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Abstract 

This paper extends the seminal Blanchard and Katz (1992) regional labor market model to 
include interaction effects using a dynamic spatial panel data approach. Three key contributions 
of this extended model are: (i) the unrealistic assumption that regions are independent of one 
another no longer has to be made, (ii) the magnitude and significance of so-called spillover 
effects can be empirically assessed, and (iii) both the temporal and spatial propagation of labor 
demand shocks can be investigated. Using annual data from 1986-2010 for 112 regions across 8 
EU countries, both the non-spatial and spatial models are estimated. It is found that the majority 
of the spillover effects are highly significant. Consistent with economic theory, the impact of a 
region-specific demand shock is largest in the region where the shock instigates. The shock also 
propagates to other regions, especially impacting the first and second-order neighbors.  
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1. Introduction 
 
Attaining acceptable levels of employment, unemployment, and participation is a top priority on 

the European Union’s policy agenda, as they are important indicators of economic and social 

welfare.1 Focusing on these labor market variables at a national level can hide striking 

differences between regions within countries (see e.g., Elhorst, 2003; OECD, 2009; Eurostat, 

2010). For example, the variation in unemployment rates between regions within countries is 

even larger than that between countries.2 Recent figures from Eurostat on regional labor market 

disparities across the EU show stark contrasts between regions and due to the recent economic 

crisis, it is predicted that these disparities will only increase (Eurostat, 2010). This makes it 

extremely pertinent to understand the impact of shocks on regional labor markets.  

 The response of regional labor markets to region-specific shocks has gained a vast 

amount of attention in the literature, especially following the seminal paper of Blanchard and 

Katz (1992) on demand shocks to regional labor markets in the United States. In contrast to a 

single equation approach, they develop a three-equation vector autoregressive (VAR) model 

which can decompose the response of a regional labor market to a demand shock into changes in 

regional unemployment, participation, and employment growth over time. To the extent that a 

demand shock is not reflected in a change of the unemployment or participation rate, it is 

absorbed by migration (i.e. migration acts as a “residual”). An attractive feature of the model is 

that it allows for the mutual interaction between these variables. Individuals may not decide to 

join the labor force because of poor employment prospects. For example, students may decide to 

stay longer at the university which shows up not as higher unemployment, but rather as lower 

participation (Blanchard, 2006). Since all these variables are interrelated, the model represents 

the complexity of labor market interactions well.  

Another attractive feature of the model, which will be described in more detail in Section 

2, is that it is regional in nature. Therefore, Blanchard and Katz (1992) and subsequent studies 

use regional data for their estimations. Most studies find that migration plays a more limited role 

as an adjustment mechanism to a labor demand shock for European regions than Blanchard and 

Katz originally found for US states (see e.g. Decressin and Fatás, 1995; Broersma and Van Dijk, 

                                                 
1See for example, the recent Europe 2020 growth strategy.  
2The differences in unemployment rates within OECD countries were almost twice as high as those between 
countries in 2006; e.g., it was found that in Canada, Germany, the Slovak Republic and Spain, unemployment rates 
ranged from as low as 5% in some regions to above 20% in others (OECD, 2009). 
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2002; Mäki-Arvela, 2003; Gács and Huber, 2005), although there are exceptions (Fredriksson, 

1999; Tani, 2003). A positive aspect of these studies is that regional heterogeneity is taken into 

account since regional data is used for the estimations. What has largely been lacking, however, 

is the incorporation of a spatial dimension.3 This is a significant shortcoming because regions are 

treated as independent entities, whereas it is more likely that neighboring regions interact with 

one another. Recently, the OECD (2009, p. 101) concluded that the performance of neighboring 

regions influences the performance of any other region. 

This paper extends the Blanchard and Katz (1992) model to include interaction effects 

using a dynamic spatial panel data approach. This approach has recently gained more attention in 

the spatial econometrics literature (Yu et al., 2008; Lee and Yu, 2010a; Elhorst, 2012) as well as 

in applications to other fields such as consumption (Korniotis, 2010), commuting (Parent and 

LeSage, 2010), and housing prices (Brady, 2011). Important methodological issues such as 

region-specific and time-specific fixed effects, estimation methods, and specification, selection, 

and different normalization procedures of the spatial weights matrix will be addressed. Using 

annual data from 1986-2010 for 112 regions across 8 EU countries, both the non-spatial and 

spatial models are estimated. A valuable aspect of the spatial model developed in this paper is 

that the magnitude and significance of so-called spillover effects can be empirically assessed 

using a methodology recently introduced by LeSage and Pace (2009). Another key contribution 

of the extended model is that both the temporal and spatial propagation of labor demand shocks 

can be investigated.  

The remainder of the paper is structured as follows. Section 2 starts with an overview of 

the Blanchard and Katz model and theoretical background. Then, our methodology to extend the 

model with interaction effects using a dynamic spatial panel data approach is outlined. Section 3 

describes the data that is used for estimating the model. Section 4 presents and analyzes the 

empirical results and Section 5 concludes.  

 
2. Methodology 

 

2.1 Blanchard and Katz model 

                                                 
3To some extent linkages between regions are taken into account by the migration “residual,” but the models do not 
explicitly incorporate a spatial dimension.  
 
 

http://en.wikipedia.org/wiki/%C3%84
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To investigate the response of regional labor markets to demand shocks in the United States, 

Blanchard and Katz (1992) develop a three-equation vector autoregressive (VAR) model that 

describes the interaction between unemployment, participation, and employment growth at the 

regional level over time. This model, from now on referred to as the Blanchard-Katz model, is 

particularly useful for analyzing adjustment processes after a demand shock. In its basic form, 

the Blanchard-Katz model reads as 

 𝑢 =  𝛽11𝑢[−1] + 𝛽12𝑝[−1] + 𝛽13𝑒[−1] + 𝛽14𝑒 + 𝜀1,          (1a) 𝑝 =  𝛽21𝑢[−1] + 𝛽22𝑝[−1] + 𝛽23𝑒[−1] + 𝛽24𝑒 + 𝜀2,          (1b) 𝑒 =  𝛽31𝑢[−1] + 𝛽32𝑝[−1] + 𝛽33𝑒[−1] + 𝜀3,           (1c) 
         
where the endogenous variables u, p, and e are the unemployment rate, the logarithm of the labor 

force participation rate, and the employment growth rate, respectively.4 The model is recursive in 

nature because both unemployment and participation in period t are explained by employment 

growth in period t and employment growth in period t-1, whereas employment growth is only 

explained by participation in period t-1 and unemployment in period t-1. Whereas Blanchard and 

Katz (1992) use variables normalized to the national level, this is controlled for in this study by 

time dummies.5 The model is estimated equation by equation as in Blanchard and Katz (1992). 

Unlike their study, however, the equations are not estimated for each region. The entire sample is 

pooled together in order to estimate interaction effects. Baltagi et al. (2000) find that pooled 

models outperform their heterogeneous counterparts, which tend to produce implausible 

estimates even with relatively long time series. Pooling all regions together also allows us to 

control for region-specific fixed effects, which is also the motivation of Blanchard and Katz 

(1992) for pooling the entire sample in addition to estimating the equations for each US state.  

