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Abstract. One of the principal uses of UML is the modelling of syn-
chronous object-oriented software systems, in which the behaviour of
each of several classes is modelled using a state diagram. UML permits a
transition of the state diagram to show both the event which causes the
transition (typically, the fact that the object receives a message) and the
object’s reaction (typically, the fact that the object sends a message).
UML’s semantics for state diagrams is “run to completion”. We show
that this can lead to anomalous behaviour, and in particular that it is
not possible to model recursive calls, in which an object receives a sec-
ond message whilst still in the process of reacting to the first. Drawing
on both ongoing work by the UML2.0 submitters and recent theoretical
work [1,6], we propose a solution to this problem using state diagrams
in two complementary ways.

1 Introduction

The Unified Modelling Language [10] has been widely adopted as a standard
language for modelling the design of (software) systems. One diagram type within
UML is the state diagram, an object-oriented adaptation of Harel statecharts.

The use to which state diagrams are put varies with the type of project
and the modeller’s preferences, but a typical use is as follows. The modeller
decides that some or all of the classes which are to appear in the system should
be modelled with state diagrams; typically, classes which are perceived to have
“interesting” state change behaviour will be so modelled, whereas those which
are considered to be stateless or almost so will not be. For a given class, the
modeller identifies the abstract states, which will be represented as states in
the state diagram. This involves deciding which aspects of state are interesting,
in that they may affect behaviour; it can be seen as choosing an equivalence
relation on the set of (concrete, fully-detailed) possible states of objects of the
class. Next, s/he considers which events may happen to an object of this class,
and what effect those events have on the abstract state of the object.

In sequential single-threaded systems on which we concentrate in this paper
a typical event is the receipt of a message which requests the synchronous invo-
cation of an operation. The modeller may record that certain state transitions
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Fig. 1. Simple problem situation

happen only in particular circumstances; that is, s/he may add guards to the
transitions. Finally, s/he may record how an object reacts to a given event hap-
pening in a given state by showing actions on the transitions (and/or within the
states, but for simplicity we omit that possibility here). Typically, the modeller
will not record every detail of the object’s reaction, since that might involve
placing the whole of an eventual method implementation as annotation on a
transition in a diagram. A common compromise is to show only the messages
which the object may send as part of its reaction to an event such as receiving
a message, but not to show internal computation such as variable assignments.

Details vary, but essentially this process is recommended in many reputable
sources, including for example Booch et al.’s UML User Guide [3] and the second
author’s own Using UML [14].

Unfortunately, this standard way of using UML is incoherent, given the se-
mantics for UML state diagrams laid down in the UML standard. That is, follow-
ing the UML semantics may yield nonsense for an apparently sensible collection
of state diagrams. These are not pathological cases, either: there are common
situations which cannot be modelled, with their intended semantics, using UML
state diagrams as described above, and there are simple state diagrams, correct
according to the UML standard, which cannot be interpreted. A very simple
example is shown in Fig. 1. Suppose an object represented by this diagram is
in state S1 and receives message f(), which causes the object to send itself the
message g().1 What should the resulting state of the object be?

The UML semantics does not adequately cover cases like this. Probably the
designer intended S2, with the idea that the implementation of f() would involve
extra actions besides the invocation of g(), but if we must consider the diagram
as a complete machine, there is no good answer.

1 More precisely, f() is a call event and g() a call action in the transition from S1 to
S2. Call events are caused by call actions and are distinct from them [10] (3-148).
In our example g() on the transitions from S1 to S3 and S2 to S4 is a call event
which is caused by the corresponding call action. Both call events and call actions are
associated with an operation in UML, i.e. call events and actions in a state diagram
model invocations of the operation of the object.
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The fundamental problem seems to be that UML – like the UML community
– is ambivalent about whether its state diagrams are intended to be machines,
capable of being executed, or loose specifications, constraining a later imple-
mentation.2 The UML semantics strongly suggests the former, but this does
not always accord with how UML is used. In particular, when state diagrams
are used to model synchronous message passing between objects in a sequential
single-threaded system UML’s run-to-completion semantics causes anomalies.
Situations as shown above can be modelled by UML sequence diagrams and im-
plemented in an object oriented programming language although the execution
of corresponding UML state machines would result in a deadlock according to
the default UML run-to-completion semantics (see example in Sect. 2.1). It is
interesting to notice that Harel and Gery [7] were aware that recursive operation
calls are problematic but apparently considered them unimportant. They wrote:

...when the client’s statechart invokes another object’s operation, its ex-
ecution freezes in midtransition, and the thread of control is passed to
the called object. Clearly, this might continue, with the called object
calling others, and so on. However, a cycle of invocations leading back
to the same object instance is illegal, and an attempt to execute it will
abort.

