
Modelling Real-time Database Systems in Duration Calculus
Dang Van Hung and Ho Van Huong

United Nations University
International Institute for Software Technology

P.O.Box 3058, Macao

ABSTRACT
In this paper, we give a formal model for real-time database
systems using Duration Calculus. Our model supports the
formal reasoning about the operations in the systems. As a
case study for our technique, we give a formal specification
and verification of the Read/Write Priority Ceiling Protocol
(R/WPCP).

KEY WORDS
Real-time Database, Concurrency Control, Duration Cal-
culus.

1 Introduction

Real-time Database Systems (RTDBS) have been used in
a wide range of applications such as air traffic control,
robotics and nuclear power plants. Research on RTDBS
has received a great deal of attention [1, 4], and belongs to
two different important areas in Computer Science: real-
time systems and database systems. Usually, transactions
in RTDBS are associated with time constraints, e.g. dead-
line. The concurrency control in Real Time Database Sys-
tems has to ensure not only the consistency of the data in
the multi-user environments like in traditional databases,
but also the temporal consistency of the data, and that all
transactions meet their deadline. Therefore, the concur-
rency control in Real Time Database Systems (RTDBS) is
much more complicated than the one in traditional database
systems (DBS). A formal technique for modelling and rea-
soning about the behaviour of the concurrency control will
support the analysis and verification of concurrency con-
trol algorithms. In this paper, we focus on the development
of such a mathematical model of RTDBS. In particular, we
focus on the formalisation of the integration of the concur-
rency control with scheduling in RTDBS. We use Duration
Calculus (DC) introduced by Zhou, Hoare and Ravn in [6]
as a logical foundation for our approach. The reason for
this choice is that DC is a simple and powerful logic for
reasoning about the time durations, which is a main con-
cept in scheduling.

Our approach is summarised as follows. We first ex-
tend the formal model of RTDBS proposed in [5] with
the capacity for modelling (iterated) periodic transaction
systems. Handling the periodic transaction systems with
deadline is not trivial. Then, we give a formal specifica-
tion of the correctness criteria for concurrency control in

RTDBS which consists of the serializability, the temporal
consistency and meeting timing constraints. To show the
advantages of our model, we give a formal specification
and verification of the Read/Write Priority Ceiling Proto-
col (R/WPCP).

2 Duration Calculus

Duration Calculus (DC) is a logical approach to formal de-
sign of real time systems. DC adopts continuous time and
uses boolean-valued functions over time to model states
and events of the real time systems. The duration of a state
over a time interval is the accumulated presence time of the
state over the interval. We refer to [3] for more comprehen-
sive introduction to DC..

Time in DC is the setR+ of non-negative real num-
bers. Fort, t′ ∈ R+, t ≤ t′, [t, t′] denotes the time interval
from t to t′. Let Intv denote the set of all intervals.

DC has a setE of boolean state variables.E includes
the Boolean constants 0 and 1 denotingfalse and true
respectively. State expressions, denoted byP, Q, P1, Q1,
etc., are built from boolean state variables using boolean
connectives. A state variableP is interpreted as a function
I(P) : R+ → {0, 1} (a state).I(P)(t) = 1 means that
stateP is present at time instantt, andI(P)(t) = 0 means
that stateP is not present at time instantt. We assume
that a state has the finite variability in a finite time inter-
val. A state expression is interpreted as a function which is
defined in the obvious way from the interpretations for the
state variables and Boolean operators.

For an arbitrary state expressionP , the duration ofP
is denoted by

∫
P . Given an interpretationI of state vari-

ables and an interval[t, t′], duration
∫

P is interpreted as∫ t′

t
I(P)(t)dt.

∫
1 always gives the length of the intervals

and is denoted bỳ. An arithmetic expression built from
state durations and real constants is called a term.

We also assume a set of temporal propositional letter
X, Y, ... Each temporal propositional letter is interpreted
by I as truth-valued functions of time intervals.