Unemployment and participation are defined in levels, while employment is defined as a 

growth variable. This is because unemployment and participation are stationary series (integrated 

of order 0), whereas employment is non-stationary (integrated of order 1). If non-stationary time 

series are used in regression analysis, this leads to spurious results (Greene, 2003). The problem 

                                                 
4Blanchard and Katz (1992) and subsequent studies define all variables in logs. The reason why the unemployment 
rate is not expressed in logs is because the original model consists of the employment growth rate, participation rate, 
and employment rate. We follow previous studies, including Blanchard and Katz (1992), by using the 
unemployment rate instead of the logarithm of the employment rate since log(E/LF) ≈ −(U/LF) where E, U, and LF 
denote the levels of employment, unemployment, and the labor force.  
5Details follow when the extension of the model is described. 
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is solved by using employment growth instead of the employment level. To test whether these 

variables in our sample are stationary, we performed the individual cross-sectionally augmented 

Dickey-Fuller (CADF) test developed by Pesaran (2007).6 The null hypothesis of a unit root has 

been rejected for 93 of the 112 time series of the unemployment rate variable and for all time 

series of the participation rate and the employment growth rate variables at five-percent 

significance.  

However, given the short time-span of our time series―each time series consists of only 

25 observations―the results may suffer as a result of low power. Therefore, we also performed 

the CADF panel data unit root test of Pesaran (2007). This test statistic is based on the average of 

the individual CADF tests. We found -15.03 for the unemployment rate, -18.69 for the 

participation rate and -29.83 for employment growth, which represents a rejection of a unit root 

in all three variables at one-percent significance (the critical value according to Pesaran's Table 

II(b) is approximately -2.07). The conclusion must be that the variables are stationary and that 

the system of equations extended to include spatial interaction effects may be estimated when 

using the data in panel. 

To analyze the repercussions of a region-specific labor demand shock, the estimated 

system of equations (1) is used to conduct impulse-response analysis. By extrapolating the model 

over several time periods, it is possible to observe how the model evolves and to what 

equilibrium values the endogenous variables converge to. We follow Blanchard and Katz (1992) 

and previous studies in associating unexpected changes in regional labor demand as an 

innovation to the error term in equation (1c). By calculating the differences in the endogenous 

variables before and after the shock over time, it is possible to observe the impact of a change in 

regional labor demand. 

Before describing our extension of the model it is intuitive to outline the theoretical 

background in which the empirical model is embedded, which is provided in more detail in 

Blanchard and Katz (1992). Our presentation also draws from the comprehensive description of 

the model in Elhorst (2003). The model assumes that regions produce different bundles of goods 

and that there exists both labor and firm mobility across regions. The simple framework consists 

                                                 
6The test statistic is the t-value of the lagged dependent variable in a standard augmented Dickey-Fuller regression 
augmented with the cross-section averages of lagged levels and first-differences of the individual series. These 
additional variables are important since we will extend the model with spatial (which are cross-sectional) interaction 
effects in the next section. 
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of four equations, for short-run labor demand, wage setting, labor supply, and the long-run 

effects of labor demand in a region, specified as 

 𝑤𝑖𝑡 =  −𝑎(𝑠𝑖𝑡 − 𝑢𝑖𝑡) +  𝑧𝑖𝑡,                                            𝑎 > 0,          (2a)                        𝑤𝑖𝑡 =  −𝑏𝑢𝑖𝑡 + 𝑥𝑖𝑤 ,                                                          𝑏 > 0,                      (2b) 𝑠𝑖,𝑡+1 − 𝑠𝑖𝑡 =  𝑐𝑤𝑖𝑡 − 𝑔𝑢𝑖𝑡 + 𝑥𝑖𝑠 + 𝜀𝑖𝑡𝑠 ,                         𝑐, 𝑔 > 0,                                                   (2c)            𝑧𝑖,𝑡+1 − 𝑧𝑖𝑡 =  −𝑑𝑤𝑖𝑡 − 𝑘𝑢𝑖𝑡 + 𝑥𝑖𝑑 + 𝜀𝑖𝑡𝑑 ,                    𝑑, 𝑘 > 0,                                                   (2d) 
 

where subscript i stands for regions, t denotes time, wit  is log wage, sit is log labor supply, uit is 

the unemployment rate, zit measures the long-term effects of labor demand, and 𝜀𝑖𝑡𝑠  and 𝜀𝑖𝑡𝑑  are 

white noise that capture shocks in labor demand and supply. As can be seen from the first 

equation, labor demand and wages are negatively related. The logarithm of the employment level 

is approximately given by sit - uit, with the positive parameter a reflecting the downward-sloping 

demand curve. Thus, ceteris paribus, lower wages make a region more attractive to firms.  

However, other variables may also affect labor demand, which is captured in the shift 

term  𝑥𝑖𝑑 in equation (2d). The decision of firms to create or locate their business in a particular 

place also depends on factors such as local taxes and the labor relations environment. The effect 

of unemployment on labor demand is not as clear. Although higher unemployment provides 

firms with a larger labor pool and thus induces firm in-migration, it could also indicate that the 

region is coping with economic problems such as fiscal crises, etc. that could result in the 

opposite effect. In addition, if a region is relatively underperforming it is most likely that the 

higher skilled labor force can more readily migrate to another region, resulting in a less skilled 

labor pool from which firms can choose from.  

 The wage setting equation (2b) shows that higher unemployment leads to lower wages. 

Including the shift term 𝑥𝑖𝑤 also allows for factors other than the unemployment rate that affect 

the regional wage rate. Although some studies have found that higher wages may compensate for 

higher unemployment, most studies find that there is a wage curve, i.e. the wages of workers in 

labor markets with higher unemployment are lower compared to individuals working in a region 

with lower unemployment (Blanchflower and Oswald, 1994). Equation (2c) allows labor supply 

to depend on both relative wages and relative unemployment. Higher wages and lower 

unemployment increases labor supply through more labor force participation and inward 

migration of workers. Although the role of commuting is not mentioned in Blanchard and Katz 
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(1992), like net inward migration, net inward commuting also causes both regional labor supply 

and demand to increase. However, it is more likely that the supply-side effects dominate since 

commuters tend to spend more of their income where they reside rather than the region they 

work in (Elhorst, 2003). Although in their framework Blanchard and Katz (1992) specify that the 

unemployment rate has a negative effect on labor force participation, it could theoretically also 

have a positive effect known as the additional worker effect. Yet, more empirical studies have 

found that fewer jobs induce less people to enter the labor (i.e. a net discouragement effect). We 

come back to this issue when the empirical results are analyzed. 

 Focusing on the adjustment mechanisms to a positive labor demand shock, it follows 

from the theoretical framework that initially unemployment is expected to fall and labor force 

participation to increase, leading to an increase in wages depending on how flexible wages are on 

a regional level. This will, in turn, induce a net inward migration of labor which will bring the 

variables back to their equilibrium levels. The initial positive shock in labor demand can 

potentially be reversed because of a rising wage level and other factors deterring firms from 

entering a region or causing a net out-migration of firms. Whether lower regional unemployment 

encourages or deters firm entry is not as clear, but will be investigated with the empirical 

estimation results. The theoretical framework, like the empirical model, does not take into 

account how a shock affects neighboring regions.7 For example, an adverse labor demand shock 

in region i could also cause unemployment rates in neighboring regions’ to increase, which could 

lessen the net outward migration of labor from region i. In the following section, the extension of 

the model to include these interaction effects is outlined.  

