcs to places z, y, z are in fact annotated with n + 1, and all the
unannotated inhibitor and activator arcs are annotated with n. In (), the auxiliary
places for transitions b and c¢ are omitted. Note that (m > n) is the guard of transition
aq. and all other transitions have the trivial ¢rue guard.

As in the case of Method I, not every marking M of Ny (A) can represent a
valid state of the reaction system A. We say that M is clock-consistent if there
is a single token k in place clk. and all the tokens [ in other places satisfy [ < k.

Relating the resulting net and the original reaction system can be done using
the following two mappings: vip(M) = {s € S | |M(clk)| N |M(s)| # @}
and @ (U) = U \ {v'}. One can show that My is a clock-consistent marking
satisfying v(My) = Cp. and if M is a clock-consistent marking and M[U) 4. M’
then M’ is also clock-consistent.

Theorem 2. If M is a clock-consistent marking then:

1. M[U)mm;M/ *.imph'es VH[(M) (pg(U) VH[(MI).

2. v (M) 2 implies M[U) o M’ for some U and M’ satisfying: o1 (U) =
R and V[H(M/) =C.

Method TIV. In the second high-level net construction the aim is to eliminate
the need for maximal parallelism using information present in the time-stamped
tokens. We replace the global clk place by individual clk, places, which are incre-
mented by transitions a representing reactions. Moreover. whenever a is blocked
from firing in a certain cycle one of the auxiliary transitions corresponding to
the possible ‘reasons’ for the blocking « is fired to increment the token in clk,.
This results in an increment of the cycle number for this transition (in case
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there is more than one reason for blocking, an auxiliary transition is chosen
non-deterministically).

There are two possible reasons why a might be blocked in cycle n. One is the
presence of a token n in the place representing an inhibitor of a. and to check for
this we use a transition with an activator arc, e.g., a, in Figure 2(b). The other is
more complicated as it is a lack of token n in the place representing a reactant s
for a. and to check for this we use a transition with an inhibitor arc. However, we
also need to ensure that all transitions which feed tokens to s have already had
a chance to do so, and we check this using extra activator arcs together with a
transition guard which evaluates to true if all such feeding transitions have their
local cycle sufficiently high, e.g., transition a, in Figure 2(b). The overall result
for the reaction system Ay is a high-level net Ny (Ao) shown in Figure 2(b).

The resulting high-level net is executed according to the standard sequential
(interleaving) firing rule and its behaviour closely simulates that of the net ob-
tained by Method III, and so also the behaviour of the original reaction system.
We skip the full description of the relationship between these two nets. Intu-
itively, a marking M of the second translation corresponds directly to a marking
of the first one if all the places of the form clk, contain the same single token
k. and all the tokens { in other places satisfy { < k. (Note that from each reach-
able marking of the second translation one can execute a sequence of transitions
leading to a marking with this property.)

5 Set-nets

In our attempts to obtain a direct and elegant translation from reaction systems
into Petri nets, a major and as far as we can tell insurmountable problem was
the fact that several transitions may insert tokens into a place representing
the presence of a single entity. In this section, we introduce SET-nets, a model
that resulted from closer investigations into the possibilities of an OR-treatment
of arriving tokens representing the production of entities by reactions. Note
that OR-treatment of causality has been considered in [20], but the underlying
principle there was completely different from what we are going to propose.

The main idea is that in a SET-net there is no concept of counting. Places
are marked or not marked and arcs have no weights. Set-nets resemble elemen-
tary net systems (EN-systems) [19] which is a fundamental model to study basic
features of concurrent systems, including conflict, causality and independence.
However, their execution semantics is different. In SET-nets, a marked place in-
dicates the presence of a resource without any quantification. Hence any number
of transitions that take input from this place can be fired at the same time.
Moreover, firing a transition empties all its input places. Thus there are no con-
flicts over tokens in SET-nets, unlike in EN-systems or PT-nets. Similarly, places
do not count the tokens, and the firing of a transition simply marks each of its
output places (whether or not they were already marked). We will build up the
new model in two stages, introducing first SET-nets with only flow arcs.
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EfE
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O o

Fig. 3. A sET-net representing reaction system A; (a); and an occurrence net con-
structed for its step sequence {b,qy, s, }{a,b,7,,q,} (b) .

Definition 6 (basic SET-net). A tuple SN = (Pl, Tr, Flw, My) is a (basic)
SET-net if the first three components are as in Definition 4, and Mo C Pl is the
initial marking (in general, any set of places is a marking).