A primitive duration formula is either a temporal
propositional letter or a Boolean expression formed from
terms by using the usual relational operations on the reals,
such as equality= and inequality<. A duration formula
is either a primitive formula or an expression formed from
other formulas by using the logical operators¬, ∧, ∨, ⇒,
⇔, and the chop;.

A duration formulaD is satisfied by an interpretation
I in an interval[t′, t′′] just when it evaluates to true for that
interpretation over that time interval.

Given an interpretationI, the chop-formulaD1; D2 is
true for [t′, t′′] iff there exists at such thatt′ ≤ t ≤ t′′ and
D1 andD2 are true for[t′, t] and[t, t′′] respectively.

We give now shorthands for some duration formulas
which are often used. For an arbitrary state variableP ,
ddP ee stands for(

∫
P = `) ∧ (` > 0). This means that

interval is a non-point interval andP holds almost every-
where in it. WhenP in interpreted as a one-side contin-
uous function,ddP ee means that the interval is a non-point
interval andP holds everywhere in it. We usedd ee to denote
the predicate which is true only for point intervals. Modali-
ties3, 2 are defined as:3D=̂true;D; true, 2D=̂¬3¬D.
This means that3D is true for an interval iffD holds for
some subinterval of it, and2D is true for an interval iffD
holds for all subintervals of it. We will use the abbreviation
ddP ee∗ =̂ dd ee ∨ ddP ee

We refer the readers to [3] for a powerful proof system
for DC which is complete for the abstract time domain.

3 Formal Model of Real Time Database Sys-
tems in DC

3.1 Basic model

Let a real-time database system consist of a setO of data
objects (ranged over byx, y, z, . . .), and a setT of n trans-
actionsTi, 1 ≤ i ≤ n.

Each transactionTi arrives at the DB system periodi-
cally with the periodPi. In a period, a transaction performs
some read operations on some data objects, does some lo-
cal computations and then performs some write operations
on some data objects. We assume the atomic commitment
of transactions: if a transaction has been aborted then it’s
execution has no effects on the database. We also assume
that each transaction can read and write to a data object at
most once during its execution in one period. These as-
sumptions are for the simplicity and well accepted in the
literature. Each transactionTi, besides its periodPi, also
has its own deadlineDi, a prioritypi, an execution timeCi,
a data read setROi and a data write setWOi (ROi and/or
WOi may be empty).

Let x be a data object. For eachi ≤ n let Ti.wrtn(x)
be a DC state variable expressing the behaviour ofx.
Ti.wrtn(x) holds at timet iff the value of x at t is the
one written by transactionTi. The view ofTi on x can
be modelled as a state variableTi.read(x) defined as fol-
lows. Ti.read(x) holds at timet within a period iffTi has
performed a read operation onx successfully beforet in
that period. Therefore, the read operation onx in a period
is performed at the time thatTi.read(x) changes its value
from 0 to 1 in that period. To express that a time interval
[a, b] is a period ofTi, we introduce temporal propositional
letterTi.priod. Ti.period([a, b]) = true iff [a, b] is a pe-

riod of Ti. Of course,

Ti.period ⇒ ` = Pi. (1)

For eachi ≤ n state variableTi.arrd is introduced
to express thatTi is standing in the system at timet:
Ti.arrd(t) = 1 iff at time t transactionTi is in the system
and has not been committed or aborted since then. Because
we assume thatTi arrives at the beginning of any period of
its, it holds:

Ti.period ⇒ ddTi.arrdee_true (2)

We introduce variablesTi.req rlk(x) andTi.req wlk(x)
to express thatTi is requesting lock for a data objectx at
time t: Ti.req rlk(x)(t) = 1 iff transactionTi is request-
ing a read-lock onx at timet, andTi.req wlk(x)(t) = 1
iff transactionTi is requesting a write-lock onx at timet.