We do not consider that the problem can be so easily dismissed. In object ori-
ented design recursive calls occur frequently: for example, whenever any method
is recursive, or when the Visitor or Observer pattern is used. In this paper we
discuss the problem and propose a solution, drawing on both ongoing work by
UML2.0 submitters and recent theoretical work [1,6].

The paper is structured as follows. The remainder of this section includes
a note on standards and terminology. In Sect. 2 we explain the problem with
the UML’s current understanding of state diagrams. In Sect. 3 we introduce our
solution, making use of two kinds of state diagrams. Section 4 formalises these
diagrams and defines a suitable notion of consistency. In Sect. 5 we revisit the
example introduced above; Sect. 6 discusses related work, and Sect. 7 concludes.

1.1 Note on Standards and Terminology

This paper is based on UML1.4, the current standard at the time of writing. It
also draws on drafts of the new UML2.0 standard. The reader is assumed to be
familiar with UML; it is important to note that the definition of UML is the
OMG standard [10], not what is contained in any UML book.

In sequence diagrams, we show expressions on return arrows to indicate the
value returned – this is common and harmless, but not actually described in [10].
2 Even the terminology in the standard shows this tension: the terms state diagram,

statechart diagram, statechart and state machine are not always used consistently
(compare for example [10] (3-137) and (3-141)). In this paper we use “state diagram”
as a general term, reserving “state machine” for an executable version.
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We make several simplifying assumptions. We only consider sequential sys-
tems, so our state diagrams are assumed not to make use of concurrent substates.
We treat rolenames identically with attributes; for example, our attribute envi-
ronments include rolenames. Such an attribute has a class type, and its value
will be an object identifier.

2 State Diagrams in UML

According to run-to-completion semantics, the action on a transition must have
been completed before the transition is finished. If the action involves an object
o of the class modelled by the state diagram making a call to another object p
(and perhaps using the result of that call in some calculation), the action, and
therefore the transition, does not complete until the call has been received by p,
processed, and the result returned to o.

However, as soon as we consider the case that o and p might be the same
object (recursion) or that part of p’s reaction to the message from o might be
to send o a new message (callback), it becomes clear that we cannot model
situations with recursion or callbacks with UML state diagrams in which call
events and actions involving calls are recorded on transitions. The next sub-
section demonstrates this using an example which we will use throughout the
paper.

2.1 An Example of Callbacks with UML

The following example is used in different variants to illustrate several problems
with callbacks in UML. The class diagram is given in the left part of Fig. 2.

Consider now an interaction between two objects as shown in the sequence
diagram in the right part of Fig. 2. As response to an invocation of f object a
calls method g of b and during the execution of g object b performs a callback
to a. When the message setA2 arrives at a the execution of f is still in progress.

a:A b:B

setA2(x:int)
setA1(x:int)

a2:int
a1:int

−myA

f(b:B)

A

setB1(x:int)

b1:int
B

g(a:A):int

setA2(|b1*5|)

f(b)

g(a)

b1−3

Fig. 2. Class diagram (left) and sequence diagram (right)
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public void f(B b) {
int y;
y=b.g(this);
if(a1*y>=0) {

a1=y;
}

}

public int g(A a) {
myA=a;
myA.setA2(Math.abs(b1*5));
return(b1-3);

}

Fig. 3. Java implementation of methods f and g

An interaction like that can be implemented in Java without problems. One
possible implementation is shown in Fig. 3.

The internal behaviour of objects of classes A and B can be modelled by
state machines. In this example the state of an object depends on the signs of its
attribute values. An object of A has four different states, an object of B two. The
state machines in Fig. 4 show how methods affect the object states. An object
of A is in one of the states in the top part of Fig. 4 if its value of a1 is negative,
in one of the states at the bottom otherwise. Similarly the object is in one of
the states on the left side of the diagram if a2 is negative, and on the right side
if it is positive. Notice that these state machines intuitively correspond to the
code in Fig. 3 under the assumption that internal computations are omitted in
actions: the value of a2 is always positive after the completion of g due to the
usage of the absolute value, and the sign of a1 is not changed in f, since the
assignment of y to a1 is only carried out if y and a1 have the same sign.