 

2.2 Extension of Blanchard-Katz model: A dynamic spatial panel data approach 
    

Each equation in model (1) is extended to the following dynamic spatial panel data model 

 𝑌𝑡 = 𝜏𝑌𝑡−1 + 𝛿𝑊𝑌𝑡 + 𝜂𝑊𝑌𝑡−1 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + 𝜇 + 𝛼𝑡𝜄𝑁 + 𝜀𝑡,                                               (3)                             
 
 

where Yt denotes an Nx1 vector consisting of one observation of the dependent variable for every  

                                                 
7This paper focuses on extending the model to incorporate these interaction effects. Further steps forward could be 
to extend the model from its recursive form into a simultaneous equations model to simulate labor supply shocks, 
and to include other factors into the model such as wages and labor market institutions. 
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region (i = 1,…,N) in the sample at a particular point in time (t = 1,…,T) and Xt is an NxK matrix 

of explanatory variables. W is a non-negative NxN matrix of known constants describing the 

spatial arrangement of the regions in the sample. For example, elements Wij can reflect the 

geographical distance between regions or take a positive value if regions i and j share a common 

border and zero otherwise. Main diagonal elements Wii are set to zero since no region can be 

viewed as its own neighbor.  

A vector or matrix with subscript t-1 denotes its serially lagged value, while a vector or a 

matrix pre-multiplied by W denotes its spatially lagged value. τ, δ, and η are the response 

parameters of respectively, the lagged dependent variable Yt-1, the lagged dependent variable in 

space WYt, and the dependent variable lagged both in space and time WYt-1. δ is referred to as the 

spatial autoregressive coefficient, η the lagged spatial autoregressive coefficient, while β and θ 

represent Kx1 vectors of response parameters of the explanatory variables. 𝜀𝑡 = (𝜀1𝑡, … , 𝜀𝑁𝑡)T is 

a vector of independently and identically distributed (i.i.d.) disturbance terms, whose elements 

have zero mean and finite variance σ2. 𝜇 = (𝜇1, … , 𝜇𝑁)T is a vector with regional fixed effects, 

one for every unit in the sample, αt is the coefficient of a time period fixed effect, one for every 

time point in the sample (except one to avoid perfect multicollinearity), while ⍳N  is an Nx1 vector 

of ones.  

The model in (3) is formally known as the dynamic spatial Durbin model in the literature. 

An empirical application of this model can be found in Debarsy et al. (2012). It should be 

stressed that some X variables are observed at time t-1, even though we use the subscript t in (3). 

This detail is omitted for the moment to avoid confusion with previous descriptions of the 

dynamic spatial Durbin model. We apply a bias corrected estimator developed by Lee and Yu 

(2010b) for a dynamic spatial panel data model with spatial and time period fixed effects. First, 

the model is estimated by the ML estimator for a non-dynamic spatial lag model with spatial and 

time period fixed effects. By providing rigorous asymptotic theory, they show that this ML 

estimator is biased when both the number of spatial units (N) and the number of time points (T) 

in the sample go to infinity such that the limit of the ratio of N and T exists and is bounded 

between 0 and ∞ (0<lim(N/T)<∞). Thereupon, they introduce a bias corrected ML estimator, 

which produces consistent parameter estimates provided that the model equation is stable, i.e., 𝜏 + 𝛿 + 𝜂 < 1. In our case, however, it is more important to check whether the entire system of 

equations is stationary. Adding subscripts for equation number and type of variable to the 
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notation in equation (3), the system of equations converges to an equilibrium (using 𝑌𝑡 = 𝑌𝑡−1 =𝑌∗) after a shock if the largest eigenvalue of the 3Nx3N matrix on the right-hand side of (4) is 

less than one. In this equation I represents the identity matrix and the subscripts e and e[-1] the 

coefficients of the employment growth rate in the same and the previous time period, 

respectively. 

 

[𝑢∗𝑝∗𝑒∗] = [𝛿1𝑢𝑊 + 𝜏1𝑢𝐼 +  𝜂1𝑢𝑊 𝛽1𝑝𝐼 + 𝜃1𝑝𝑊 𝛽1𝑒𝐼 +  𝜃1𝑒𝑊 + 𝛽1𝑒[−1]𝐼 +  𝜃1𝑒[−1]𝑊 𝛽2𝑢𝐼 + 𝜃2𝑢𝑊 𝛿2𝑝𝑊 + 𝜏2𝑝𝐼 +  𝜂2𝑝𝑊 𝛽2𝑒𝐼 +  𝜃2𝑒𝑊 + 𝛽1𝑒[−1]𝐼 +  𝜃1𝑒[−1]𝑊𝛽3𝑢𝐼 + 𝜃3𝑢𝑊 𝛽3𝑝𝐼 + 𝜃3𝑝𝑊 𝛿3𝑒𝑊 + 𝜏3𝑒𝐼 +  𝜂3𝑒𝑊  ] [𝑢∗𝑝∗𝑒∗] 

               + [𝜇1 + 𝛼1𝑡𝜄𝑁 + 𝜀1𝑡𝜇2 + 𝛼2𝑡𝜄𝑁 + 𝜀2𝑡𝜇3 + 𝛼3𝑡𝜄𝑁 + 𝜀3𝑡]                                                                           (4) 

 

This important stationarity condition is checked when the estimations are carried out. 

 

2.3 Direct effects and spatial spillover effects 

 

Many empirical studies use point estimates of a spatial econometric model to test the hypothesis 

as to whether or not spatial spillover effects exist. However, LeSage and Pace (2009, p. 74) have 

pointed out that this may lead to erroneous conclusions, and that a partial derivative 

interpretation of the impact from changes to the variables of different model specifications 

represents a more valid basis for testing this hypothesis. By rewriting equation (2) as   

 𝑌𝑡 = (𝐼 − 𝛿𝑊)−1(𝜏𝐼 + 𝜂𝑊)𝑌𝑡−1 + (𝐼 − 𝛿𝑊)−1(𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃) + (𝐼 − 𝛿𝑊)−1(𝜇 + 𝛼𝑡𝜄𝑁 + 𝜀𝑡),     (5) 

        

the matrix of partial derivatives of Y with respect to the kth explanatory variable of X in unit 1 up 

to unit N at a particular point in time can be seen to be 

 [ ∂𝑌∂𝑥1𝑘 …  ∂𝑌∂𝑥𝑁𝑘]𝑡 = (𝐼 − 𝛿𝑊)−1[𝛽𝑘𝐼𝑁 + 𝜃𝑘𝑊]                                                                                     (6) 
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These partial derivatives denote the effect of a change of a particular explanatory variable in a 

particular spatial unit on the dependent variable of all other units in the short term. The 

expression in (6) will be used to determine direct effects and indirect (spatial spillover) effects. 

Since both the direct and indirect effects are different for different regions in the sample, the 

presentation of both effects is difficult. With N regions and K explanatory variables, it is possible 

to obtain K different NxN matrices of direct and indirect effects. Even for small values of N and 

K, it may be challenging to compactly report these results. Therefore, LeSage and Pace (2009) 

propose to report one direct effect measured by the average of the diagonal elements on the right-

hand side (6), and one spatial spillover effect measured by the average row sums of the off-

diagonal elements of this matrix. The total effect is the sum of the direct and indirect effects. 

It should be noted that Debarsy et al. (2012) have derived the mathematical formulas of 

the direct and indirect effects estimates of the dynamic panel data model given by equation (3), 

both in the short term and the long term. The short-term effects are given in (6). Similarly, we 

could use their formulas for the long-term effects. However, since we have a system of equations 

in this study, where a change in one dependent variable affects another dependent variable in the 

same or in the next time period, the long-term direct and indirect effects of this system will be 

different from those of the single equations. These long-term effects of the entire system can be 

simulated by conducting an impulse-response analysis over time. Equation (4) is less useful in 

this respect, since it does not give information about the propagation of a shock over time.  