When a transactionTi requests a lock on data object
x, it may be granted or has to wait. Therefore, for each
i ≤ n and for eachx, we introduce the state variables
Ti.wt wlk(x) andTi.wt rlk(x) as: Ti.wt rlk(x)(t) = 1
iff transactionTi is waiting for a read-lock on data ob-
ject x at time t, Ti.wt wlk(x)(t) = 1 iff transactionTi

is waiting for a write-lock on data objectx at time t,
Ti.hld rlk(x)(t) = 1 iff at time t transactionTi holds a
read-lock on data objectx, andTi.hld wlk(x)(t) = 1 iff at
time t transactionTi holds a write-lock on data objectx.

In a period, a transaction can commit or abort. There-
fore, for eachi ≤ n state variablesTi.comtd andTi.abd
are introduced to express thatTi has already committed or
aborted at timet: Ti.comtd(t) = 1 iff Ti has commit-
ted successfully beforet in a period of containingt, and
Ti.abd(t) = 1 iff Ti has aborted beforet in a period of
containingt.

At the beginning of a period, all transactions have not
read anything from the database.

2(Ti.period ⇒
∧

x∈ROi

(dd¬Ti.read(x)ee; true)) (3)

For any transactionTi, at any time, eitherTi.arrd or
Ti.comtd or Ti.abd (here we assume that at the beginning,
if a transaction has not arrived, it is committed)

2ddTi.arrd ∨ Ti.comtd ∨ Ti.abdee∗ (4)

These three states are mutually exclusive:

2ddTi.arrdee ⇒ dd¬(Ti.comtd ∨ Ti.abd)ee (5)

2ddTi.comtdee ⇒ dd¬(Ti.arrd ∨ Ti.abd)ee (6)

2ddTi.abdee ⇒ dd¬(Ti.arrd ∨ Ti.comtd)ee (7)

At any time the value of a data object is given by one and
only one transaction (here we assume that there is a virtual
transaction to write the initial value for all data):

2dd
∨

Ti∈T
Ti.wrtn(x)ee∗ (8)

2
∧

Ti 6=Tj∈T
dd¬(Tj .wrtn(x) ∧ Ti.wrtn(x)ee∗ (9)

A transactionTi requests a lock for a data objectx iff it is
in state “arrived” and it is either holding it or waiting for it:

2dd Ti.req rlk(x) ⇐⇒ (Ti.arrd∧
(Ti.hld rlk(x) ∨ Ti.wt rlk(x))) ee

∗ (10)

2dd Ti.req wlk(x) ⇐⇒ (Ti.arrd∧
(Ti.hld wlk(x) ∨ Ti.wt wlk(x))) ee

∗ (11)

A transaction cannot hold a lock and at the same time wait
for it:

2dd¬(Ti.hld rlk(x) ∧ Ti.wt rlk(x))ee∗ (12)

2dd¬(Ti.hld wlk(x) ∧ Ti.wt wlk(x))ee∗ (13)

The conflicting locks cannot be shared by transactions.
Therefore, forTi 6= Tj

2dd¬(Ti.hld rlk(x) ∧ Tj .hld wlk(x))ee∗ (14)

2dd¬(Ti.hld wlk(x) ∧ Tj .hld lk(x))ee∗ (15)

A transaction can read or write on a data objectx only
if it holds the corresponding lock on the data objectx at the
time:

2dd¬Ti.read(x)ee; ddTi.read(x)ee ⇒
3ddTi.hld rlk(x)ee (16)

2dd¬Ti.wrtn(x)ee; ddTi.wrtn(x)ee ⇒
3ddTi.hld wlk(x)ee (17)

In any period, a transactionTi cannot hold a lock for a data
objectsx after it has released this lock:

Ti.period ⇒ ¬3(ddTi.hld rlk(x)ee;
dd¬Ti.hld rlk(x)ee; ddTi.hld rlk(x)ee) (18)

Ti.period ⇒ ¬3(ddTi.hld wlk(x)ee;
dd¬Ti.hld wlk(x)ee; ddTi.hld wlk(x)ee) (19)

As mentioned earlier, for each period, for alli andx
the stateTi.read(x), Ti.comtd andTi.abd can change at
most once.