For readability, an arrow may represent more than one transition with the
same source and target states. The different transition labels are separated by
commas. For example there are two transitions attached to the arrow from S1
to S2.

According to the UML semantics these state machines, considered together,
do not behave in a sensible way. When a call of f arrives at an object a of A
which is in state S1, the transition from S1 to S2 labelled by f is triggered, which
invokes g. This causes a transition from S5 to itself and leads to a callback of
setA2 to a, but a cannot react to this call because it is not in a stable state. The
UML run-to-completion semantics prescribes that a can only process the call of
setA2 after the transition from S1 to S2 has been completed, which will never
happen.

Note that the same problem arises even if the callback is a query method,
i.e. does not change any state.

3 Two Kinds of State Diagrams

We suggest handling the problem of callbacks by using two different kinds of state
diagrams, one to model the overall effect of a method on the state of an object
and the other to model the execution of actions of which this method consists.
Thus we resolve the issue of whether state diagrams are loose specifications
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or executable machines by providing both, for use in clearly defined different
contexts.

3.1 Protocol State Machines (PSMs)

In UML1.4 [10] (2-170) PSMs are introduced as a state diagram variant, defined
in the context of a classifier. We keep UML’s terminology (PSM), but in our
opinion these diagrams are best thought of as loose specifications, not as exe-
cutable machines. They specify the permissible sequences of method calls on an
object (the protocol), but not how the object will react to each method call.
Their transitions (protocol transitions) are allowed, but not expected, to have
action expressions. Here we only consider PSMs for classes and in order to en-
force the separation between the diagram types, we follow a recent proposal for
UML2.0 [11] where actions at protocol transitions are explicitly forbidden. The
definition given below is a formalisation of a simplification of PSMs as presented
in [11]. As notation for PSMs we use the standard UML state diagram notation
as described in [10] (3.74.2). Thus a PSM is a simple form of UML state diagram,
without actions: e.g., removing all actions from Fig. 4 yields PSMs. The designer
would develop a PSM for classes that s/he considers to have interesting state
change behaviour, as in current practice. The only difference is that instead of
recording actions on the transitions, s/he will choose when it is worthwhile to
record how reactions to events are implemented using another diagram type, as
follows.

S1

a2<0
a1<0

a2>=0
a1<0

S2

S3
a1>=0
a2<0

S5

S6

b1<0

b1>=0

[x>=0]

setB1(x)

[x<0]

setB1(x)

[x>=0]setB1(x),

g(a)/myA.setA2(|b1*5|)

[x<0]setB1(x),

g(a)/myA.setA2(|b1*5|)

[x>=0]setA2(x), 

[x<0]setA2(x)

a1>=0
a2>=0

S4

setA1(x)
[x>=0] [x>=0]

setA1(x)

[x<0]setA2(x)

[x<0]setA1(x),

[x>=0]setA1(x),
[x>=0]setA2(x),

[x<0]setA1(x)

[x>=0]setA1(x),

[x>=0]setA2(x),

[x<0]setA2(x)

[x<0]setA1(x),

[x<0]setA1(x)

A

[x<0]setA2(x)

B

f(b)/b.g(this)

f(b)/b.g(this)
[x>=0]setA2(x),

f(b)/b.g(this)

f(b)/b.g(this)

Fig. 4. State machines for A and B
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3.2 Method State Machines (MSMs)

Both the current UML specification [10] and the proposal [11] allow the definition
of a state diagram in the context of an operation, but do not provide detail about
the particular features and behaviour of this kind of state diagram. We propose
MSMs which are a simplified variant of sequential class machines as presented
in [6], which in turn are a variant of recursive state machines as introduced in
[1]; they allow recursion.

Figure 5 shows the three MSMs for f, setA2 and g which correspond to the
Java implementation given in Fig. 3. Each MSM is represented by a box with
rounded edges and is labelled by the class which owns the method, the method
name and its parameter. The MSM for f consists of an entry state Fe, an invoca-
tion box, two internal states F1 and F2, and two return states Fr1 and Fr2. Most
of the notation is standard UML. Entry states contain variable declarations and
in the state diagram for g a return expression is shown within the return state
Gr. Invocation boxes are shown as boxes with a double borderline and include a
method call. Each box has an entry and an exit point, represented as shown. In
the MSM for f a return variable is attached to the exit point of the invocation
box. States and boxes are connected by transitions which are labelled by guards
and actions, but not by events. In terms of the UML metamodel two kinds of
events are relevant in MSMs: implicit completion events which cause normal
transitions (as commonly used in UML activity diagrams), and return events,
which permit the MSM to move on from a method invocation box. Since an
MSM models how an activity is performed, it is bound to have similarities with
an activity diagram. We add a precise semantics for MSMs in Sect. 4, especially,
semantics for invocation of methods represented by other diagrams, which is
not defined in UML activity diagrams. In this paper we will not discuss how
our proposal sits inside the UML metamodel, since it would raise no interesting
issues: instead, we focus on description and formalisation.