 

2.4 Specification and selection of spatial weights matrix 

 

One of the most criticized aspects of spatial econometric models is that the spatial weights 

matrix W cannot be estimated, but needs to be specified in advance. Recently, Corrado and 

Fingleton (2012) pay particular attention to this issue. Despite their criticism, they point out that 

alternatives to W that have been proposed by e.g., Folmer and Oud (2008) and Harris et al. 

(2011), such as entering variables in the regression model that proxy spillovers, also requires 

identifying assumptions. In other words, this approach also involves an a priori specification of 

the spatial relation between units in the sample.  

 Considering that this is a critical issue in spatial econometric modeling, it is not 

surprising that there have been many studies that attempt to investigate how robust results are to 
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different specifications of W and which one is to be preferred. For example, in a recent Monte-

Carlo study, Stakhovych and Bijmolt (2009) demonstrate that a weights matrix selection 

procedure based on goodness-of-fit criteria increases the probability of finding the true 

specification. The most widely used criterion is the log-likelihood function value, but this 

approach has received criticism because it only finds a local maximum among competing models 

and it might be the case that the correctly specified W is not included (Harris et al., 2011).   

 LeSage and Pace (2009) propose the Bayesian posterior model probability as an 

alternative criterion to select models. The basic idea is as follows. Suppose that we are 

considering S alternative models based on different spatial weights matrices. The other model 

specification aspects (e.g., the explanatory variables) are held constant. The Bayesian model 

comparison approach requires setting prior probabilities to each model s (s = 1,…,S). In order to 

make each model equally likely a priori, the same prior probability 1/S is assigned to each model 

under consideration. Each model is estimated by Bayesian methods and then posterior 

probabilities are computed based on the data and the estimation results of the set of S models. An 

attractive feature of this approach is that it does not require nested models for the comparisons, 

whereas tests for significant differences between log-likelihood function values (e.g likelihood 

ratio test) cannot formally be used if models are non-nested, i.e. for alternative spatial weights. 

LeSage and Pace (2009) set out this selection procedure for a cross-sectional data set, while we 

use it in this paper in a panel data setting.8 

Since the specification of the spatial weights matrix is integral to the structure of the 

endogenous and exogenous spatial lags, several alternative matrices are considered when 

estimating the model. The first W matrix is based on the binary contiguity principle (denoted as 

W1 in Table 1): wij = 1 if regions i and j share a common border and wij = 0 otherwise. It should 

be noted that we include neighboring regions across national borders as well. This is because it 

may be the case that regions that are close-by will interact more not only if they are located in 

the same country, but also if they are located in different countries. This could especially be the 

case with increased integration among EU member states. 

                                                 
8We come back to this issue before presenting our spatial weights model comparison results. Some studies also use 
Bayesian methods to compare models that differ in the set of explanatory variables (LeSage and Parent, 2007), or 
the set of explanatory variables in combination with alternative spatial weight matrices (LeSage and Fischer, 2008). 
In this paper, we compare ten alternative models that differ in the spatial weight matrix specification. 



 
 

12 
 

The second W we use is a binary contiguity matrix whose elements are post-multiplied by 

population size (P), wij = Pj if regions i and j share a common border, where we take the average 

population for each region over 25 years (W2 in Table 1).9 This construction has the advantage 

that W is kept constant over time and is allowed since population size does not change much 

over this period. We consider this second specification because it can be expected that regions 

with larger populations have a greater influence than those with fewer inhabitants, so that W is 

no longer symmetric. For example, whereas W1 takes into account that the Community of 

Madrid borders Castile-La Mancha, W2 also reflects the fact that the Community of Madrid has a 

much larger population and thus, a shock in this region of Spain will have more of an effect on 

its neighbors than vice versa. A potential problem of this second matrix, in contrast to the first, is 

that the elements of W are not truly exogenous, one of the conditions made to the ML estimator 

developed by Lee and Yu (2010b). This is because people may migrate to other regions 

depending on the labor market conditions in these regions relative to those in their home region. 

Some of the other matrices specified below may also suffer from this problem. We come back to 

this issue when discussing the results. 

In order to take into account distance between regions we use a third weights matrix (W3  

in Table 1) based on inverse travel times (t): wij = 1/tij.
10 Travel times are a better reflection of the 

true distance between regions since impediments other than just the geographical distance are 

included. For example, travel time over land takes into account different road types, national car 

speed limits, and speed constraints in urban and mountainous areas; overseas travel time depends 

on embarkation waiting time and the travel time by ferry (for more details, refer to Schürmann 

and Talaat, 2000). If regions are more accessible to each other (e.g., in terms of the effort, time, 

or cost that is required to reach them), this provides a greater opportunity for interaction between 

households and firms in different regions. Lower travel times can be beneficial for workers 

commuting daily from one region to another, or for the unemployed to find a job in another 

region when the job prospects in their own region are less promising.  

 The construction of the fourth spatial weights matrix (W4 in Table 1) is based on 

population sizes and inverse travel times: wij = Pj/tij. It is therefore a hybrid matrix combining 

both the size of the regions and also the distance between them. We did not restrict the weights 

                                                 
9The data for regional population is taken from Eurostat (see Section 3 for details).  
10The data comes from Schürmann and Talaat (2000), which was part of a report compiled for the General 
Directorate Regional Policy of the European Commission.  
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to only contiguous regions since it can be the case that the travel time already takes this into 

account. However, just in case, we also specified a related spatial weights matrix (W5 in Table 1) 

that restricts the weights to contiguous neighbors because the population size could overestimate 

the strength of the connections between regions: wij = Pj/tij if regions i and j share a common 

border. 

 In the sixth spatial weights matrix not only are first-order neighbors considered (e.g., that 

Madrid is a neighbor of Castile-La Mancha), but also second-order neighbors (e.g., Madrid and 

Aragón). In our specification of this matrix (denoted W6 in Table 1), no distinction is made 

between first and second-order neighbors, i.e. they are treated with equal weights: wij = 1 if 

regions i and j share a common border or if they share the same first-order neighbor. This 

concept can be thought of in terms of the number of direct and indirect connections a person has 

in a social network where the first-order identifies friends and the second-order friends of friends 

(LeSage and Pace, 2009). In our case, it might be commuting (e.g., you can live in one place and 

commute to another for work and this could take place through various regions). To further 

explore the inclusion of higher-order neighbors, we also incorporate third-order neighbors to the 

previous specification (W7 in Table 1).11
  

Even though increased integration among EU member states might make national 

boundaries less relevant, it is still realistic to assume that there are barriers (social, political, 

cultural, etc.) between neighboring countries. It could also be the case that people are simply not 

willing to move and work in a neighboring region of a different country, even if the region is 

close-by. We therefore consider a W matrix based on the binary contiguity principle of sharing a 

common border, but limit contiguity to within country linkages only (W8 in Table 1): wij = 1 if 

regions i and j share a common border and are located in the same country. 

 Since spatial interaction can also be determined by economic variables rather than 

physical features of how units are spaced, we also consider ‘economic distance.’12 For example, 

Fingleton and Le Gallo (2008) take into account the size of each area’s economy (measured in 

terms of the total employment level) and argue that it is more realistic to base spatial spillovers 

relative to economic distance. Therefore, we estimate the model using a binary contiguity matrix 

whose elements are postmultiplied by regional GDP (W9 in Table 1), where we take the average 

                                                 
11We could continue to consider powers of the spatial weight matrices W4, W5, etc., but even including third-order 
neighbors does not result in a better fit of the data. 
12For a concise overview of this concept, see Corrado and Fingleton (2011).  
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GDP for each region over 24 years: wij = GDPj if regions i and j share a common border.13 It is 

expected that the impact of regions with greater ‘economic mass’ will be greater than the other 

way around, so that the spatial weights matrix is asymmetric. 