Ti.period ⇒ (20)

2(ddTi.read(x)ee; true ⇒ ddTi.read(x)ee)
Ti.period ⇒

2(ddTi.comtdee; true ⇒ ddTi.comtdee) (21)

Ti.period ⇒
2(ddTi.abdee; true ⇒ ddTi.abdee) (22)

From the assumption of atomic commitment it fol-
lows that if a transaction has written something into the
database then it should commit at the end.

Ti.period ⇒ (23)

((3ddTi.wrtn(x)ee) ⇒ true; ddTi.comtdee)
Let ENV be the set of the formulas(1), (2), (4), . . . , (24)
with x ∈ O, i 6= j andi, j ≤ n.

Let state variableTi.run be defined asTi.run(t) =
1 iff transaction Ti is running on a processor at time
t. When a transactionTi has arrived and got all data
object locks it needs, it is ready to run on the proces-
sor. Ti.ready(t) = 1 iff transactionTi is ready to ex-
ecute on a processor at timet. When a transactionTi

is ready, it must not wait for a read-lock or a write-lock:
ddTi.readyee ⇒ dd¬Ti.wt rlk(x)ee and ddTi.readyee ⇒
dd¬Ti.wt wlk(x)ee. A transaction runs only if it is ready.
Therefore for every transactionTi (A1):

2(ddTi.runee ⇒ ddTi.readyee)
In a period if a transaction is standing, the maximal

required execution time has not been reached. Hence, (A2):

Ti.period ⇒
(true; dd¬Ti.comtdee; true ⇒
(
∫
Ti.Run < Ci); dd¬Ti.comtdee; true)

In a period if execution time ofTi is equal toCi, Ti

will commit from that time (A3):

Ti.period ⇒
(
∫
Ti.run = Ci; ` > 0 ⇒ true; ddTi.comtdee))

Assume that the transactionsT1, . . . , Tn share a sin-
gle processor, and transaction priorities are assigned by the
Rate Monotonic Algorithm, which assigns a higher priority
to a transaction with shorter period. Without the loss of the
generality, we assumeP1 ≤ P2 ≤ · · · ≤ Pn, and priorities
are in decreasing order fromp1 to pn, wherepi denote the
priority of Ti.

At any time if one transaction is running, any other
transaction cannot be running: Fori 6= j

(A4) 2dd¬(Ti.run ∧ Tj .run)ee∗

The processor cannot stay idle when a transaction is
ready:

(A5) 2(ddTi.readyee ⇒ dd∨1≤j≤n Tj .runee)
A transaction with lower priority cannot be running

when a transaction with higher priority is ready:

(A6) 2(ddTi.readyee ⇒ ∧
i<j≤ndd¬Tj .runee)

The conjunction of the preceding formulas (A1)–(A6) cap-
tures our uniprocessor model for the transactions.

3.2 Correctness Criteria of Concurrent Exe-
cution of Transaction Systems

3.2.1 Serializability

The serializability of an execution of the transaction system
says that the relation ‘before’ between the executions of
transactions defined by the order of the conflict operations
in the execution is a partial ordering on the (infinite) set of

transaction executions. Given an execution of the transac-
tion system, any transaction has its own period, and in each
period, there is one execution of the transaction. Hence, the
set of all the executions of transactions is infinite. We have
to to describe a criterion for the infinite relation ‘before’ to
be acyclic by just a formula.

There is a nice characterisation for the relation ‘be-
fore’ of the transaction system to be acyclic which is about
the behaviour of transaction system in an interval with the
length(n+1)∗Pn only. Namely, we prove that the relation
‘before’ of a system execution is acyclic if and only if for
any interval which consists of exactly(n + 1) consecutive
periods ofTn, its restriction on the transaction executions
in this interval is acyclic. The ‘only if’ part of the statement
is trivial. The proof of the ‘if’ part is by contradiction. For
contradiction, assume that there is a cycleC1, C2, . . . , Ck