4 Formal Definitions and Consistency

Clearly, the designer will need to satisfy him/herself that the state diagrams,
both PSMs and MSMs, contained in a given model are consistent: that is, that it
is possible to implement methods according to the MSMs and have the resulting
classes act in accordance with the PSMs. In this section we specify what this
consistency means.

First we consider some informal examples:

– The MSMs in Fig. 5 are intuitively consistent with the PSMs obtained by
deleting actions from Fig. 4; the transitions in the PSMs accurately reflect
the state changes that occur when the MSMs are followed through in a
natural way.

– However, if we change the invocation in the MSM for g from
myA.setA2(|b1*5|) to myA.setA2(b1*5), we destroy consistency because if
b1 is negative then a2 is set to a negative value. That means a call of f on
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F2

Fr1

Fr2

b.g(this)

A:setA2(x:int)

this:A
x:int

/a2=x

Sr

this:B
a:A

/myA=a

myA.setA2(|b1*5|)

Gr
b1−3

B:g(a:A)

y

this:A
b:B

y:int

F1

[a1*y<0]
[a1*y>=0]/

a1=y

A:f(b:B)

G1

GeSe

S1

Fe

Fig. 5. Method state machines for f, setA2 and g

a does not always lead to an object configuration of a where a2 is positive,
contradicting the PSM.

– Alternatively, if the MSM for f is altered so that a1 is always set to a1 * y
(i.e. remove the guard on the transition from F1 to F2 and delete Fr2) we
get a slightly more complicated inconsistency example, involving the states
of two objects. If for instance a1 is positive and b1 is negative, then an
invocation of f on a results in a configuration where a1 is negative. This is
again a contradiction to the PSM for A which specifies that the sign of a1 is
not supposed to change during the execution of f.

In order to formalise these intuitions we introduce formal definitions of both
kinds of state diagrams. For purposes of exposition we use simplified forms of the
diagrams; we believe, however, that most of the missing features of UML state
diagrams could be added without serious problems. Our definitions of MSMs
and their execution are adapted from definitions in [6] and [1].

We assume that there is a class diagram which defines a set of classes C.
Each c ∈ C is associated with a finite set Ac = {a1 : T1, . . . , an : Tn} of typed
attributes and a finite set Mc of methods, where each method m ∈ Mc has a
type Tcm = cTcm × rTcm defining the call and return type of the method3.

Note that in the current work we are eliding the difference between the
operations of classes and their methods. In UML these concepts are distinguished
3 For simplicity we allow only one parameter and return value
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in order to allow for inheritance: classes in an inheritance hierarchy may all have
the same operation, inherited from a base class, which they implement using
different methods. We do not consider inheritance here, since this raises many
interesting questions about the appropriate inheritance of behaviour, and so the
distinction between operation and method is unimportant. One possibility to
explore would be that the protocol state machine would be written in terms of
operations, and that the PSM defined for a base class would be inherited by
subclasses. Then when a subclass provided its own method implementing an
inherited operation, the designer could draw a new MSM for that method. This
would open the door to considerations of behavioural subtyping: we could ask
to what extent the MSMs for different methods implementing an operation were
compatible.

A PSM is unsurprisingly simply a labelled transition system with guards:

Definition 1. A protocol state machine (PSM) for a class c consists of

– a set Sc of states
– a labelled transition relation γ ⊆ Sc ×L×Sc where each label l ∈ L is a tuple

(g, m(x)) where m ∈ Mc is a method name, x is a formal parameter of type
cTcm, and g is a Boolean expression over Ac ∪ {x} specifying the condition
under which the transition may be taken. We do not prescribe the expression
language used for g but we assume it can be evaluated to true or false given
values for Ac ∪ {x}.