The graphical representation of SET-nets is the same as in the case of Petri
nets. We now formalise the firing rule for SET-nets.

Definition 7 (marking change). A set of transitions U (also called a step)
is enabled at a marking M if *°U C M. In such a case, U can be fired with its
effect on M being given by the resulting marking M’ = (M\*U)UU®. We denote
this by M|U)YM'. Moreover, if U is the set of all transitions enabled at M (i.e.,
all transitions t satisfying *t C M ), then we may write M[U)pmas M.

Hence a step U enabled at a marking M may contain two distinct transitions
t and wu for which *tN®u # @ or t* Nu® # & and yet the common places will
never contain more than one token. Since tokens are manipulated using set-based
arithmetic we have chosen the name ‘SET-nets’ for the new class of Petri nets.

We have introduced first basic SET-nets (without inhibitor and activator
arcs), as it seems that one can attempt to develop for them a counterpart of
‘structure theory’ of PT-nets. To illustrate our point, let us consider a basic SET-
net SN = (P, Tr, Flw, My) with at least one transition. A non-empty set of
places Sphn C Pl is called a siphon if *Sphn C Sphn®. Similarly, a non-empty
set of places Trap C Pl is called a trap if Trap® C ® Trap. It can be easily seen
that an empty siphon cannot acquire a token by firing any transition, and a
marked trap cannot become empty by firing any transition. Both type of sets
of places can be used to provide a sufficient condition for deadlock-freeness in
PT-nets which was a major motivation behind the development of their structure
theory. As it turns out, the same can be done in case of SET-nets.

Theorem 3. If in the initial marking, every siphon contains a marked trap,
then the SET-net is deadlock free.

‘We next introduce SET-nets with inhibitor and activator arcs.
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Definition 8 (SET-net). A tuple SNIA = (Pl, Tr, Flw, Inh, Act, My) is a SET-
net if the first five components are as in Definition 4, and the last one as in
Definition 6.

The definitions and notations concerning the marking change in SNIA are the
same as for SN in Definition 7 with one exception, namely a set of transitions U
is enabled at a marking M if *UU®U C M and °UNM = @. Tt is interesting to
observe that an enabled step U is always consistent in the sense that (*UU*U)N
°U = @. Such a property has a natural and direct (as we will see) connection
with the notion of consistency introduced for reaction systems.

As before, given a transition ¢ representing a reaction, the sets *¢. °t and *¢
correspond to the reactants, inhibitors and products of this reaction. However,
we do not require that these sets be non-empty in a SET-net (at least at this
point) as such an assumption is not necessary.

6 Reaction systems and SET-nets

Reaction systems and sET-nets fit together well in the sense that both do not
count tokens and both change states on the basis of the presence/absence of
resources, represented by sets. Moreover. under the SET-net semantics, ordinary
arcs (transitions) can be used to empty places. In this semantics, reset arcs with
their effect depending on the current number of tokens in a place are meaningless.
Finally, following the assumption that all reactions that can take place do take
place, the maximal set-semantics can be employed.

Figure 3(a) depicts a SET-net corresponding to a context-independent ini-
tialised reaction system A; = ({r,q, s}, {a,b},{q, s}). where a = ({r,q}, @, {r})
and b = ({¢}, @, {r, ¢}). (For reasons of clarity, we allow in this section reactions
without any inhibitors.) As before, places represent entities. Transitions 7. ¢
and s ensure that once the SET-net is active only tokens produced in the last
maximal step are present in the current marking. For example, we have:

{Qa 8} [{b? ql, 3¢}>maﬂﬂ {7”, Q} [{aa b? Tl q¢}>maw {’I’, Q} )

and so o = {b,q;, s; }{a,b, 7, q } is a max-step sequence. Relating the behaviour
of the sET-net model and the original reaction system is easy and we obtain a
counterpart of Theorem 1 with v(M) =M and v(U) =U \ {s; | s € S}.