in the relation ‘before’ over the set of transaction execu-
tions, Cj is ‘before’ Cj+1 for j < k, andCk is ‘before’
C1, whereCj is an execution of a transactionTij in a pe-
riod P . Let Ij be interval of time for that periodP . Let the
cycle C1, C2, . . . , Ck be ‘smallest’ (meaning that it does
not include another cycle). By the definition of the relation
‘before’, for eachj < k, there is a data objectxj such that
Cj performs an operationcj on xj beforeCj+1 performs
an operation onxj that is in conflict tocj . That means
there is a time point inIj that is earlier than a time point
in Ij+1. Similarly, there is a time point inIk that is earlier
than a time point inI1. SinceC1, C2, . . . , Ck is a smallest,
there is not more than one execution of the same transaction
in the cycle (this is because that all executions of the same
transaction access the same set of data objects and performs
the same set of operations). Hence,k ≤ n. Consequently,
the union of the time intervals of the executions of this cy-
cle,∪k

j=1Ij should be included in the time interval with the
lengthn ∗ Pn. Hence, this interval should be included in
n + 1 consecutive periods of transactionTn. This is a con-
tradiction to the fact that for any interval which consists of
exactly(n + 1) consecutive periods ofTn, the restriction
on the relation ‘before’ on the transaction executions in this
interval is acyclic.

The relation ‘before’ between the executions of dif-
ferent transactions are modelled as follows. Leta =
(n + 1)Pn). The order between conflict operations on data
objectx in an interval with the length less thana is cap-
tured by
WRij(x)=̂(3(ddTi.wrtn(x)ee ∧ dd¬Tj .read(x)ee);

` < a; ddTj .read(x)ee),
RWij(x)=̂(3(ddTi.read(x)ee ∧ dd¬Tj .wrtn(x)ee);

` < a; ddTj .wrtn(x)ee),
WWij(x)=̂(3ddTi.wrtn(x)ee; ` < a; ddTj .wrtn(x)ee).

To express that the relation ‘before’ defined as above
does not have a cycle longer thann, we first find an ex-
pression for its transitive closure. This is expresses by the
following DC formulaCn

ij defined as:

C1
ij =̂ (RWij ∨WRij ∨WWij)
Cn

ij =̂ (Cn−1
ij ∨ (Cn−1

ir ∧ Cn−1
rj))

Serializability Criterion
A concurrent execution of the set of transactionsT

is serializable iff it satisfies(Tn.period; ` = n ∗ Pn) ⇒∧
i,j≤n,i6=j ¬(Cn

ij ∧ Cn
ji) in any interval.

3.2.2 Temporal Consistency Criteria

In a RTDB, there are two kinds of data objects: continuous
data objects and discrete data objects. LetO denote the set
of all data objects in a RTDBS.

Continuous data objects are related to external objects
continuously changing with time. The value of a continu-
ous data object is obtained directly from a sensor or is com-
puted from the values of a set of other data objects.

Discrete data objects are static in the sense that their
values do not become obsolete as time passes. Let the set
of discrete data objects beZ.

At each moment of time a continuous data object has
a value represented by its current version which is valid for
some time interval. Note that at the same moment of time
there may be several versions of the same continuous object
in database that are valid.

Let α be a continuous data object. For eachq ∈ N
there is a state variablevalidityq(α) to reflect the validity
of q’th version for the value ofα and a real state variable
valueq(α) to reflect the value ofα at timet is theq’th ver-
sion. validityq(α) holds at timet iff q’th version of a con-
tinuous data objectα has been created (before timet) and
is still valid at timet. For the simplicity of representation,
we assume that discrete data only have0th version (q = 0)
with the validity interval[0, +∞).

validityq(α)(t) = 1 iff t is in the valid interval of the
q’th version ofα, valueq(α)(t) = 1 iff the value ofα at t
is theq’th version ofα.