We will now define MSMs more formally. For a set X = {x1 : T1, . . . , xn :
Tn} of typed variables, a variable environment σ over X is a function [x1 �→
a1, . . . , xn �→ an] where ai ∈ Ti∪⊥Ti

for all i. The set of all variable environments
over X is denoted by Σ X . Attributes and attribute environments are treated in
a similar way.

Moreover let A =
⋃

c∈C Ac be the set of all attributes and O the set of
all object identifiers. An object environment is defined as a partial function
ω : C → (O → Σ A) and the set of all object environments is denoted by Ω .

We do not prescribe an action language: we only specify that, given an object
environment ω and variable environment σ over X, an action is syntactically
an expression over X, suitably extended with attribute selectors, for which an
evaluation function [[ ]]σω exists. We will later assume that the same evaluation
function can be used to evaluate the guards used in PSMs. An action may
not involve the invocation of methods or the creation or deletion of objects.
Semantically an action α is a partial function α : (Σ X × Ω ) → (Σ X × Ω )
expressing the effect the action has on the variable environment and object
environment.

Definition 2. A method state machine (MSM) for a method m ∈ Mc consists
of

– a set of local variables Xcm = {x1 : T1, . . . , xn : Tn}, including those men-
tioned below
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– a set Bcm of invocation boxes as defined below
– a set of states Scm partitioned into

• a set Icm of internal states
• an entry state ecm with formal parameters x : cTcm and this : c in Xcm

• A set of return states Rcm where each state r ∈ Rcm has attached a
return expression re over Xcm of type rTcm

• a set of box entry points Entrycm and a set of box exit points Exitcm

– a transition relation δ cm ⊆ F × Act × T where F = {ecm} ∪ Icm ∪ Exitcm,
T = Rcm ∪ Icm ∪ Entrycm and Act is a set of actions α : (Σ Xcm

× Ω ) →
(Σ Xcm

× Ω )

Notice the “incompleteness” of the transition relation of an individual MSM:
if the MSM reaches a box entry point, it cannot go further based on the definition
of this MSM alone. This makes sense because we cannot know what the effect of
the call on the environments should be. Later we will show how several MSMs
interact to “complete” the transition relation.

Definition 3. A method invocation box b ∈ Bcm specifies

– an object expression oe, determining the target object
– a class identifier d ∈ C determining the class4 of oe
– a method identifier m ∈ Md

– an argument expression ae : cTdm

A box is not itself considered to be a state in the MSM: instead it has two
associated states:

– an entry point cb ∈ Entrycm.
– an exit point rb ∈ Exitcm

A return variable y : rTdm from Xcm is defined to hold the value returned
from the method invocation.

Notice that any MSM is by definition well-typed, and that all method invocations
occur in boxes.

4.1 Execution of MSMs

Suppose that we have a closed set MSM of MSMs: that is, each method invoked
in an invocation box of an MSM in MSM is itself defined by an MSM in MSM.
We can then define the execution of MSMs in terms of a global state machine.

Let the sets of states and of boxes for each MSM be pairwise disjoint and let
N be the set of all states, X the set of all variables, and B the set of all boxes.
Before we specify a global state machine, we give definitions of a call stack and
a global environment.
4 As mentioned, we do not consider inheritance in this work, so polymorphism is not

allowed: the class of the target object must be given statically.
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Definition 4 (Call Stack). A call stack cs ∈ B∗N specifies the current posi-
tion in each active MSM. It is a stack b1 : . . . : bk : n of boxes bi and a state
n on top. It must satisfy a coherence condition as follows. Suppose that box bj

contains method identifier mbj and class identifier cbj . Then box bj+1 if j < k
(respectively the state n if j = k), must belong to the MSM for method mbj

in class cbj (which must exist, by the assumption that we have a closed set of
MSMs).

Definition 5 (Global Environment). Given a call stack cs = b1 : . . . : bk : n,
a global environment ge = σ 0 : . . . : σ k ∈ Σ ∗

X associated with cs is a stack of
variable environments. It must satisfy a coherence condition as follows. For each
j ≤ k, σ j is the local variable environment of the MSM containing box bj+1 if
j < k, or of the MSM containing n otherwise.

Definition 6 (Global State Machine). A state of a global state machine
(GSM) consists of a call stack cs ∈ B∗N , a global environment ge associated
with cs, and an object environment ω .