The final spatial weights matrix that we construct is based on a gravity-type of model 

specification (W10 in Table 1), with typical element 𝑤𝑖𝑗 = [(GDP𝑖 ∗ GDP𝑗)/t𝑖𝑗]. Thus, the 

interaction is expressed as a ratio of the multiplied economic mass of region i and region j over 

the travel time between regions i and j. This type of model has recently gained even more 

attention in the social sciences, such as the gravity model of trade in international economics (see 

e.g., Brakman and Bergeijk, 2010).14 It is expected that the level of flows (trade, migration, 

commuting, etc.) between regions will depend on both scale and distance impacts.  

The weights matrices are row-normalized so that the entries of each row sum to unity to 

facilitate interpretation and computation of the magnitude of spatial dependence. Even though 

this is common practice in applied research, row normalization is not free of criticism. For 

example, when an inverse travel time matrix is row normalized its economic interpretation in 

terms of distance decay is no longer valid. First of all, because of row-normalization the impact 

of unit i on unit j is not the same as that of unit j on unit i. Secondly, as a consequence of row 

normalization, information about the mutual proportions between the elements in the different 

rows of the spatial weights matrix gets lost. For example, remote and central regions will end up 

having the same impact, i.e. independent of their relative location. For these reasons, we re-

estimate the model with all the different spatial weights, but instead of normalizing by row, we 

scale the elements of each matrix by the maximum eigenvalue. By using this approach there is a 

re-scaling factor that leads to an equivalent specification to the weights matrix before 

normalization (Kelejian and Prucha, 2010). The bias corrected estimator developed by Lee and 

Yu (2010b) only works if W is row-normalized. Therefore, we adopt their estimation procedure 

spelled out for the spatial fixed effects model (without time dummies) and add time dummies in 

the form of regular X variables to estimate the model using W normalized by the maximum 

eigenvalue.  

                                                 
13The data for regional GDP (expressed in PPPs) is taken from Eurostat. Since data for 2010 is not yet available we 
take the average over the period 1986-2009. There is also data unavailability for the Italian regions from 2002-2006. 
14The name of the model is due to its similar formulation to Newton’s law of universal gravitation. The difference is 
that we use t rather than t2. 
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Another important issue to note is that the Bayesian Markov Chain Monte Carlo 

(MCMC) routine for spatial panels required to be able to compute Bayesian posterior model 

probabilities does not exist yet. James LeSage provides Matlab routines to determine the cross-

sectional version of the Bayesian MCMC approach at his Web site www.spatial-

econometrics.com. As an alternative, one may replace all cross-sectional arguments of this 

routine by their spatial panel counterparts, e.g., a block-diagonal NT×NT matrix, diag(W,…,W) 

as argument for W. Although less efficient from a computational viewpoint, this works well if 

N×T is not too large. 

Table 1 shows the log-likelihood function values and posterior model probabilities 

associated with the extended Blanchard-Katz model based on the alternative weights matrices 

and normalization approaches. An illuminating result is that spatial weights matrices that account 

for factors such as population size, inverse travel times, and regional GDP―factors that may be 

said to be endogenous to the system―are outperformed by spatial weights matrices that measure 

whether two regions share a common border or whether they share a common first-order 

neighbor―factors that are truly exogenous. From a methodological viewpoint, this is an 

extremely important result since one of the conditions made to the ML estimator developed by 

Lee and Yu (2010b) is that the spatial weights matrix should be exogenous. If the matrix best 

describing the data would depend on one of the economic distance measures, it may be 

interpreted as a form of misspecification since this result would be inconsistent with the applied 

estimator. 

 

Insert Table 1 

 

The Bayesian posterior model probabilities point to the first-order binary contiguity 

matrix limited to within country neighbors (W8) for the unemployment rate equation. When W8 

is scaled by the maximum eigenvalue, the posterior model probability is 1 and the log-likelihood 

value is also the highest. When row-normalization is applied, it is found that the posterior model 

probability is 0.655 and for W6 it is 0.345. Although there is only a slight difference between the 

log-likelihood function values of the W6 and W8 specifications, the posterior model probabilities 

are more reliable because this approach does not require nested models for the comparisons. For 

the employment growth equation, the second-order binary contiguity matrix extending across 
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national borders (W6) has the highest posterior model probability and log-likelihood function 

value. This result applies no matter which normalization procedure is used.  

In contrast, for the participation rate equation it differs depending on how W is scaled. If 

row-normalization is applied, both the log-likelihood function value and Bayesian posterior 

model probabilities point to W6, whereas they point to W8 if the weights matrices are scaled by 

the maximum eigenvalue. Apparently, the normalization procedure makes a difference and 

deserves more attention in the literature. On the basis of these results, two important questions 

are whether to use the W6 or W8 specification for the participation rate equation and which 

normalization approach to apply. We first estimated the extended Blanchard-Katz model using 

W6 for the participation rate and employment growth equations and W8 for the unemployment 

rate equation, applying row-normalization which is common practice in the literature. However, 

the system of equations was not stationary; the maximum eigenvalue of the matrix on the right-

hand side of equation (4) was larger than one. Applying maximum eigenvalue normalization to 

this latter W specification also resulted in an unstable system. We proceeded to estimate the 

model using W6 for the employment growth equation and W8 for the unemployment and 

participation rate equations, scaling the weights matrices by the maximum eigenvalue. The 

system of equations was again unstable. However, row-normalizing the weights matrices 

resulted in a stationary system with largest eigenvalue of 0.9826. In addition, the sum of the 

coefficients of the variables Yt-1, WYt and WYt-1 in the single equations are smaller than one, 

which is a requirement to apply the bias corrected estimator of Lee and Yu (2010b).  

The stationarity of the entire system is an additional and also extremely important 

criterion to meaningfully investigate the effects of a shock in labor demand. Since W6 and W8 do 

not include factors such as inverse travel time, row-normalization does not result in information 

loss. Therefore, the empirical results reported in the paper are based on using W8 for the 

unemployment and participation rate equations and W6 for the employment growth equation.15 

The finding that spatial interaction effects in the employment growth equation extend across 

national borders is reasonable. Since employment growth reflects labor demand and firms are 

willing to purchase inputs from suppliers located in different countries (Overman and Puga, 

2002), cross-national borders do not matter as much. In contrast, the demarcation of interaction 

                                                 
15As a robustness check, the results were compared using the alternative W specifications and normalization 
approaches and it is found that they result in similar inferences.  
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effects among regions within country borders for the unemployment and participation rate 

equations reflects the low labor mobility in the EU compared to the US, especially across 

national borders (Puga, 2002; European Commission, 2010). 

 

3. Data 

 

The regional level data on unemployment, participation, and employment is obtained from the 

Labor Force Survey provided in Eurostat’s regional database.16 The empirical analysis is based 

on a sample of 112 regions across 8 EU countries covering a period of 25 years, from 1986-

2010. Although data is available from 1983 for most countries in our sample, regional 

unemployment data prior to 1986 is limited and not mutually consistent, creating problems for 

comparability across countries (Overman and Puga, 2002).17 Eurostat uses a hierarchical 

classification of NUTS1, NUTS2, and NUTS3 level regions, NUTS being the French acronym 

for Nomenclature of Territorial Units for Statistics. Due to data availability, NUTS 2 regions are 

used in this study.18 Even though there is data for Greece and Ireland, they are not included in the 

sample because starting with an unbroken study area was necessary to be able to test the different 

spatial weights matrices against each other. After taking these factors into consideration, the 

countries (number of regions within parentheses) included in our analysis are: Belgium (11), 

Denmark (1), France (21), West Germany (30), Italy (20), Luxembourg (1), the Netherlands 

(12), and Spain (16). These NUTS2 level regions are depicted in Figure 1.  