There is a positive lower boundδ′ for the valid in-
terval (depending on the sampling periods), and each ver-
sion may have only a single interval of validity. For a ver-
sion q of the data objectα, there is a predefined number
aviq(α) which is the maximal length of its validity inter-
val. Namely, versionq of α is valid for aviq(α) (≥ δ′)
time units since the time it was created. Therefore,

dd¬validityq(α)ee; ddvalidityq(α)ee;
dd¬validityq(α)ee ⇒ ` ≥ aviq(α) (24)

ddvalidityq(α)ee ⇒ ` ≤ aviq(α)) (25)

ddvalidityq(α)ee; true ⇒ ddvalidityq(α)ee∨
ddvalidityq(α)ee; dd¬validityq(α)ee (26)

The absolute temporal consistency at a timet of a data
objectα means that there is a versionq of α which was born
at timet(α,q) that is still valid, i.e. t − t(α,q) ≤ aviq(α).
The absolute temporal consistency of the data in a RT-
DBS means that all data objects satisfy the absolute tem-
poral consistency at any time. Since we have assumed that
at any time, there should be a versionq for a data object
(normally, the version that was created most recently) for

which valueq holds, the absolute temporal consistency is
formalised simply as follows.
Absolute Temporal Consistency CriterionACONS(α, q)
is defined as
2(ddvalueq(α)ee ⇒ ddvalidityq(α)ee)

Relative consistency says that data objects from some
data set should be temporally correlated. Any setR of ver-
sions of continuous data objects, i.e.R is a set of pairs
(α, q), is associated with a number called length ofrelative
validity intervaldenoted byrvi(R).

The relative consistency of a setR of versions is ex-
pressed by the following DC formulaRCONS(R), meaning
thatR is relatively consistent iff DC formulaRCONS(R) is
true for all intervals, whereRCONS(R) is defined as: For
any(α1, q), (α2, r) ∈ R

2



ddvalidityq(α1) ∧ ¬validityr(α2)ee;
dd¬validityr(α2)ee∗; ddvalidityr(α2)ee ⇒
(` ≤ rvi(R)); ddvalidityr(α2)ee




As we have said earlier, for any data objectα, at
any time t, there is a versionq for which valueq(α) is
true. Normally, when a transaction readsα at time t, it
will get the versionq for which valueq(α). However, in
some scheduler, they may give a different valid version.
In order to be more general, we introduce the step func-
tion Ti.readv to return the version number read byTi for
a value of data object.Ti.readv(α)(t) = q iff at time t
transactionTi has performed a read operation onq’th ver-
sion most recently of data object(α).

A transactionTi can read a set of versions of data ob-
jects in an interval. Therefore, for eachi ≤ n we introduce
a temporal variablesRαi to express the set of versions of
data objects read byTi in an interval.

An execution of the transaction system is temporally
correct iff each transaction, in each period of its, meets
the deadline, reads the set of temporally valid (i.e., re-
cent enough) data objects and is committed before any
of them becomes invalid, and that all the data read by a
transaction in a period are relatively temporally consis-
tent. These conditions are specified by the DC formulas
DLi, ATCi, RTCi as follows.

DLi=̂



ddTi.periodee ⇒
((2(ddTi.arrdee ⇒ ` ≤ Di))∧∫
Ti.run = Ci)


.

Let

RDV LD=̂
(∧

(α)∈ROi,q 6=0ddTi.read(α)ee∧
ddTi.readv(α) = qee ⇒ ddvalidityq(α)ee

)
.

Then,
ATCi=̂(ddTi.periodee ⇒

2(ddTi.arrdee ⇒ RDV LD)).

RTCi=̂3




ddTi.periodee∧
((α, q) ∈ Rαi ⇐⇒ q 6= 0
∧3(ddTi.read(α)ee∧
ddTi.readv(α) = qee))




⇒ RCONS(Rαi).
Let CM =̂

∧
i≤n DLi ∧ATCi ∧RTCi.

Correctness criterion for the execution of transactions
in RTDBS: an execution of setT of transactions is correct

iff for any interval it satisfies the formulaSERIAL∧CM .

4 Formalisation of Read/Write Priority Ceil-
ing Protocol in RTDB

Serializability of 2PL We adapt the formalisation in [5]
for the iterated transaction systems. In 2PL, a transaction
execution consists of two phases. In the first phase data
object locks are acquired, while in the second phase the
data object locks are released and new locks can not be
acquired. For each transactionTi we introduce a state vari-
ableTi.obphase to express which phase the transactionTi

is in at a time.Ti.obphase(t) = 1 iff transactionTi is in
the obtaining phase at timet.