There are three kinds of transitions: as in a pushdown system, the applicable
transitions are always determined by the state at the head of the stack. Suppose
cs = b1 : . . . : bk : n where n is a state in MSM , and let the global environment
be ge = σ 0 : . . . : σ k and the object environment be ω .

1. If n is an entry state, an internal state or a box exit state, the only possi-
ble transitions are internal transitions which are induced by transitions of
MSM . Formally, suppose that n

α−→ n′ is a transition in MSM . Then
(b1 : . . . : bk : n, σ 0 : . . . : σ k, ω ) → (b1 : . . . : bk : n′, σ 0 : . . . : σ ′

k, ω ′) is
a transition in the global state machine, provided that α (σ k, ω ) = (σ ′

k, ω ′).
(Note that if (σ k, ω ) is not in the domain of the partial function α , there is
no transition.)

2. If n is a box entry state, the only possible transition is a call transition,
pushing a new invocation onto the stack. If n = cbk+1

, the entry state for
a box which we now call bk+1, let the object expression, class, method and
argument expression specified in bk+1 be oe, c, m and ae respectively. Then let
σ k+1 be a new variable environment over Xcm in which the formal parameter
of m and this are bound to [[ae]]σkω, [[oe]]σkω respectively. (If either evaluation
fails, there is no transition). Let ecm be the entry state of the MSM for method
m in class c. Then (b1 : . . . : bk : cbk+1

, σ 0 : . . . : σ k, ω ) → (b1 : . . . : bk :
bk+1 : ecm, σ 0 : . . . : σ k : σ k+1, ω ) is a transition of the global state machine.

3. If n is a return state, the only possible transition is a return transition,
popping the stack. If n = r ∈ Rcm, then (b1 : . . . : bk : r, σ 0 : . . . : σ k−1 :
σ k, ω ) → (b1 : . . . : bk−1 : rbk−1

, σ 0 : . . . : σ ′
k−1, ω ) is a transition of the

global state machine, where rbk−1
is the exit state for box bk−1, and σ ′

k−1 is
the environment σ k−1 updated by binding the return variable of box bk−1 to
[[re]]σkω where re is the return expression associated with r (again, if re fails
to evaluate, there is no transition).
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Note that the only non-determinacy in the global state machine is that arising
from non-determinacy inside individual MSMs: if they are deterministic, so is the
GSM. Notice also that the behaviour of the GSM respects the stack discipline.
We will be most interested in how the GSM implements a particular method
call. We write s

c,m
� t when for some class c and method m, s = (b1 : . . . : bk :

ecm, σ 0 : . . . : σ k, ω ), t = (b1 : . . . : bk : r, σ 0 : . . . : σ ′
k, ω ′) for some return state

r ∈ Rcm and there is some sequence of GSM transitions s → . . . t, in which
no intermediate state whose call stack contains at most k boxes has ecm at the
head of the call stack. Without the restriction on intermediate states we might
inadvertently “catch” more than one invocation of m from within MSMs that
have been activated earlier. Notice that if m is recursive the call stack grows
each time m is invoked so that ecm is allowed to appear as head of the call stack
in this case.

4.2 Consistency between Protocol and Method State Machines

So far MSMs and PSMs are only connected by method names which are used to
label transitions in PSMs and represent the context of a MSM. In this section
we define what it means for a MSM to conform to a protocol which is specified
by a PSM.

There can be no formal connection unless the designer has specified the
precise meanings of the states in the PSM.5 Accordingly, we assume that along
with any PSM P for class c having states Sc we are given a function h : Σ Ac

→ Sc

which maps an attribute environment to a state in P .

Definition 7 (Consistency). Let G be a GSM defined by a closed set MSM
of MSMs, and let P be a PSM for class c. G conforms to P with respect to a
given initial global state gs if and only if whenever

gs →∗ gs′ c,m
� gs′′

(that is, a method is executed from some global state which is reachable from the
initial state), where gs′ = (cs, σ 0 : . . . : σ, ω ) and gs′′ = (cs′, σ 0 : . . . : σ ′, ω ′)

we have h(ω (c)(σ (this))) = s and h(ω ′(c)(σ ′(this))) = t where s
[g]m(x)−→ t is a

transition of P and [[g]]σω = true.

Note that because the PSM plays no role in the execution of the global state
machine, but acts as an independent specification of what it should achieve, it
suffices to specify consistency with one PSM at a time. Note also that we are not
requiring that every transition in the PSM has some counterpart in the GSM.
This is deliberate: the PSM for a reusable class will specify all the capabilities
of the class, not all of which may be used in a particular system (GSM).