For a sET-net without inhibitor and activator arcs as in Figure 3(a), one
can investigate the causality semantics of reaction systems based on the un-
foldings of the corresponding SET-nets. Figure 3(b) shows how such an occur-
rence net could be derived for the SET-net in Figure 3(a) and its step sequence
{b,qy,s,}{a,b,r,q} which corresponds of the state sequence {b}{a,b} of the
original reaction system. It is worth observing that the process has branching
places which is not possible, in the case of processes of EN-systems or PT-nets.
This, however, is fully consistent with the execution semantics of SET-nets.
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Modelling inhibition aspects of reactions is rather straightforward using in-
hibitor arcs, as illustrated by the SET-net in Figure 4(a), representing the context-
independent initialised reaction system A, = ({r,q, s},{a,b},{q}). where:

a= ({Ta q},@,{r}) and b= ({Q}v {3}7 {7“, Q}) and ¢ = ({q},@, {3}) .

Using inhibitor arcs gives a compact translation of reaction systems which is
in a sense minimal w.r.t. the number of places, arcs and transitions. Moreover,
relating the behaviour of the resulting SET-nets and the original reaction systems
can be done as before. Formally, the places, transitions and initial marking of
the translation are given by: Pl =S, Tr = AU{s) | s € S} and M, = Cy. There
are no activator arcs, and the flow and inhibitor arcs are as follows:

Flw ={(s,s)) | s€ StU{(s,a) |laec ANse R} U{(a,s) |a€e ANs € P,}
Inh ={(s,a) lac ANs€el,}.

The development of a causal process semantics of SET-nets with inhibitor arcs is
more difficult. Tt is therefore interesting to consider models of reaction systems
using SET-nets without any inhibitor arcs, as outlined next.

Figure 4(b) shows a SET-net without inhibitor arcs modelling As. The way in
which it does it is now more involved. More precisely, each execution step of the
reaction system is simulated in two phases by the SET-net operating according to
the maximal parallelism execution semantics. To keep these two phases clearly
separated, they are controlled by an additional cyclic subnet with twao places. The
key aspect of the construction is the use of a ‘complement’ s°?! of the ‘regular’
place s which at the time of checking whether s is empty by reaction b contains
a token iff s is empty.

Figure 4(c) provides a generic picture of how, in the proposed construction,
a SET-net (without inhibitor arcs) handles an entity r in its role as a reactant,
inhibitor, and product. Note that r is represented by two places, r and 7°P!, and
if 7°P! is marked then the entity r in absent in the current state. Moreover, each
reaction d is represented by two transitions, d and d’. The first corresponds to
the enabling stage of d. and the second to the generation of its products.

The first phase of the simulation always starts in a consistent marking M
in which there is a token in place phl; for every s € S. s € M < 5P\ ¢ M,
and otherwise all places are empty. In this phase transitions corresponding to
reactions become active on the basis of the presence and absence of their reac-
tants and inhibitors. Simultaneously, transitions of the form 7| and ry take care
that all the entities present in the current state cease to exist (their correspond-
ing places are emptied and the complement places filled). In the second phase,
each enabled transition d’ finishes the execution of the corresponding reaction,
and marks the places corresponding to the entities produced by reaction d and
empties their complements.

Relating the behaviour of the SET-net model and the original reaction system
is more complicated, using the following two mappings:

v(M) = M\({phI}U{s" | s € S}) @(U) = U\({T}U{s, | s € S}U{st | s € S}) .
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Fig. 4. Two SET-nets representing As (a, b). Generic translation without inhibitor arcs:
here r is a reactant for reaction a. product for b, and inhibitor for ¢ (c). Note that not
all places and arcs are shown; in particular, each reaction has at least one reactant and
hence transitions like ¢ can only fire in the first phase.

One can then show that M) is consistent and satisfying v(My) = Cy. and if M
is a consistent marking and M[U)0: M [U"Y ez M’ then M’ is also consistent.

Theorem 4. If M is a consistent marking then:

1. MIUYM"[U"YM" implies v(M) 2% v(M").

2. v(M) E. C implies M[UYM"[UYM'" for some U, U', M' and M" satisfy-
ing: o(U) =R andv(M') =C

7 Related work and concluding remarks

When introducing a new class of Petri nets, especially a fundamental one, it is
necessary to put it in the context of existing formalisations. To make comparison
fair, we will now drop the assumption about maximal parallelism in the execution
of sET-nets (which is implied by the execution mode of reaction systems), and
consider semantics which allows any set of enabled transitions to be fired.