Then, 2PL is formalised by the following DC formu-
las.

Ti.period ⇒
(ddTi.obphaseee; dd¬Ti.obphaseee) (27)

Ti.period ⇒ (28)

2(ddTi.obphaseee ⇒ dd¬Ti.comtdee)
Ti.period ⇒ (29)

2



dd¬Ti.hld rlk(x)ee; ddTi.hld rlk(x)ee
⇒ dd¬Ti.hld rlk(x)ee;
ddTi.obphaseee; true




Ti.period ⇒ (30)

2



dd¬Ti.hld wlk(x)ee; ddTi.hld wlk(x)ee
⇒ dd¬Ti.hld wlk(x)ee;
ddTi.obphaseee; true




Ti.period ⇒ (31)

2

(ddTi.hld rlk(x)ee; dd¬Ti.hld rlk(x)ee
⇒ ddTi.hld rlk(x)ee; dd¬Ti.obphaseee

)

Ti.period ⇒ (32)

2

(ddTi.hld wlk(x)ee; dd¬Ti.hld wlk(x)ee
⇒ ddTi.hld wlk(x)ee; dd¬Ti.obphaseee

)

Let 2PLC be the set of the DC formulas(27), . . . , (32)
and2PL =̂

∧
ϕ∈2PLC 2ϕ

Theorem 1 SERIAL is provable fromENV and2PLC.

Formalisation of R/WPCP Let WPL(x) andAPL(x)
be constants denoting the write priority ceiling and the
absolute priority ceiling for a data objectx, let PN =
{p1, . . . , pn} denote the set of integers for expressing
the priority of transactions, and letTi.locked data and
Ti.sysceil be object-set and real state variables (defined be-
low). The write priority ceilingWPL(x) of data objectx
is defined as the highest priority of transactions which may
write x. WPL(x) =̂ max{pj | x ∈ WOj andj ≤ n}.
The absolute priority ceilingAPL(x) of data objectx is
defined as the highest priority of transactions which may

read or writex,
APL(x)=̂max { pj | x ∈ ROj ∪WOj andj ≤ n}

To express the behaviour of the R/WPCP, we intro-
duce a real state variableRWPL(x), called read write pri-
ority ceiling.

When data objectx is read-locked (write-locked), the
read write priority ceilingRWPL(x) is equal toWPL(x)
(APL(x)): RWPL(x)(t) = 0 if at time t object x is
neither read-locked nor write-locked by any transaction,
RWPL(x)(t) = WPL(x) if at time t objectx is read-
locked (by some transaction) and is not write-locked, and
RWPL(x)(t) = APL(x) if at time t objectx is write-
locked (by some transaction).

Ti.locked data is a function denoting the set of data
objects locked by transactions other thanTi at a time:
Ti.locked data ∈ [Time → 2O], Ti.locked data(t) =
{x | there isj such thatTj .hld lk(x)(t) andi 6= j}.

Ti.sysceil denotes the highest r/w priority ceiling
of data objects locked by transactions other thanTi at
a time. Ti.sysceil(t) = max {RWPL(x)(t) | x ∈
Ti.locked data(t)}.

When a transactionTi attempts to lock a data object
x at timet, Ti will be blocked and the lock on an objectx
will be denied, if the priority of transactionTi is not higher
thanTi.sysceil(t). In this case, we sayTi is blocked by
a transactionTj which holds a lock onx. We introduce a
state expressionTi.blockedby(Tj) for Ti 6= Tj to express
this fact:

∨
x∈O(Tj .hld rlk(x) ∧ Ti.wt rlk(x)∧
Ti.sysceil ≥ pi)

∨∨
x∈O(Tj .hld rlk(x) ∧ Ti.wt wlk(x)∧

Ti.sysceil ≥ pi)
∨∨

x∈O(Tj .hld wlk(x) ∧ Ti.wt rlk(x)∧
Ti.sysceil ≥ pi)

∨∨
x∈O(Tj .hld wlk(x) ∧ Ti.wt wlk(x)∧

Ti.sysceil ≥ pi)

Let HiPri(Ti, Tj) be a boolean-valued function of
time (a state variable) to express which transaction between
Ti andTj has higher priority.