An obvious question to ask is whether consistency is decidable. The answer
depends on the choice of action language, but for any reasonable action language
5 This is sometimes done in practice by adding constraints to the states of a state

diagram.
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Turing Machines can be coded as MSMs, in which case it is easy to reduce the
Halting Problem to a consistency problem, which must therefore be undecidable.
Nevertheless, some tool support is possible. For example, a tool might construct
representative object configurations for the different combinations of abstract
states in the PSMs, symbolically execute the MSMs and check against the PSM
transitions. Even if the tool’s checking was not exhaustive, it might find useful
counterexamples, helping the user to develop the design.

5 Introductory Example Revisited

Finally we revisit the example discussed in the introduction, Fig. 1. If the de-
signer modelled with PSMs and MSMs as introduced in this paper, the state
diagram would be split into a PSM and MSMs for f and g. The PSM specifies
unequivocally that an object in state S1 is in state S2 after f has been executed,
whatever further invocations are performed during f.

Under the assumption that the set containing the MSMs for f and g is con-
sistent with the PSM, an object calls g during the execution of the MSM for f
when it is in an appropriate state, i.e. either in S1 or in S2. According to the
specification of g in the PSM, the object is either in S3 or S4 after the execution
of the MSM for g has finished, depending on which state it was in at the time
of g’s invocation. In either case the MSM for f has to perform further actions to
guarantee that the object is in S2 after its completion, as specified in the PSM.

Variants of the notation might be considered. For example, we might per-
mit annotation of transitions to show what callbacks were expected to happen.
However, the designer of the class will not always be in a position to know what
callbacks might happen, if other classes in the system are designed by other
people. (This need not prevent the designer knowing what the state after the
transition will be, given adequate contracts for called methods.)

6 Related Work

We have used work by others for our definitions of PSMs and MSMs. PSMs
are mentioned in UML1.4 [10] and specified in more detail in U2 Partners’ pro-
posal for UML2.0 [11]. Since this proposal contains some remarks on inheritance,
operations and methods are differentiated there.

The formalism for MSMs presented in this paper is based on recursive state
machines, which have been defined in [1], and sequential class machines as in-
troduced in [6]. Recursive state machines are extensions of ordinary state ma-
chines where a state can correspond to a possibly recursive invocation of a state
machine. They can be used for modelling sequential imperative programs with
recursive procedure calls. Besides a definition [1] also contains a complexity anal-
ysis of recursive state machines concentrating on reachability and cycle detection.
Similar results have been achieved independently in [2].
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Class machines are an object oriented extension of recursive state machines.
The semantic definition of their sequential variant in [6] covers exceptions, in-
heritance and object creation in addition to what we have presented as MSMs.
Adding a mechanism for multi-threading leads to the definition of concurrent
class machines. In contrast to our work class machines are considered in isola-
tion, not in conjunction with a more abstract modelling technique.

There is much work on formalisation of UML state diagrams; we only present
a small subset. All of the approaches differ from ours in that they do not consider
the problem of recursive calls. In [12] a formalisation with labelled transition
systems and algebraic specifications written in the specification language CASL
is presented. Labelled transition systems are also suggested as formalism in [13],
where a structured operational semantics for UML state diagrams is introduced.
Both in [5] and in [8] graph transformations are used as basis for state diagram
formalisation, but these works differ in detail; [4] uses ASMs. In [9] state diagrams
are first mapped to extended hierarchical automata and then a semantics for
these specific automata is defined in terms of Kripke structures.

7 Conclusions and Further Work

We have pointed out that the current UML semantics for state diagrams is
not sensible for situations involving recursive method calls. After showing this
problem on an example we have presented an alternative approach for modelling
the internal behaviour of objects using UML. In contrast to the current version
of UML we differentiate between a loose specification of the effect of a method
on an object and an executable machine representing an implementation of a
method. We have introduced PSMs and MSMs for these purposes and defined
what it means for a set of MSMs to be consistent with a PSM.

In future we would like to consider tool support; indeed we undertook this
work because the recursive call problem prevented us from making progress with
work on providing tool support for the concurrent development of state and
sequence diagrams. For practical use, more complex MSMs would be needed,
allowing for object creation for example. Most of that work would be routine;
the exception would be adding inheritance, which as briefly mentioned in Sect. 4
would raise both theoretical questions and issues in practical modelling.
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