 

Insert Figure 1 

 

The regional unemployment rate is measured as the ratio of the number of unemployed 

people and the number of people in the labor force. The labor force (economically active 

population) consists of the sum of unemployed and employed individuals. Since unemployment 

data often suffer variations across countries and time in the definition or measurement of 

                                                 
16Data can be accessed at http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/introduction.  
17For Spain, data registration began in 1986 when it became a member of the EU. 
18Eurostat (2008) provides a comprehensive overview of the levels of disaggregation and data descriptions. 

http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/introduction
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unemployment rates, we use Eurostat's harmonized unemployment rates.19 To obtain the 

participation rate, we take the logarithm of the ratio of the labor force and the working age (15-

64) population. The employment growth rate is calculated as the logarithm of the ratio of the 

number of people employed in period t and the number of people employed in period t-1. Instead 

of providing summary statistics for each individual region and time period, we facilitate the 

visualization of our sample by depicting the variables for the most recent year data is available 

using ArcGIS (see Figure 1). It can be observed that when a particular region has a low value, 

the chances are high that surrounding regions also have low values and vice versa, especially if 

these regions are located in the same country. This finding provides an indication that spillovers 

between regions may exist. To formally test whether this is the case, we proceed to the 

estimation results presented in the following section.  

 

4. Results 

 

The estimation results are reported in Table 2. We find that using either form of spatial weights 

normalization results in similar estimates and inferences.20 Since normalizing the spatial weights 

matrix to have row-sums of unity resulted in a stationary system and is most frequently used in 

the empirical literature, the reported results are based on this approach.21 We also include the 

estimation results without any interaction effects in the first column of Table 2. In this way, the 

results from the non-spatial Blanchard-Katz model can be compared to those of the spatially 

extended model.  

 

Insert Table 2 

 

The coefficient estimates of the traditional Blanchard and Katz variables in both the non-

spatial and spatial models are significantly different from zero, mainly at the 1% level. The 

coefficients of the serially lagged endogenous variables, especially for the unemployment and 

participation rates, are large and significant, which is in line with the observation in previous 

                                                 
19A person is unemployed if s(he) is without work, currently available for work, and seeking work, which requires 
the person to take specific steps in a specified period to seek paid employment or self-employment. For more details, 
refer to Eurostat (2010).  
20This also holds for the direct, indirect, and total effects presented in Table 3. 
21The results based on maximum eigenvalue normalization are available upon request. 
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studies that labor market variables tend to be strongly correlated over time. The coefficients of 

the variables measuring interaction effects in column (2) are also highly significant. This result 

corroborates that these variables should not be excluded from the model. Omission of relevant 

explanatory variables results in a misspecified model, whose coefficients will be biased and 

inconsistent (Greene, 2003).  

 

4.1 Direct and indirect effects vs. coefficient estimates of spatial model  

 

As models containing spatial lags of dependent and explanatory variables become more 

complicated with a greater wealth of information (LeSage and Pace, 2009), due care should be 

taken when interpreting the coefficient estimates. Whereas these coefficient estimates represent 

the marginal effect of a change in an explanatory variable on the dependent variable in the non-

spatial model, this is not the case in the spatial model. For this purpose, we report the short-term 

direct and indirect effect estimates derived from equation (6) in Table 3. The description “short-

term” requires careful interpretation since some explanatory variables are observed in the 

previous time period. For example, the short-term effect of participation on unemployment (see 

equation 1a) represents the effect after one year, whereas the short-term effect of employment 

growth on unemployment represents the effect in the same year. The direct effect estimates 

include feedback effects that arise as a result of impacts passing through neighboring units (e.g., 

from region i to j to k) and back to the unit that the change originated from (region i). This is 

precisely the reason that there are differences between the direct effects and coefficient estimates 

of the X variables. In general, these feedback effects appear to be relatively small.22 

 

Insert Table 3 

 

In contrast, the discrepancies between the spatial lag coefficients and the indirect effect 

estimates are quite substantial. A striking pattern that emerges from Tables 2 and 3 is that the 

coefficients of the WX variables all have the opposite sign compared to the corresponding 

coefficients of the X variables, whereas this is not the case for all the indirect effect estimates. 

                                                 
22For example, the direct effect and the coefficient estimate of e in the u equation are -0.127 and -0.120, 
respectively. The feedback effect therefore amounts to around 5.51%. 
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The coefficient of the spatially lagged value of employment growth in the unemployment rate 

equation is positive (0.043), whereas its indirect (spatial spillover) effect is negative (-0.066). If 

we were to take the former coefficient of 0.043 as reflecting the indirect effect, this would lead 

us to conclude that the employment growth rate exerts a positive and significant indirect impact 

on the unemployment rate. Many empirical studies use the point estimates to test for the 

existence of spatial spillover effects. However, the results from this study illustrate that this may 

lead to erroneous conclusions.  

The fact that the indirect effect of e on u, just as the direct effect, is negative rather than 

positive indicates that job growth in region i not only decreases the unemployment rate in region 

i, but also in other regions j. Specifically, we find that if the employment growth rate in region i 

increases by one percentage point, the unemployment rate in neighboring regions decreases by 

0.066 percentage points. Therefore, an increase in the economic opportunities available to 

individuals in a particular region does not appear to worsen the job prospects of individuals 

living in neighboring regions. In general, we also find substantial differences between the other 

spatial lag coefficients and indirect effects, indicating that a partial derivative interpretation (as 

outlined in Section 2.3) provides a more valid basis to test for the existence of spatial spillovers.  

 

4.2 Statistical significance and interpretation of direct, indirect, and total effects 

 

In addition to quantifying the magnitude of the direct, indirect (spillover), and total effects, we  

also indicate whether they are statistically significant in Table 3. Due to the fact that the direct 

and indirect effects are composed of different coefficient estimates according to complex 

mathematical formulas and the dispersion of these effects depends on the dispersion of all 

coefficient estimates involved, it cannot be seen from the coefficient estimates and the 

corresponding t-values whether they are significant. To overcome this limitation, LeSage and 

Pace (2009, p. 39) suggest simulating the distribution of the direct and indirect effects using the 

variance-covariance matrix implied by the maximum likelihood estimates.  

Therefore, we use the variation of 1,000 simulated parameter combinations drawn from 

the multivariate normal distribution implied by the ML estimates in order to draw inferences 

regarding the statistical significance of the effects. Based on the calculated t-statistics, we find 

that the two indirect effect estimates in the unemployment rate equation differ significantly from 
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zero, providing evidence of the existence of spatial spillovers in regional labor markets. In the 

other two equations (p and e), the indirect effects are also highly significant, with the exception 

of the employment growth rate in the participation rate equation.  

The direct effect of employment growth (e) on the unemployment rate (u) is highly 

significant and has the expected sign. If a regional economy creates new jobs, this increases the 

opportunities available for the currently unemployed population. Specifically, we find that an 

increase of one percentage point in the employment growth rate in a particular region decreases 

the unemployment rate in its own region by 0.127 percentage points. The spatial spillover effect 

is also negative and significant with a magnitude of -0.066. As was mentioned previously in 

Section 4.1, this indicates that job growth in a particular region is also favorable to surrounding 

regions. 

The direct effect of p in the u equation is negative and significant. If the participation rate 

increases by one percentage point in region i, the unemployment rate in region i decreases by 

0.034 percentage points. This result corroborates the majority of previous empirical studies. 