(a) As a priory,HiPri is a partial order:∧
Ti 6=Tj∈T (HiPri(Ti, Tj) ⇒ ¬HiPri(Tj , Ti))

∧
Ti 6=Tj 6=Tk∈T




(HiPri(Ti, Tk)∧
HiPri(Tk, Tj)) ⇒
HiPri(Ti, Tj)




(b) HiPri(Ti, Tj) has to capture the inheritance of pri-
orities by the R/WPCP:

∧
Ti 6=Tj 6=Tk∈T




Tk.blockedby(Ti) ⇒
(HiPri(Tk, Tj) ⇒
HiPri(Ti, Tj))




∧
Ti 6=Tj∈T

(∧
Tk∈T (¬Tk.blockedby(Ti)) ⇒

(HiPri(Ti, Tj) ⇒ pi > pj)

)

R/WPCP always allows the transaction with ‘the
highest priority’ among the ready transactions to run (PPS):
ForTi 6= Tj :
2(ddTi.runee ∧ ddTj .readyee ⇒ ddHiPri(Ti, Tj)ee)

In R/WPCP, when a transaction requests a lock, it is
granted iff its priority is higher than the system ceiling for
it. This is formalised by (GrR):

2(dd¬Ti.hld rlk(x)ee; ddTi.hld rlk(x)ee ⇒
3ddpi > Ti.sysceilee)

and (GrW)

2(dd¬Ti.hld wlk(x)ee; ddTi.hld wlk(x)ee ⇒
3ddpi > Ti.sysceilee)

When a lock is available for which some transactions
are waiting, it will be granted to some of them. The one
who gets should have the highest priority. These unblock-
ing rules can be specified as (UnBl1):

2((
∧

Ti∈T dd¬Ti.hld lk(x)ee) ⇒
(
∧

Ti∈T dd¬Ti.wt lk(x)ee))
and (UnBl2):

2

(ddTi.wt lk(x) ∧ Tj .wt lk(x)ee;
dd¬Ti.wt lk(x)ee ⇒ HiPriR/WPCP(Ti, Tj)

)

(x ∈ O, i 6= j).
R/WPCP is now obtained as the conjunction

2PL ∧ PPS ∧ GrR ∧ GrW ∧ UnBl1 ∧ UnBl2 .
A number of properties ofR/WPCP including the

correctness has been verified formally in DC. We refer the
readers to [7] for details.

References

[1] Azer Bestavros, Kwei-Jay Lin and Sang Hyuk Son.
Real-Time Database Systems: Issues and Applications.
Kluwer Academic Publishers, 1997.

[2] Philip Chan and Dang Van Hung. Duration Calculus
Specification of Scheduling for Tasks with Shared Re-
sources. LNCS 1023, Springer-Verlag 1995, pp. 365-
380

[3] M.R. Hansen and Zhou Chaochen. Duration Calcu-
lus: Logical Foundations.Formal Aspects of Comput-
ing, 1997, 9:283-330.

[4] Kam-Yiu Lam and Tei-Wei Kuo.Real-Time Database
Systems: Architecture and Techniques. Kluwer Aca-
demic Publishers, 2001.

[5] Ekaterina Pavlova and Dang Van Hung. A Formal
Specification of the Concurrency Control in Real Time
Database. The proceedins of APSEC’99, IEEE Com-
puter Society Press 1999, pp. 94-101.

[6] Chaochen Zhou, C.A.R. Hoare, and A.P. Ravn. A
Calculus of Durations.Information Processing Letters,
1991, 40(5):269–276.

[7] Ho Van Huong and Dang Van Hung. Modelling Real-
time Database Systems in Duration Calculus. Technical
Report 260, UNU-IIST, P.O. Box 3058, Macau, Septem-
ber 2002.