Set-nets are so simple when it comes to their definition, that it is reasonable
to expect that there were in the past net classes with similar features. Indeed, the
fundamental class of EN-systems [19] extended with inhibitor as well as activator
arcs [12,17,18] basically have the same static structure as sET-nets. However,
their treatment of conflicts between transitions accessing the same token, as
well blocking a transition which could add a token to a marked place, are totally
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q
()

Fig. 5. Boolean net (SET-net with sequential semantics) (a), and 1-safe PT-net simu-
lating its (sequential] behaviour (b).

different. The latter issue has been noted in the past, and the constraint relaxed.
For example, there are variations of Petri nets, such as Boolean Petri nets, where
adding a token to an already marked place does not add another token [4, 5, 11].
Also, behaviour of this kind was mentioned in [1] in the context of net synthesis.
Having said that, the semantics considered in prior works known to us was
based on single transition firings, rather than (maximal) steps as is the case
for sET-nets. Therefore, the previous models were not concerned with multiple
inputs of tokens to a single place something which is essential if one wants to
faithfully model reaction systems. Furthermore, by aiming at a set-semantics,
we had to introduce the non-conflict feature on the flow arcs consuming the
tokens. Therefore, as far as we are aware, the model of SET-nets is an original
contribution to the field of Petri nets.

As we already mentioned, SET-nets with interleaving semantics are nothing
but Boolean nets used, for instance, in [3]. In such a case, the lack of conflict
when firing two transitions sharing an input place is an irrelevant issue, and the
only non-standard aspects is that firing a transition with a marked output place
does not increase the token count in that place. Such a feature, moreover, can
easily be modelled using ordinary 1-safe PT-nets, according to the following idea.
First, one splits each place ¢ into places ¢° and ¢'. respectively representing
the lack and presence of a token in g. Then, each transition ¢ adding tokens
to place ¢ is split into t° and ¢! to account for two different states the place
g can be in represented by ¢° and ¢'. Figure 5 illustrates this construction.
It can be easily seen that both nets generate the same sequential reachability
graphs assuming that ¢ and a! are instances of a. and b° and b' are instances
of a. However, once we start treating the net in Figure 5(a) as SET-net, the
situation changes radically. The reason is that we then have three firings of
the following form: @[{a}){q}. @[{b}){¢} and &[{a,b}){q}. Now, the standard
classes of Petri nets enjoy the so-called subset property which means that if a
step U is enabled at marking M. then also any of its subsets is enabled as well.
Suppose, then, that there is a Petri net N satisfying this property and such that
its step reachability graph is the same as that of the sET-net in Figure 5(a),
perhaps after renaming A\ being applied to the transitions of the former. Then
we have to have two transitions, ¢ and u, in N such that \(¢) = a, A(v) = b and
My[{t,u})M. Then, by the subset closure property, we also have My[{t})M’
and My[{u})M". Hence, by the reachability graph isomorphism, we must have
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M = M'"= M" as well as My # M. Hence we have: My[{¢,u})M and My[{t})M
and My[{u})M and My # M. In the standard Petri nets, including various
extensions of PT-nets, Mo[{¢t,u})M and My[{t})M would imply that u does not
change the current marking. Similarly, Mo[{t,u})M and Mo[{u})M would imply
that ¢ does not change the current marking. Yet the simultaneous firing of ¢t and
u does change the marking as My # M. This would produce a contradiction.
What we just presented is intuition rather than proof, however, we expect that
detailed arguments can be developed for any of the standard net classes. An
important consequence, however, is that SET-nets are semantically different from
the existing net classes and therefore deserve to be recognised as an original
contribution.

8 Conclusions

The main initial motivation of our investigation was to see how Petri net based
concepts could be deployed to analyse reaction systems. In particular, we wanted
to discover methods for checking properties of reaction systems by relating them
to the properties of the corresponding Petri nets and causal processes.

‘We proposed modelling methods resulting both in low-level and high-level
nets. In all four cases, we established a close correspondence between the mark-
ings of Petri nets and states of the original reaction systems. The same was true
of the evolutions of two corresponding models. In fact, we established that they
have essentially isomorphic state spaces. All these net models, however, exhibited
deficiencies w.r.t. simplicity and/or elegance and/or tractability of the transla-
tion. For example, both high-level net models are intrinsically unbounded, and
the second of the low-level translations uses reset arcs. We therefore proposed
a new class of Petri nets, called SET-nets, which we feel provide a strong match
with the reaction systems and their semantics.

In this way we think we derived new interesting notions and contributions to
Petri net theory based on our experiences with reaction systems in a similar way
as the concepts of localities and locally maximal concurrency were derived from
our previous investigation of a Petri net semantics of membrane systems [15].
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