Whereas the accounting identity states that the effect of the participation rate on the 

unemployment rate should be positive (i.e. if the participation rate increases, ceteris paribus, the 

number of unemployed must also increase), Layard (1997) points out that increased participation 

encourages the growth of more local jobs. Elhorst (2003) identifies 11 empirical studies with 

negative and significant effects of (male, female, or total) participation rates, while 3 studies 

report a positive but insignificant effect and only one study a positive and also significant effect. 

Therefore, overall, the negative effect dominates. The positive spatial spillover effect is 

significant and suggests a discouragement effect on neighboring regions (0.039, t-value = 2.426). 

The total effect is also positive, but turns out to be insignificant.   

It is found that a one percentage increase in the regional employment growth rate 

increases the participation rate by 0.35 percentage points in the region itself. Although the spatial 

spillover effect has a negative sign suggesting adverse effects on the participation rate in 

neighboring regions, the magnitude is small and statistically insignificant. The total effect is 

quite substantial and significant (0.344, t-value = 25.314). A change in the regional 

unemployment rate also has a significant impact on the participation rate. A one percentage point 

increase in the unemployment rate in region i reduces the participation rate in that region by 

0.122 percentage points. Therefore, fewer jobs induce less people to enter the labor force. In 
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other words, there is a net discouragement effect over the additional worker effect in the own 

region. By contrast, the spatial spillover effect is positive and significant (0.101, t-value = 4.518).  

This result implies that people may change their participation decision and move to neighboring 

regions for work if the labor market conditions in their own region are relatively less promising. 

The total economy-wide effect, although smaller in magnitude, is negative and significant like 

the direct effect estimate.  

Turning to the last equation of the three-equation model, employment growth, we find 

that the direct and spatial spillover effect estimates are substantial and highly significant. A rise 

of one percentage point in the unemployment rate increases the employment growth rate by 

0.199 percentage points in the region itself, but decreases the employment growth in neighboring 

regions by 0.367 percentage points. These results are in line with the neoclassical convergence 

hypothesis that lagging regions are catching up with leading regions. If the unemployment rate is 

relatively high, firms are more willing to move to these regions since they have the benefit of 

hiring employees from a larger labor pool and because people who work in labor markets with 

higher unemployment rates earn a substantially lower wage, known as the wage curve effect 

(Blanchflower and Oswald, 1994). Finally, if the participation rate increases by one percentage 

point, employment growth decreases significantly by 0.482 percentage points. Conversely, this 

latter impact significantly increases employment growth in other regions by 0.339 percentage 

points. The total economy-wide effect is therefore negative, although insignificant.  

 

4.3 Impulse-response analysis 

 

To investigate the repercussions of a labor demand shock on other regions in the long term, the 

extended Blanchard-Katz model is used to conduct impulse-response analysis. In contrast to the 

non-spatial model, exogenous shocks also propagate across space. In other words, the impulse 

response functions include temporal dynamic effects as in a standard VAR model, as well as 

spatial dynamic effects. Figure 2 depicts the labor market adjustment process in the region itself 

following an employment growth shock of one percent over a ten year period. The 

unemployment rate drops by around 0.13 percentage points at time t = 1. In the first few years, 

the impact persists, but dies down quite rapidly in the following years. In the fourth year, the 

decline in the unemployment rate is much less with a magnitude of around -0.06. The 
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participation rate rises to around 0.35 percentage points in the first year, but the effect diminishes 

with magnitudes of around 0.22 and 0.18 in the second and third years, respectively. After 

around five to seven years, the effect of the shock on all variables weakens entirely. 

 

Insert Figure 2 

 

In order to facilitate the visualization of the impact of a region-specific shock on 

neighboring regions, we present maps using ArcGIS (Figure 3) as well as impulse-response 

functions that take into account both the time and spatial dimensions of the demand shock 

(Figure 4). Figure 3 illustrates the initial response of the labor market in all regions in our sample 

to a positive demand shock in Île-de-France (Paris) region. In contrast to a standard VAR, the 

shock in a particular region is not entirely idiosyncratic; an employment shock is simultaneously 

accompanied by employment shocks in other regions through the model’s spatial autoregressive 

structure. This is illustrated by the third panel of Figure 3. The initial employment shock in the 

region itself is larger than in neighboring regions (the darker the shading, the stronger the 

responses). The shock also propagates to other regions, especially impacting first and second-

order neighbors. 

 

Insert Figure 3 

 

The strongest responses to the shock are in Basse-Normandie, Champagne-Ardenne, 

Haute-Normandie, Pays-de-la-Loire, and Picardie. In Haute-Normandie and Picardie, the 

unemployment rate initially decreases by around 0.027 and 0.026 percentage points, 

respectively. Basse-Normandie, Haute-Normandie, and Pays-de-la-Loire experience the largest 

additional employment growth of respectively, 0.105, 0.091, and 0.102 percentage points. The 

largest increase in the labor force participation rate following the positive shock in labor demand 

in Île-de-France occurs in Champagne-Ardenne of around 0.0372 percentage points, followed by 

Picardie with 0.0367 percentage points. These magnitudes actually increase in the first few years. 

For example, in Champagne-Ardenne the participation rate rises to around 0.047 percentage 

points in the second year. Regions outside of France, such as the Belgian provinces also have 

higher impacts in the second year. For example, in Hainaut the unemployment rate declines by 
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0.0089 percentage points in the first year, while in the second year the magnitude is -0.0112. 

This indicates that it takes more time for the full effects of the shock to be felt due to the 

propagation across space. In contrast, in the Paris region all values are highest in the first year. 

An interesting observation from these results is that in some cases the second-order 

neighbors are more affected by the shock than the first-order neighbors, as is the case for Basse-

Normandie and Pays-de-la-Loire. Another interesting outcome is that while the changes in the 

unemployment rates, participation rates, and employment growth rates follow a similar pattern, 

differences exist both within regions and also in terms of the amount of regions affected by the 

shock. For example, for some regions the one percent employment growth shock in the Paris 

region affects the unemployment rate more than the other labor market variables, and vice versa. 

 

Insert Figure 4 

  

The additional employment growth observed in all other regions is due to the highly 

significant coefficient estimate of the spatially lagged employment growth variable (0.631, t-

value = 19.065) in Table 2. However, this effect decreases markedly after the second year. This 

can be observed in Figure 4 which shows the evolution of unemployment, participation and 

employment growth over both space and time. For presentation purposes, the impact of the shock 

on the labor market variables are ordered so that in the middle we observe regions that are most 

affected, which in our empirical application consist of regions located in France. In addition, the 

region that instigated the shock, Île-de-France, is eliminated from Figure 4. This is because the 

impact of this shock is already shown in Figure 2 and since it is much larger than the spillover 

impact in neighboring regions, it would dominate the figure. Just as in the region itself (Figure 

2), the effect of the shock on all variables in neighboring regions weakens considerably after 

around five to seven years. A notable difference is that the impact on the participation and 

unemployment rates following a demand shock seems to be more persistent in neighboring 

regions than in the region where the shock instigates.  

 

5. Conclusions 

 

This paper extends the seminal Blanchard and Katz (1992) regional labor market model to 

include interaction effects using a dynamic spatial panel data approach. A valuable aspect of the 
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extended model is that the assumption that regions are independent of one another no longer has 

to be made. Unlike the original model, the spatial Blanchard-Katz model developed in this paper 

allows for the quantification of spatial spillover effects. Another key contribution of this model is 

that both the temporal and spatial propagation of labor demand shocks can be investigated. 

Before estimating both the non-spatial and spatial models using a panel of 112 EU regions from 

1986-2010, important methodological issues are addressed including the estimation method, 

stationarity of the model, and the specification, selection, and different normalization procedures 

of the spatial weights matrix. Although row-normalizing the weights matrix is common practice 

in the literature, the justification and consequences of using this procedure instead of alternative 

normalization approaches is largely ignored and deserves more attention in future research.  

From the estimation results of the extended Blanchard-Katz model, it is found that the 

coefficients of the variables measuring interaction effects are highly significant. The coefficient 

estimates, however, do not represent the marginal effect of a change in an explanatory variable 

on the dependent variable. Therefore, a methodology recently introduced by LeSage and Pace 

(2009) is applied to calculate direct, spillover, and total effects. We find discrepancies between 

the spatial lag coefficient values and the spillover effects. For example, the coefficient of the 

spatially lagged value of employment growth in the unemployment rate equation is positive, 

whereas its spatial spillover effect is negative. The majority of the spillover effects and all the 

direct effects are highly significant.  

To investigate the impact of a region-specific labor demand shock on other regions, the 

extended model is used to conduct impulse-response analysis. Consistent with economic theory, 

the impact of a demand shock is largest in the region where the shock instigates. Yet, the shock 

also spreads to other regions, especially impacting the first and second-order neighbors, which is 

a reasonable result. As in the region itself, the effect of the shock on the unemployment, 

participation, and employment growth rates weakens after around five to seven years. A notable 

difference is that the impact in other regions becomes larger after the first year indicating that it 

takes more time for the full effects of the shock to be felt due to the propagation across space. In 

contrast, in the region where the shock takes place the impacts are highest in the first year. 

Extending the model from a recursive to a simultaneous equations model so that the labor market 

effects of a supply shock can be meaningfully simulated is a path that deserves more attention 
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(cf. De Groot and Elhorst, 2010). Including additional variables such as wages and labor market 

institutions in the model could also provide further insights into regional labor market dynamics.  
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Table 1. Spatial weights model comparison  

Spatial weights Equation

Log-likelihood 
function value

Bayesian posterior 
model probability

Log-likelihood 
function value

Bayesian posterior 
model probability

W 1 u 9183.27 0 8956.21 0
 p 7470.85 0 7278.37 0
e 5616.46 0 5554.09 0

W 2 u 9142.75 0 8896.72 0
 p 7444.25 0 7216.90 0
e 5580.83 0 5510.47 0

W 3 u 8826.71 0 8614.08 0
 p 7380.90 0 6820.50 0
e 5596.22 0 5466.77 0

W 4 u 8764.51 0 8664.42 0
 p 7234.30 0 6893.40 0
e 5429.65 0 5480.39 0

W 5 u 9110.13 0 8791.37 0
 p 7430.75 0 7176.83 0
e 5561.38 0 5504.85 0

W 6 u 9191.72 0.345 8935.84 0
 p 7480.60 1 7114.17 0

e 5668.46 1 5620.64 1
W 7 u 9111.07 0 8844.96 0

 p 7455.80 0 6955.29 0

e 5617.61 0 5557.54 0
W 8 u 9191.14 0.655 8977.53 1

 p 7466.45 0 7285.26 1

e 5609.08 0 5580.25 0
W 9 u 9137.05 0 8826.61 0

 p 7441.22 0 7136.43 0
e 5579.06 0 5494.89 0

W 10 u 8760.91 0 8629.79 0
 p 7354.90 0 7049.11 0
e 5571.58 0 5413.00 0

Economic distance 

Gravity-type model 

Hybrid matrix of    

W2 and W3

W4 restricting 

weights to contiguous 

neighbors

First-order and 

second-order 

neighbors

W6 including third-

order neighbors

Binary contiguity 

within national 

borders

Row normalization Maximum eigenvalue normalization

Binary contiguity 

across national 

borders

Population sizes

Inverse travel times
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Table 2. Non-spatial and spatial Blanchard-Katz model estimation results 

 
 

Notes: Results reported under column (2) are based on using weights matrix W8 for the u and p equations and W6 
for the e equation. t-values in parentheses.  

 

 

 

 

Dependent 
variable

Explanatory 
variables

u u t -1 0.868 (92.269) 0.810 (55.465)

Wu ─ ─ 0.603 (28.099)

Wu t -1 ─ ─ -0.426 (-15.823)

p t -1 -0.012 (-2.043) -0.025 (-3.253)

Wp t -1 ─ ─ 0.027 (2.427)

e -0.152 (-24.275) -0.120 (-21.467)

We ─ ─ 0.043 (5.039)

R
2

0.964 0.978

p p t -1 0.884 (92.201) 0.839 (58.187)

Wp ─ ─ 0.342 (13.264)

Wp t -1 ─ ─ -0.183 (-5.428)

u t-1 -0.115 (-7.245) -0.193 (-6.608)

Wu t-1 ─ ─ 0.174 (4.409)

e 0.515 (48.832) 0.524 (47.043)

We ─ ─ -0.186 (-9.489)

R
2 

0.976 0.980

e e t-1 -0.110 (-5.641) -0.116 (-7.908)

We ─ ─ 0.631 (19.065)

We t-1 ─ ─ 0.185 (5.336)

u t-1 -0.051 (-1.729) 0.212 (4.716)

Wu t-1 ─ ─ -0.274 (-4.637)

p t-1 -0.233 (-13.517) -0.331 (-14.823)

Wp t-1 ─ ─ 0.296 (8.501)

R
2 

0.252 0.414

(1)                  
Non-spatial model

(2)                
Spatial model
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Table 3. Spatial Blanchard-Katz model: Direct, indirect (spillover), and total effects  

Equation

Explanatory 
variable Direct effect Indirect effect Total effect

u e -0.127 -0.066 -0.193

(-21.497) (-4.909) (-11.685)

p -0.034 0.039 0.004

(-3.520) (2.426) (0.384)

 p e 0.350 -0.007 0.344

(48.630) (-0.549) (25.314)

u -0.122 0.101 -0.022

(-6.997) (4.518) (-1.285)

e u 0.199 -0.367 -0.168

(4.645) (-3.309) (-1.631)

p -0.482 0.339 -0.143

(-13.649) (3.352) (-1.462)  
Notes: See note under Table 2. Because p is measured in logs, while u and e are both measured in percentage points, 
we make the following adjustment. For the u equation, u = ln(p)β, where β is the coefficient estimate. Since 𝜕𝑢 𝜕𝑝⁄ = 𝜕𝑢 𝑝𝜕𝑙𝑛𝑝⁄ = 𝛽 𝑝⁄  and 𝑝̅ = 0.67 in our sample, we report 𝛽 𝑝̅⁄  for ease of interpretation. The e equation 
has a similar expression to that of u. In contrast, for the p equation, lnp = uβ and thus, 𝜕𝑝 𝜕𝑢⁄ = 𝑝𝜕𝑙𝑛𝑝 𝜕𝑢⁄ =  𝑝𝛽, 
which is approached by 𝑝̅𝛽. 
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Figure 1. Regional unemployment, participation and employment growth rates in 2010 

 
 

Figure 2. Regional labor market response to a demand shock on region itself 
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Figure 3. Regional labor market response across space to a demand shock in the Île-de-France region 

   
 

Figure 4. Regional labor market response across space and over time to a demand shock in the Île-de-France region 

   
Notes: The bottom left axis plots the regions, where we include all regions with the exception of Île-de-France. The bottom right axis indicates the time horizon of 
10 years and the legend at the right shows the magnitude of the changes.   
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